JPS60188697A - Heat radiating vessel for alloy absorbing and storing hydrogen - Google Patents

Heat radiating vessel for alloy absorbing and storing hydrogen

Info

Publication number
JPS60188697A
JPS60188697A JP59040293A JP4029384A JPS60188697A JP S60188697 A JPS60188697 A JP S60188697A JP 59040293 A JP59040293 A JP 59040293A JP 4029384 A JP4029384 A JP 4029384A JP S60188697 A JPS60188697 A JP S60188697A
Authority
JP
Japan
Prior art keywords
vessel
container
fins
alloy
small chambers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59040293A
Other languages
Japanese (ja)
Inventor
Sadaji Nishida
西田 定二
Sakae Higano
栄 日向野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Steel Mfg Co Ltd
Mitsubishi Heavy Industries Ltd
Mitsubishi Steel KK
Original Assignee
Mitsubishi Steel Mfg Co Ltd
Mitsubishi Heavy Industries Ltd
Mitsubishi Steel KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Steel Mfg Co Ltd, Mitsubishi Heavy Industries Ltd, Mitsubishi Steel KK filed Critical Mitsubishi Steel Mfg Co Ltd
Priority to JP59040293A priority Critical patent/JPS60188697A/en
Publication of JPS60188697A publication Critical patent/JPS60188697A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0047Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for hydrogen or other compressed gas storage tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Abstract

PURPOSE:To improve the heat transfer rate of a heat radiating vessel for an alloy absorbing and storing hydrogen, by providing a plurality of holed separator plates in a direction crossing at a right angle with a flow path of hydrogen in the vessel so as to form small chambers and dividing these small chambers further into small chambers by elastic fins. CONSTITUTION:A vessel 1 comprises external fins 2, caps 3, 4 and a hydrogen flow pipe 5, and the cap 4 and the flow pipe 5 are mounted after setting holed separator plates 6, internal fins 7 and absorbing and storing alloys 8 to be inserted into the vessel. The internal fin, having elasticity in itself and as a set of fins so as to be closely attached to an internal wall of the vessel, divides the inside of a pipe of the vessel 1 into small chambers in the radial direction. Accordingly, the vessel results to improve its heat transfer rate because the numerous small chambers are formed by simplified construction.

Description

【発明の詳細な説明】 本発明は、水素吸蔵合金用伝熱容器に関し、容器壁への
過大応力集中を緩和でき、熱伝達率が向上し、かつ製作
、メインテナンスの容易な上記容器に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat transfer container for a hydrogen storage alloy, and relates to the container which can alleviate excessive stress concentration on the container wall, improve heat transfer coefficient, and is easy to manufacture and maintain. be.

水素吸蔵合金(以下、合金)用容器は、水素吸蔵時には
合金を冷却し、離脱時には加熱できるような機能を必要
としているが、合金が粉末であることも相まって、合金
層の熱伝導度は極めて小さく、冷却、加熱の熱伝達を緩
慢なものとしている。
Containers for hydrogen-absorbing alloys (hereinafter referred to as alloys) must have the ability to cool the alloy during hydrogen storage and heat it during desorption, but because the alloy is a powder, the thermal conductivity of the alloy layer is extremely low. It is small and slows down the heat transfer for cooling and heating.

従って、この容器の冷却あるいは加熱媒体との伝熱面積
を大きくすることが必要であシ、容器伝熱面にフィンな
どを設けることなどが行われている。
Therefore, it is necessary to increase the heat transfer area between the container and the cooling or heating medium, and fins or the like are provided on the heat transfer surface of the container.

本発明は、合金容器を管で形成し、管外にはフィンを設
けると同時に、管内合金層にも有孔仕切板およびフィン
を設けて、伝熱面積の増大と、合金粉末の保持を容易に
しようとするものである。 。
In the present invention, the alloy container is formed of a tube, and fins are provided on the outside of the tube, and at the same time, perforated partition plates and fins are also provided on the alloy layer inside the tube, thereby increasing the heat transfer area and facilitating the retention of the alloy powder. This is what we are trying to do. .

ところで、合金は水素を吸蔵すれば膨張し、離脱すれば
収縮する性質を有しておシ、膨張、離脱の繰返しにより
、容器部材に過大の応力を生じることがある。
By the way, alloys have the property of expanding when hydrogen is absorbed and contracting when hydrogen is removed, and repeated expansion and removal may generate excessive stress in the container member.

その対策として、一般には、容器内に膨張代としての空
隙を設け、更に合金粉末の飛散移動にもとすく水素吸蔵
時の膨張団塊化の防止のため容器を小室に区分して応力
の分散をはかったシしている。
As a countermeasure, generally, a void is provided inside the container to allow for expansion, and the container is divided into small chambers to prevent the scattering and movement of the alloy powder, and to prevent expansion lumps when absorbing hydrogen, thereby dispersing stress. I'm taking measurements.

本発明は、容器内部を弾性フィンを用いて小室に区分す
ると同時に、熱伝達率を向上せしめた合金容器を提供す
るものであシ、容器の製作及び合金の充填作業を容易に
したものである。
The present invention provides an alloy container in which the interior of the container is divided into small chambers using elastic fins, and at the same time the heat transfer coefficient is improved, and the container manufacturing and alloy filling operations are facilitated. .

すなわち本発明は、内部に水素吸蔵合金を装填する伝熱
容器において、該容器の軸方向に水素流路を設け、該流
路方向と直角方向に複数の有孔仕切板を設けて上記容器
内部を小室に区切シ、かつ弾性をもつ内部フィンを設け
て上記容器小室内部を更に半径方向に小室に区切ったこ
とを特徴とする水素吸蔵合金用伝熱容器に関するもので
ある。
That is, the present invention provides a heat transfer container in which a hydrogen storage alloy is loaded, in which a hydrogen flow path is provided in the axial direction of the container, and a plurality of perforated partition plates are provided in a direction perpendicular to the direction of the flow path. The present invention relates to a heat transfer container for a hydrogen storage alloy, characterized in that the container is divided into small chambers, and elastic internal fins are provided to further divide the inside of the container small chamber into small chambers in the radial direction.

第1図は本発明容器の一実施態様例を示す図である。FIG. 1 is a diagram showing an embodiment of the container of the present invention.

図において、容器1は外部フィン2.フタ3゜4及び水
素、導管5よシ成シ、フタ3又はフタ4及び導管5は、
有孔仕切板6.内部フィン7及び吸蔵合金8を容器内に
装填した後取付けられる。
In the figure, a container 1 has external fins 2. Lid 3゜4 and hydrogen, conduit 5 and lid 3 or lid 4 and conduit 5,
Perforated partition plate6. It is installed after loading the internal fins 7 and storage alloy 8 into the container.

充填の手順は、例えば、容器1.外部フィン2及びフタ
3を製作後、先づ、有孔仕切板6aを装入し、内部フィ
ン7aを入れる。ついで粒状の合金8aを所定量計量の
上充填する。つづいて有孔仕切板6bを装入し、内部フ
ィン、合金と順次装入していき、最後にフタ4、導管5
を取付ける。
The filling procedure includes, for example, container 1. After manufacturing the external fins 2 and the lid 3, first, the perforated partition plate 6a is inserted, and then the internal fins 7a are inserted. Then, a predetermined amount of granular alloy 8a is weighed and filled. Next, the perforated partition plate 6b is charged, the internal fins and the alloy are sequentially charged, and finally the lid 4 and the conduit 5 are charged.
Install.

このように順次容器内に品物を装入することによシ、容
器1内全体への合金8の均一分散が容易にできる。
By sequentially charging the items into the container in this manner, the alloy 8 can be easily uniformly dispersed throughout the container 1.

水素は導管5.有孔仕切板6を通って、合金8と接触し
、外部との熱の授受又は水素自身の圧力との関係におい
て、合金と吸蔵又は解離の現象を生じる。
Hydrogen is a conduit5. Hydrogen passes through the perforated partition plate 6, comes into contact with the alloy 8, and generates a phenomenon of occlusion or dissociation with the alloy in relation to the exchange of heat with the outside or the pressure of hydrogen itself.

一方、合金8は水素の吸蔵時には発熱、膨張し、解離時
には吸熱収縮する。
On the other hand, Alloy 8 generates heat and expands when it absorbs hydrogen, and endothermically contracts when it dissociates.

したがって容器1は、合金8の熱の授受を円滑に行うと
同時に合金8の膨張収縮による過大応力の発生を避ける
必要がある。
Therefore, the container 1 needs to smoothly transfer heat to and from the alloy 8 and at the same time avoid generating excessive stress due to expansion and contraction of the alloy 8.

一般に、本容器のように管内に合金、管外に熱媒体を配
置するものの場合、管外の熱媒体は、気体又は液体で、
熱伝導性に優れたものが用いられ、さらに外部フィンが
設けられているので、管外側の熱伝達率は非常に大きい
。一方、管内側は、合金粉粒体であシ、シかも合金の膨
張収縮をさけるため空隙を大きくしておシ、熱伝達率は
極めて小さい。
Generally, in cases where an alloy is placed inside the tube and a heating medium is placed outside the tube, such as in this case, the heating medium outside the tube is a gas or liquid.
Since a material with excellent thermal conductivity is used and external fins are provided, the heat transfer coefficient on the outside of the tube is extremely high. On the other hand, the inside of the tube is made of alloy powder and the voids are made large to avoid expansion and contraction of the alloy, and the heat transfer coefficient is extremely low.

これに対し、本発明容器においては、次のような作用効
果を奏し得る。
In contrast, the container of the present invention can provide the following effects.

(1)合金の膨張、収縮に対して、伝熱容器内には約5
0%の空隙を設け、容器壁への過大な応力発生を防止す
る。
(1) Regarding the expansion and contraction of the alloy, approximately 5
A void of 0% is provided to prevent excessive stress on the container wall.

(2) さらに容器を小室に区切って応力の集中を避け
る。
(2) Furthermore, divide the container into small chambers to avoid stress concentration.

(3) この小室に区切る仕切には、水素の流れ方向に
対しては有孔仕切板6を配し、水素の通過に際して、合
金8粉が隣の小室に移動しないようにしている。
(3) A perforated partition plate 6 is arranged in the partition dividing the small chambers in the direction of hydrogen flow to prevent Alloy 8 powder from moving to the adjacent small chamber when hydrogen passes through.

(4) また、容器の半径方向には内部フィン7を設け
、円周方向への移動を防いでいる。
(4) Furthermore, internal fins 7 are provided in the radial direction of the container to prevent movement in the circumferential direction.

(5) ここで、内部フィン7は仕切シとしてだけでな
く、容器内側の熱伝達率を向上させる効果をも有してい
る。
(5) Here, the internal fins 7 not only function as partitions but also have the effect of improving the heat transfer coefficient inside the container.

本発明は、こうした伝熱容器を提供するものであシ、 ■ 水素の通過方向(伝熱管の軸方向)に有孔仕切板を
設け、水素の流通を可能とし、かつ・・合金粉の飛散移
動を防止して、なおかつ容器を小室区分化したこと、 ■ 伝熱管内に弾性を有する内部フィンを設は管内熱伝
達率を向上せしめ、かつ小室区分化をはかったこと、 等がアイディアとして新しい点である。
The present invention provides such a heat transfer container. (1) A perforated partition plate is provided in the hydrogen passage direction (axial direction of the heat transfer tube) to allow hydrogen to flow, and to prevent scattering of alloy powder. New ideas include: preventing movement and dividing the container into small chambers; ■ installing elastic internal fins inside the heat transfer tube to improve the heat transfer coefficient within the tube; and dividing the container into small chambers. It is a point.

なお、本発明容器において、内部有孔仕切板は、発泡体
金属、焼結金属、金網状積層板などの外、孔質材料で、
温度、圧力によっては、無機質(セラミックス)あるい
は有機質のものも使用できる。この仕切板の間隔は伝熱
管径の0.3〜15倍が適当である。
In addition, in the container of the present invention, the internal perforated partition plate may be made of a porous material in addition to foam metal, sintered metal, wire mesh laminate, etc.
Depending on the temperature and pressure, inorganic (ceramics) or organic materials can also be used. The appropriate distance between the partition plates is 0.3 to 15 times the diameter of the heat transfer tube.

また、内部フィンは、それ自身及び−組のフィンとして
容器壁に密着すべく弾性を有するように構成され、例え
ば板状薄片を組合せたもの又は成形したものなどかあシ
、材質については通常用いられるステンレス材、鋼材、
アルミ材などがある。内部フィンの形状は、第2図(a
)に示すよ\うに管1を小室に区分できるものが好まし
く、管断面において2〜60室に区分できるととが適当
である。
In addition, the internal fins themselves and a set of fins are configured to have elasticity so as to be in close contact with the container wall. Stainless steel materials, steel materials,
There are aluminum materials. The shape of the internal fins is shown in Figure 2 (a
It is preferable that the tube 1 can be divided into small chambers as shown in ), and it is appropriate that the tube can be divided into 2 to 60 chambers in cross section.

合金8は、各小室毎に均一に充填することが好ましく、
通常充填率は50±30%である。
Alloy 8 is preferably uniformly filled in each chamber,
Normal filling rate is 50±30%.

更に内部フィンは、第2図(1))のように折シまげた
板状フィン9を矢印10の方向に束ねて、第2図(C)
のように構成したり、あるいは第2図((11のように
フィン板11を折シまげ、矢印12の方向に巻いて第2
図+1ll)のように構成することもできる。また、こ
れらの他に第2図tf)のように波状のフィン13にて
構成したシ、第2図(ロ)のようにハニカム状の構成も
良好な小室区分方法であシ、また同時に内部フィンとし
ての伝熱面積も向上せしめることができる。
Furthermore, the internal fins are made by bundling the folded plate-like fins 9 in the direction of the arrow 10 as shown in FIG. 2(C).
Alternatively, fold the fin plate 11 as shown in Figure 2 ((11), wrap it in the direction of the arrow 12, and
It can also be configured as shown in Figure 1ll). In addition to these, a structure made of wavy fins 13 as shown in FIG. The heat transfer area of the fins can also be improved.

なお、内部フィン自身は管内壁と密着性が高いことが要
求される。これは、合金粉粒の移動防止と、熱伝達率の
向上のためであるが、本目的のためには、フィン自体が
弾性を有していることが必要であシ、第2図(′b)〜
(e)の例におけるフィン9あるいは11は管装入時に
は管より幾分大きく製作し、また第2図(ロ)に示すよ
うに装入時にはその弾性で管壁と密着させ、管が熱膨張
によシ大きくなっても密着性を損なわないよう配慮した
構成とすることもできる。
Note that the internal fins themselves are required to have high adhesion to the inner wall of the pipe. This is to prevent the movement of alloy powder grains and improve the heat transfer coefficient, but for this purpose, the fins themselves need to have elasticity, as shown in Figure 2 (' b)~
In the example of (e), the fins 9 or 11 are made somewhat larger than the tube when charging the tube, and as shown in FIG. It is also possible to adopt a structure in which consideration is given to not impairing the adhesion even if the size increases.

以下に、本発明に係る有孔仕切板と内部フィンとがない
場合との対比において、本発明の効果を列挙する。
Below, the effects of the present invention will be listed in comparison with the case where there is no perforated partition plate and internal fin according to the present invention.

(1)容器壁への過大応力の集中に関して:仕切、フィ
ンなどがない場合、通常の管状容器では合金の膨張、収
縮作用の繰シ返しによシ、壁が外側にふくらみ、破壊さ
れ、これを防止するために容器壁厚さを大とする必要が
あるが、本発明の場合、容器壁厚さを減少しても、破壊
されることはない。
(1) Concerning concentration of excessive stress on the container wall: In the absence of partitions, fins, etc., in a normal tubular container, the alloy expands and contracts repeatedly, causing the wall to bulge outward and break. In order to prevent this, it is necessary to increase the thickness of the container wall, but in the case of the present invention, even if the container wall thickness is reduced, the container will not be destroyed.

(2)本発明の場合、合金の飛散防止によシ、後流の計
器等のメインテナンスが容易となシ、寿命も延びる。
(2) In the case of the present invention, it is possible to prevent the alloy from scattering, and maintenance of downstream instruments, etc. is easy, and the lifespan is extended.

(3)熱伝達率は合金自身に比べ数倍〜数十倍向上する
(3) The heat transfer coefficient is improved several times to several tens of times compared to the alloy itself.

(4) 内部フィンに弾性をもたせることによシ、製作
、組立てが容易となる。
(4) Providing elasticity to the internal fins facilitates production and assembly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明容器の一実施態様例を示す図、第2図(
a)〜但)は本発明に係る内部フィンの構成例を示す図
である。 復代理人 内 1) 明 徴代理人 萩 原 亮 −
Fig. 1 is a diagram showing an example of an embodiment of the container of the present invention, and Fig. 2 (
a) to (a) are diagrams showing examples of the structure of internal fins according to the present invention. Sub-agents 1) Clear agent Ryo Hagiwara -

Claims (1)

【特許請求の範囲】[Claims] 内部に水素吸蔵合金を装填する伝熱容器において、該容
器の軸方向に水素流路を設け、該流路方向と直角方向に
複数の有孔仕切板を設けて前記容器内部を小室に区切シ
、かつ弾性をもつ内部フィンを設けて前記容器の小室内
部を半径方向に更に小室に区切ったことを特徴とする水
素吸蔵合金用伝熱容器。
In a heat transfer container in which a hydrogen storage alloy is loaded, a hydrogen flow path is provided in the axial direction of the container, and a plurality of perforated partition plates are provided in a direction perpendicular to the flow path direction to divide the inside of the container into small chambers. A heat transfer container for a hydrogen storage alloy, characterized in that the inside of the small chamber of the container is further divided into small chambers in the radial direction by providing internal fins having elasticity.
JP59040293A 1984-03-05 1984-03-05 Heat radiating vessel for alloy absorbing and storing hydrogen Pending JPS60188697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59040293A JPS60188697A (en) 1984-03-05 1984-03-05 Heat radiating vessel for alloy absorbing and storing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59040293A JPS60188697A (en) 1984-03-05 1984-03-05 Heat radiating vessel for alloy absorbing and storing hydrogen

Publications (1)

Publication Number Publication Date
JPS60188697A true JPS60188697A (en) 1985-09-26

Family

ID=12576553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59040293A Pending JPS60188697A (en) 1984-03-05 1984-03-05 Heat radiating vessel for alloy absorbing and storing hydrogen

Country Status (1)

Country Link
JP (1) JPS60188697A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119393A (en) * 1985-11-19 1987-05-30 Sanyo Electric Co Ltd Heat exchanger for metal hydride
WO1988006727A1 (en) * 1987-03-02 1988-09-07 Proengin S.A. Portable and autonomous instrument for analyzing a gaseous composition by means of flame spectrophotometry
WO2002069431A3 (en) * 2001-02-21 2003-07-31 Coleman Powermate Inc Portable fuel cell electric power source
JP2004150567A (en) * 2002-10-31 2004-05-27 Nissan Motor Co Ltd High-pressure fuel gas storage vessel
JP2006291993A (en) * 2005-04-06 2006-10-26 Honda Motor Co Ltd Hydrogen storage tank
JP2008190627A (en) * 2007-02-05 2008-08-21 Iwatani Internatl Corp Hydrogen storage alloy container and its manufacturing method
US20120132545A1 (en) * 2010-11-25 2012-05-31 National Central University Hydrogen storage device
JP2014080329A (en) * 2012-10-16 2014-05-08 Kobe Steel Ltd Hydrogen storage/release apparatus
CN104330330A (en) * 2014-11-27 2015-02-04 先进储能材料国家工程研究中心有限责任公司 Equipment for testing gas adsorbing or desorbing rate
US20160327209A1 (en) * 2013-12-17 2016-11-10 Commissariat A L"Energie Atomique Et Aux Energies Al Ternatives Hydrogen storage tank comprising metal hydrides with heat exchanges

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56114802A (en) * 1980-02-16 1981-09-09 Seijiro Suda Unit for occluding hydrogen
JPS5899103A (en) * 1981-12-08 1983-06-13 Sekisui Chem Co Ltd Reactor for metallic hydride

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56114802A (en) * 1980-02-16 1981-09-09 Seijiro Suda Unit for occluding hydrogen
JPS5899103A (en) * 1981-12-08 1983-06-13 Sekisui Chem Co Ltd Reactor for metallic hydride

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119393A (en) * 1985-11-19 1987-05-30 Sanyo Electric Co Ltd Heat exchanger for metal hydride
WO1988006727A1 (en) * 1987-03-02 1988-09-07 Proengin S.A. Portable and autonomous instrument for analyzing a gaseous composition by means of flame spectrophotometry
EP0305435B1 (en) * 1987-03-02 1992-04-01 Proengin S.A. Portable and autonomous instrument for analyzing a gaseous composition by means of flame spectrophotometry
WO2002069431A3 (en) * 2001-02-21 2003-07-31 Coleman Powermate Inc Portable fuel cell electric power source
JP2004150567A (en) * 2002-10-31 2004-05-27 Nissan Motor Co Ltd High-pressure fuel gas storage vessel
JP4604442B2 (en) * 2002-10-31 2011-01-05 日産自動車株式会社 High pressure fuel gas storage container
JP2006291993A (en) * 2005-04-06 2006-10-26 Honda Motor Co Ltd Hydrogen storage tank
JP2008190627A (en) * 2007-02-05 2008-08-21 Iwatani Internatl Corp Hydrogen storage alloy container and its manufacturing method
US20120132545A1 (en) * 2010-11-25 2012-05-31 National Central University Hydrogen storage device
JP2014080329A (en) * 2012-10-16 2014-05-08 Kobe Steel Ltd Hydrogen storage/release apparatus
US20160327209A1 (en) * 2013-12-17 2016-11-10 Commissariat A L"Energie Atomique Et Aux Energies Al Ternatives Hydrogen storage tank comprising metal hydrides with heat exchanges
CN104330330A (en) * 2014-11-27 2015-02-04 先进储能材料国家工程研究中心有限责任公司 Equipment for testing gas adsorbing or desorbing rate

Similar Documents

Publication Publication Date Title
JP7206245B2 (en) Regenerative heat exchanger construction using phase change materials
US4599867A (en) Hydrogen storage cell
JPS60188697A (en) Heat radiating vessel for alloy absorbing and storing hydrogen
JP5760000B2 (en) Hydrogen storage tank with metal hydride
Chippar et al. Numerical investigation of hydrogen absorption in a stackable metal hydride reactor utilizing compartmentalization
US4600525A (en) Hydrogen sorbent flow aid composition and containment thereof
KR100203018B1 (en) High capacity getter pump
JP2004108570A (en) Hydrogen storage container
JPH0436081B2 (en)
JP2005009549A (en) Capsule container and hydrogen storage tank
JP3284855B2 (en) Collective battery of sodium sulfur battery
JP4420445B2 (en) Hydrogen storage alloy container
US20050072786A1 (en) Hydrogen storage container
CN214313375U (en) Heat dissipation device for cylindrical lithium ion battery
PT1454875E (en) Apparatus for hydrogen storage and process for its production
JP2695615B2 (en) Heat exchanger
JPS5848480Y2 (en) Hydrogen storage device using metal hydride
JP2004100926A (en) Hydrogen absorbing alloy storage container and manufacturing method for this container
JPH06221500A (en) Alloy storage tank for storing hydrogen
WO2004031645A1 (en) Metal hydride container
CN211651305U (en) Phase change cold storage device with vortex coil pipe
JPS63225799A (en) Manufacture of reactor for hydrogen absorption alloy
JPS6249100A (en) Metal hydride container
KR101128273B1 (en) A hydrogen storage device
SHAUBACH et al. High performance flexible heat pipes