JPS6026897A - Storage vessel for hydride - Google Patents

Storage vessel for hydride

Info

Publication number
JPS6026897A
JPS6026897A JP58131880A JP13188083A JPS6026897A JP S6026897 A JPS6026897 A JP S6026897A JP 58131880 A JP58131880 A JP 58131880A JP 13188083 A JP13188083 A JP 13188083A JP S6026897 A JPS6026897 A JP S6026897A
Authority
JP
Japan
Prior art keywords
hydrogen gas
hydride
expansion
web filter
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58131880A
Other languages
Japanese (ja)
Inventor
Koichi Hirata
耕一 平田
Kouji Morita
森田 鴻司
Hiroshi Koshiba
小芝 浩
Sadaji Nishida
西田 定二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58131880A priority Critical patent/JPS6026897A/en
Publication of JPS6026897A publication Critical patent/JPS6026897A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PURPOSE:To relieve the generation of partial stress due to expansion, by installing a hydrogen gas permeable filter, whose concave part has such materials as discharging and occluding the hydrogen gas in accordance with rise and fall in temperature and pressure, inside a vessel. CONSTITUTION:Such alloying powder 14 as being easy to produce a hydride capable of absorbing or discharging hydrogen is charged in the concave part of a porous web filter 10 carrying hydrogen gas permeability. And, the said web filter is set up inside a package 9, making up a unit vessel there. When a hydride is formed upon acclusion of hydrogen, hydrogen gas is led into a hydrogen gas occluding and discharging port 11 or space of the convex part of the web filter 10, and when the setting surface of a pin 12 is cooled after passing a cooling fluid through a heating-cooling passage 13, the alloying powder 14 reacts on the hydrogen gas run past the web filter 10 and thereby the hydride is formed. Cubical expansion in time of hydride formation is easily achieved because the concave part of the web filter 10 is widened toward the end. Therefore, partial expansion is thus relieved.

Description

【発明の詳細な説明】 本発明は水素化物の貯蔵容器に関し、特に水素ガスの放
出・吸蔵時の伝熱面積を大きくとれ、水素化物の膨張・
収縮にも十分対応できる前記容器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydride storage container, in particular, which has a large heat transfer area when releasing and occluding hydrogen gas, and is capable of preventing expansion and storage of hydride.
The present invention relates to the container that can sufficiently cope with shrinkage.

従来より提案されている容器の例を第1図に示す。第1
図(A)は容器外観を示し、第1図(B)及び(C)は
それぞれ別方式の第1図(A)のA−A断面図で遍る。
An example of a conventionally proposed container is shown in FIG. 1st
FIG. 1(A) shows the external appearance of the container, and FIGS. 1(B) and 1(C) are sectional views taken along the line AA in FIG. 1(A) of different methods.

第1図において、1,1/は加熱、冷却用流体出入口、
2は水素ガス吸排日、3はシェル、4はチューブ、5は
フィン、6は加熱、冷却用流体、7は水素化物粉末、8
は水素化物吸蔵容器である。
In FIG. 1, 1,1/ is a heating and cooling fluid inlet and outlet;
2 is hydrogen gas intake/exhaust date, 3 is shell, 4 is tube, 5 is fin, 6 is heating and cooling fluid, 7 is hydride powder, 8
is a hydride storage vessel.

第1図(B)はシェル3内にフィン5を設けた構造であ
り、第1図(C)はシェル3内にチューブ4を配置した
構造であり、両者とも水素化物粉末7の水素ガス吸排を
速めるための熱伝導率アップを計っている。
FIG. 1(B) shows a structure in which fins 5 are provided within the shell 3, and FIG. 1(C) shows a structure in which a tube 4 is provided within the shell 3. We are trying to increase the thermal conductivity to speed up the process.

従来容器は、このように熱伝導率アップの効果を主にね
らった構造で、シェル本体については従来のままで、水
素ガス吸排時に生じる水素化物の膨張・収縮について何
ら対策が構じられていない。このことは、水素ガス吸収
時に生じる体積で約2倍の膨張変化が局部的に発生しシ
ェル本体への局部負荷応力により破壊する危険を有して
いるばかりでな(、現実にシェルの膨張現象も認められ
ている。さらに、従来のシェル型ではスケールアップに
ついても同一性能で大型化は困難である。
Conventional containers have a structure that mainly aims to increase thermal conductivity, and the shell body remains the same as before, and no measures are taken to prevent the expansion and contraction of hydride that occurs when hydrogen gas is taken in and discharged. . This not only means that an expansion change of about twice the volume that occurs when hydrogen gas is absorbed occurs locally, and there is a risk of destruction due to the local load stress on the shell body (in reality, shell expansion phenomenon occurs). Furthermore, it is difficult to scale up the conventional shell type with the same performance.

本発明に上記従来のこの種の容器の欠点を解消すべく、
大型化が可能であり、水素化物の加熱、冷却の伝熱面積
を太き(とることができ、しかも水素化物の膨張収縮に
際する変化にも容易に追随しうる容器を提案すべ(して
なされたものであって、温度、圧力の高低により水素ガ
スを放出、吸蔵する材料を凹部に装入した水素ガス透過
性フィルターを、伝熱面となる面の内部又は/及び外部
にフィンを設けた容器内に設置してなることを特徴とす
る水素化物貯蔵容器である。
In order to eliminate the drawbacks of the above-mentioned conventional containers of this type, the present invention has the following features:
We should propose a container that can be made larger, has a large heat transfer area for heating and cooling the hydride, and can easily follow the changes caused by the expansion and contraction of the hydride. This is a hydrogen gas permeable filter in which a material that releases and absorbs hydrogen gas depending on temperature and pressure changes is inserted into the recess, and fins are provided inside and/or outside of the surface that becomes the heat transfer surface. This is a hydride storage container characterized in that it is installed in a container.

本発明容器において使用される水素ガス透過性フィルタ
ーとしてはご般に径30μm以下の透過孔を有するステ
ンレスないしはブロンズ製の焼結合金が使用され、容器
材料としては耐水素材料で低圧の圧力容器などに使用さ
れている一般材料、例えばSUS系のものが使用できる
。また水素ガスを放出・吸蔵する材料としては、NaN
i5+ Mg21Ji 系の合金粉末が使用される。
The hydrogen gas permeable filter used in the container of the present invention is generally a stainless steel or bronze sintered alloy having permeation holes of 30 μm or less in diameter, and the container material is a hydrogen-resistant material that is suitable for use in low-pressure pressure vessels, etc. Commonly used materials such as SUS-based materials can be used. In addition, NaN is a material that releases and stores hydrogen gas.
An i5+ Mg21Ji based alloy powder is used.

以下、本発明の一実施態様を第2図に従って説明する。Hereinafter, one embodiment of the present invention will be described with reference to FIG.

第2図(A)は本発明の一実施態様の容器の断面図、第
2図(B)は第2図(A)の単位貯蔵容器の拡大図であ
り、第2図中、9はパッケージ、1oは水素ガス透過性
ウェーブフィルター、11は水素ガス吸排通路、12は
フィン、13は加熱冷却流体通路、14は水素化物粉末
、15は膨張用空間である。
FIG. 2(A) is a sectional view of a container according to an embodiment of the present invention, FIG. 2(B) is an enlarged view of the unit storage container of FIG. 2(A), and in FIG. 2, 9 is a package. , 1o is a hydrogen gas permeable wave filter, 11 is a hydrogen gas intake/exhaust passage, 12 is a fin, 13 is a heating and cooling fluid passage, 14 is a hydride powder, and 15 is an expansion space.

本発明の容器においては、第2図(B)に示されたよう
に水素な吸排できる水素化物を容易にっ(りや丁い合金
粉末14は、水素ガス透過性を持つ多孔質のウェーブフ
ィルター10の凹部に装入され、このウェーブフィルタ
ー10は、伝熱性能をアンプするためにその両端面の内
外部にフィン12が取り付けているパッケージ9内部に
設置されている単位容器よりなる。
In the container of the present invention, as shown in FIG. This wave filter 10 consists of a unit container installed inside a package 9, which has fins 12 attached to the inside and outside of both end surfaces to enhance heat transfer performance.

水素を吸蔵するとき、すなわち水素化物を生成させる時
には、ウェーブフィルター10の凸部の空間である水素
ガス吸排口11に水素ガスを導入し、加熱冷却通路13
に冷却流体を通してフィン12取付面を冷却すると合金
粉末14がウェーブフィルター10を通過してきた水素
ガスと反応し、水素化物を生成する。この時の水素化物
生成時の体積膨張はウェーブフィルター10の四部から
末広がりのため容易にできるし、局部膨張が緩和される
When storing hydrogen, that is, when generating a hydride, hydrogen gas is introduced into the hydrogen gas intake/exhaust port 11, which is a space in the convex part of the wave filter 10, and the hydrogen gas is introduced into the heating/cooling passage 13.
When cooling fluid is passed through the fins 12 to cool the mounting surface of the fins 12, the alloy powder 14 reacts with the hydrogen gas passing through the wave filter 10 to generate hydrides. At this time, the volume expansion during hydride generation can be easily achieved because the wave filter 10 spreads from the four parts toward the end, and local expansion is alleviated.

水素を排出するときには加熱冷却通路13に加熱流体を
通してフィン12取付面を加熱すると水素化物が分解し
、水素ガスがウェーブフィルター10を通して水素ガス
吸排口11より排出される。
When discharging hydrogen, heating fluid is passed through the heating/cooling passage 13 to heat the mounting surface of the fins 12 to decompose the hydride, and hydrogen gas is discharged from the hydrogen gas intake/discharge port 11 through the wave filter 10.

なお、水素化物の性状によってはウェーブ間隔を自由に
変えることができ、がっ取付フィン12もウェーブフィ
ルター1oと並行ないし直交にでき、間隔を小さくする
ことによっても水素ガス吸排の性能アップが計られる。
Note that depending on the properties of the hydride, the wave spacing can be changed freely, and the mounting fins 12 can be made parallel to or perpendicular to the wave filter 1o, and by reducing the spacing, hydrogen gas intake and exhaust performance can be improved. .

さらに、パッケージ9を積み重ねることによっても大容
量化は容易に可能である。第2図(B)はそのパッケー
ジを積み重、ねた例である。
Furthermore, the capacity can be easily increased by stacking the packages 9. FIG. 2(B) is an example of stacking the packages.

本発明容器を使用することにより、すなわちウェーブフ
ィルターの凹部に水素化物を装入しているため膨張によ
る局部応力発生を緩和することができ、かつ、容量アッ
プに伴う水素ガス吸排性能の低下を薄層パッケージ化及
び両面を・伝熱面として使用できることから容量アップ
に伴う性能の低下は認められない。さらにウェーブ状フ
ィルターを採用しているため、フィルター面積が大きく
なり水素ガスの透過速度もアップする効果があり、他方
凸部が水素ガスの通路として利用できガスの吸排速度が
速(なる効果もある。
By using the container of the present invention, in other words, since the hydride is charged into the concave part of the wave filter, it is possible to alleviate the local stress caused by expansion, and also to reduce the decrease in hydrogen gas suction and discharge performance due to increased capacity. Because of the layered packaging and the fact that both sides can be used as heat transfer surfaces, there is no decrease in performance due to increased capacity. Furthermore, since a wave-shaped filter is used, the filter area becomes larger, which has the effect of increasing the permeation rate of hydrogen gas.On the other hand, the convex part can be used as a passage for hydrogen gas, which has the effect of increasing the rate of gas absorption and exhaustion. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の水素化物貯蔵容器を示し、第1図(A丹
まその外観を示し、第1図(BI I (a)はそれぞ
れ別方式の第1図(A)のA−A断面図を示す。 第2図は本発明容器の一実施態様を示し、第2図(A)
は本発明の容器の断面図、第2図(B)は第2図(A)
の単位貯蔵容器の拡大図である。 復代理人 内 1) 明 復代理人 萩 原 亮 − 第1図 (A) 第2図 (A)
Figure 1 shows a conventional hydride storage container, Figure 1 (A) shows its appearance, Figure 1 (BI Figure 2 shows an embodiment of the container of the present invention, and Figure 2 (A)
is a sectional view of the container of the present invention, and FIG. 2(B) is FIG. 2(A).
FIG. 2 is an enlarged view of a unit storage container of FIG. Sub-agents 1) Meiji agent Ryo Hagiwara - Figure 1 (A) Figure 2 (A)

Claims (1)

【特許請求の範囲】[Claims] 温度、圧力の高低により水素ガスを放出、吸蔵する材料
を凹部に装入した水素ガス透過性フィルターを、伝熱面
となる面の内部又は/及び外部にフィンを設けた容器内
に設置してなることを特徴とする水素化物貯蔵゛容器。
A hydrogen gas permeable filter whose recesses are filled with a material that releases and absorbs hydrogen gas depending on the level of temperature and pressure is installed in a container with fins on the inside and/or outside of the surface that becomes the heat transfer surface. A hydride storage container characterized by:
JP58131880A 1983-07-21 1983-07-21 Storage vessel for hydride Pending JPS6026897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58131880A JPS6026897A (en) 1983-07-21 1983-07-21 Storage vessel for hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58131880A JPS6026897A (en) 1983-07-21 1983-07-21 Storage vessel for hydride

Publications (1)

Publication Number Publication Date
JPS6026897A true JPS6026897A (en) 1985-02-09

Family

ID=15068298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58131880A Pending JPS6026897A (en) 1983-07-21 1983-07-21 Storage vessel for hydride

Country Status (1)

Country Link
JP (1) JPS6026897A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058044A1 (en) * 2009-11-13 2011-05-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Hydrogen storage tank having metal hydrides

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582899A (en) * 1978-12-19 1980-06-21 Matsushita Electric Ind Co Ltd Hydrogen storage apparatus
JPS5812242B2 (en) * 1980-08-07 1983-03-07 出光興産株式会社 herbicide composition
JPS5899104A (en) * 1981-12-08 1983-06-13 Sekisui Chem Co Ltd Reactor for metallic hydride

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582899A (en) * 1978-12-19 1980-06-21 Matsushita Electric Ind Co Ltd Hydrogen storage apparatus
JPS5812242B2 (en) * 1980-08-07 1983-03-07 出光興産株式会社 herbicide composition
JPS5899104A (en) * 1981-12-08 1983-06-13 Sekisui Chem Co Ltd Reactor for metallic hydride

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058044A1 (en) * 2009-11-13 2011-05-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Hydrogen storage tank having metal hydrides
FR2952696A1 (en) * 2009-11-13 2011-05-20 Commissariat Energie Atomique METAL HYDRIDE HYDROGEN STORAGE TANK
JP2013511002A (en) * 2009-11-13 2013-03-28 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Hydrogen storage tank with metal hydride
US8985319B2 (en) 2009-11-13 2015-03-24 Commissariat á l 'ènergie atomique et aux énergies alternatives Hydrogen storage tank having metal hydrides

Similar Documents

Publication Publication Date Title
JPS6026897A (en) Storage vessel for hydride
JPS6052360B2 (en) hydrogen storage device
JPS60188697A (en) Heat radiating vessel for alloy absorbing and storing hydrogen
JP4098043B2 (en) Method for producing hydrogen storage alloy storage container
JPS5925956B2 (en) metal hydride container
Ron et al. Optimization of a hydrogen heat pump
JPS6176887A (en) Vessel for accommodating metallic hydrides
JPS5848480Y2 (en) Hydrogen storage device using metal hydride
JPS6026898A (en) Storage vessel for hydride
JPS58145601A (en) Reaction vessel for metal hydride
JPS6131355B2 (en)
JPS6229446Y2 (en)
JP2695615B2 (en) Heat exchanger
JPH0253362B2 (en)
JPH0214600B2 (en)
JPS59146901A (en) Metallic hydride reaction vessel and its manufacture
JPH0650499A (en) Hydrogen storage alloy holding container
JP3640476B2 (en) Reaction vessel for solid gas reaction powder
JPH0121949Y2 (en)
JPH01239001A (en) Reactor for hydrogen storage alloy
JPH07280492A (en) Heat exchanger using hydrogen absorbing alloy
JPS639547Y2 (en)
JP3459505B2 (en) Hydrogen storage alloy
JPS6131356B2 (en)
JPH09142801A (en) Vessel with hydrogen-occluded alloy molding housed therein and method of housing the same