JP2695615B2 - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JP2695615B2
JP2695615B2 JP6104692A JP10469294A JP2695615B2 JP 2695615 B2 JP2695615 B2 JP 2695615B2 JP 6104692 A JP6104692 A JP 6104692A JP 10469294 A JP10469294 A JP 10469294A JP 2695615 B2 JP2695615 B2 JP 2695615B2
Authority
JP
Japan
Prior art keywords
pressure vessel
hydrogen
metal material
heat
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6104692A
Other languages
Japanese (ja)
Other versions
JPH07286794A (en
Inventor
直樹 広
賢二 名迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6104692A priority Critical patent/JP2695615B2/en
Publication of JPH07286794A publication Critical patent/JPH07286794A/en
Application granted granted Critical
Publication of JP2695615B2 publication Critical patent/JP2695615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0047Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for hydrogen or other compressed gas storage tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、水素吸蔵金属材料に
水素が吸収されて水素吸蔵金属材料が金属水素化物にな
る際の発熱反応や、この金属水素化物から水素が放出さ
れて金属水素化物が水素吸蔵金属材料に戻る際の吸熱反
応を利用して熱交換を行なう熱交換器に係り、水素吸蔵
金属材料を圧力容器内に収容させ、水素供給排出手段に
よってこの圧力容器内に水素を供給したり、この圧力容
器内から水素を排出させたりするようにした熱交換器に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exothermic reaction when hydrogen is absorbed by a hydrogen-storing metal material and the hydrogen-storing metal material is converted into a metal hydride. The present invention relates to a heat exchanger that performs heat exchange by utilizing an endothermic reaction when returning to a hydrogen storage metal material, in which the hydrogen storage metal material is accommodated in a pressure vessel, and hydrogen is supplied into the pressure vessel by hydrogen supply / discharge means. And a heat exchanger for discharging hydrogen from the inside of the pressure vessel.

【0002】[0002]

【従来の技術】近年、フロンガス等によるオゾン層の破
壊等が問題となり、地球環境保全の立場からフロンガス
等を使用したコンプレッサー式の熱交換装置の使用が次
第に規制されるようになった。このため、近年において
は、上記のような方式とは異なる様々な方式の熱交換器
が開発されてきた。
2. Description of the Related Art In recent years, the destruction of the ozone layer due to Freon gas or the like has become a problem, and the use of compressor type heat exchangers using Freon gas or the like has been gradually restricted from the standpoint of global environmental protection. Therefore, in recent years, various types of heat exchangers different from those described above have been developed.

【0003】そして、このような熱交換器の一つとし
て、水素吸蔵金属材料に水素が吸収されて水素吸蔵金属
材料が金属水素化物になる際の発熱反応や、この金属水
素化物から水素が放出されて金属水素化物が水素吸蔵金
属材料に戻る際の吸熱反応を利用して熱交換を行なうよ
うにした水素吸蔵金属材料収容式の熱交換器が開発され
た。
[0003] As one of such heat exchangers, an exothermic reaction occurs when hydrogen is absorbed by a hydrogen storage metal material and the hydrogen storage metal material becomes a metal hydride, and hydrogen is released from the metal hydride. A heat exchanger containing a hydrogen storage metal material has been developed in which heat exchange is performed by utilizing an endothermic reaction when the metal hydride returns to the hydrogen storage metal material.

【0004】また、このような熱交換器において十分な
熱交換を行うため、使用する水素吸蔵金属材料について
も様々な研究が行われた。ここで、このような水素吸蔵
金属材料としては、使用温度レベルに応じて適当な平衡
水素圧力をもつこと、プラトー領域の傾きやヒステリシ
スが小さくて可逆性に優れていること、有効水素吸収量
が大きいこと、反応速度が大きいこと、水素の吸収放出
のサイクル寿命に優れていること等の特性をもつものが
好ましいとされ、このような特性を有する水素吸蔵金属
材料として希土類元素を含む水素吸蔵合金が開発され
た。
[0004] Further, in order to perform sufficient heat exchange in such a heat exchanger, various studies have been made on a hydrogen storage metal material to be used. Here, such a hydrogen storage metal material should have an appropriate equilibrium hydrogen pressure in accordance with the operating temperature level, have a small inclination and hysteresis in the plateau region, have excellent reversibility, and have an effective hydrogen absorption amount. It is preferable to use a hydrogen storage alloy containing a rare earth element as a hydrogen storage metal material having such characteristics as being large, having a high reaction rate, and having an excellent cycle life of hydrogen absorption and desorption. Was developed.

【0005】そして、上記のような水素吸蔵金属材料を
用いた熱交換器として、従来においては、図1に示すよ
うに、水素吸蔵金属材料Mの粉体を圧力容器10内に収
容させ、水素供給排出手段20によりこの圧力容器10
内に水素を供給したり、この圧力容器10内から水素を
放出させたりし、水素吸蔵金属材料Mが水素を吸収して
金属水素化物MHになる場合の発熱反応や、この金属水
素化物MHから水素が放出されて水素吸蔵金属材料Mに
戻る場合の吸熱反応を利用して、圧力容器10自体を加
熱或は冷却させるようにしたものや、図2に示すよう
に、上記の圧力容器10内に水素吸蔵金属材料Mとの間
で熱交換を行なう熱交換用媒体を通す媒体管30を設
け、この媒体管30内を流れる熱交換用媒体を加熱或は
冷却するようにしたものが存在した。
Conventionally, as a heat exchanger using the above-described hydrogen storage metal material, as shown in FIG. 1, a powder of the hydrogen storage metal material M is stored in a pressure vessel 10, The pressure vessel 10 is supplied by the supply / discharge means 20.
The hydrogen storage metal material M absorbs hydrogen to form a metal hydride MH by supplying hydrogen into the pressure vessel 10 or releasing hydrogen from the pressure vessel 10, or generates a hydrogen hydride from the metal hydride MH. The pressure vessel 10 itself is heated or cooled by utilizing an endothermic reaction when hydrogen is released and returns to the hydrogen storage metal material M. As shown in FIG. There is a medium pipe 30 through which a heat exchange medium for performing heat exchange with the hydrogen storage metal material M is provided, and the medium for heat exchange flowing in the medium pipe 30 is heated or cooled. .

【0006】ここで、上記のように水素吸蔵金属材料M
に水素を吸収させるとその体積が膨張する一方、このよ
うに水素を吸収した金属水素化物MHから水素を放出さ
せるとその体積が収縮し、このような操作を何度も繰り
返して水素の吸収,放出を行うと、水素吸蔵金属材料M
が微粉化され、このように微粉化された水素吸蔵金属材
料Mが圧力容器1の底部に片寄って、圧力容器1の底部
における水素吸蔵金属材料Mの密度が次第に高くなっ
た。
Here, as described above, the hydrogen storage metal material M
When hydrogen is absorbed into the metal hydride, the volume expands. On the other hand, when the hydrogen is released from the metal hydride MH that has absorbed the hydrogen, the volume contracts. When releasing, the hydrogen storage metal material M
The hydrogen-absorbing metal material M thus pulverized was biased toward the bottom of the pressure vessel 1, and the density of the hydrogen-absorbing metal material M at the bottom of the pressure vessel 1 was gradually increased.

【0007】このため、上記のような熱交換器におい
て、水素吸蔵金属材料Mに対して何度も繰り返して水素
の吸収,放出を行うと、水素吸蔵金属材料Mが水素を吸
収して金属水素化物MHになった場合における体積膨張
が水素吸蔵金属材料Mの密度が高くなった圧力容器1の
底部において大きくなり、圧力容器1の底部における内
部応力が増加して、圧力容器1の底部が次第に変形し、
極端な場合にはこの圧力容器1が破壊するという問題が
あった。
For this reason, in the above-described heat exchanger, when hydrogen is repeatedly absorbed and released from the hydrogen storage metal material M, the hydrogen storage metal material M absorbs the hydrogen and the metal hydrogen is absorbed. The volume expansion at the time of becoming the compound MH becomes large at the bottom of the pressure vessel 1 in which the density of the hydrogen storage metal material M is increased, the internal stress at the bottom of the pressure vessel 1 increases, and the bottom of the pressure vessel 1 gradually increases. Deformed,
In an extreme case, there is a problem that the pressure vessel 1 is broken.

【0008】また、このように圧力容器10が変するの
を防止するため、圧力容器10内に充填させる水素吸蔵
金属材料Mの充填率を低くすることが考えられたが、水
素吸蔵金属材料Mの充填率を低くすると、効率のよい十
分な熱交換が行えなくなるという問題があった。
In order to prevent the pressure vessel 10 from changing as described above, it has been considered that the filling rate of the hydrogen storage metal material M to be filled in the pressure vessel 10 is reduced. If the filling rate of the resin is low, there is a problem that efficient and sufficient heat exchange cannot be performed.

【0009】さらに、上記のように水素吸蔵金属材料M
の粉体をそのまま圧力容器10内に収容させて発熱或は
吸熱を行うと、圧力容器10自体が加熱或は冷却され、
図2に示す熱交換器のように、この圧力容器10内に熱
交換用媒体を通す媒体管30を設け、この媒体管30内
を流れる熱交換用媒体を水素吸蔵金属材料Mによって加
熱或は冷却させる場合、圧力容器1に熱が伝わって損失
されると共に、圧力容器1内における水素吸蔵金属材料
Mにおいて吸熱と発熱とが切り替わる度に、圧力容器1
0の顕熱による熱損失も生じ、熱交換効率が悪くなると
いう問題もあった。
Further, as described above, the hydrogen storage metal material M
Is stored in the pressure vessel 10 as it is to generate or absorb heat, the pressure vessel 10 itself is heated or cooled,
As shown in the heat exchanger shown in FIG. 2, a medium pipe 30 for passing a heat exchange medium is provided in the pressure vessel 10, and the heat exchange medium flowing in the medium pipe 30 is heated or heated by a hydrogen storage metal material M. In the case of cooling, the heat is transmitted to the pressure vessel 1 and lost, and the pressure vessel 1 is switched every time the hydrogen absorbing metal material M in the pressure vessel 1 switches between heat absorption and heat generation.
There is also a problem that heat loss due to sensible heat of 0 also occurs, and heat exchange efficiency is deteriorated.

【0010】[0010]

【発明が解決しようとする課題】この発明は、圧力容器
内に水素吸蔵金属材料を収容させ、この圧力容器内に水
素供給排出手段を通して水素を供給し、この水素を水素
吸蔵金属材料に吸収させて金属水素化物にする際の発熱
反応や、水素が供給された金属水素化物から水素を放出
させて水素吸蔵金属材料に戻す際の吸熱反応を利用して
熱交換を行なうようになった熱交換器における上記のよ
うな問題を解決することを課題とするものである。
According to the present invention, a hydrogen storage metal material is accommodated in a pressure vessel, hydrogen is supplied into the pressure vessel through a hydrogen supply / discharge means, and the hydrogen is absorbed by the hydrogen storage metal material. Heat exchange using the exothermic reaction when converting to metal hydride by heat and the endothermic reaction when releasing hydrogen from the supplied metal hydride and returning it to the hydrogen storage metal material It is an object of the present invention to solve the above-mentioned problems in a vessel.

【0011】すなわち、この発明においては、上記のよ
うな熱交換器において、水素吸蔵金属材料に水素を吸収
させ、また水素を放出させる操作を何度も繰り返して行
った結果、水素吸蔵金属材料が微粉化した場合において
も、水素吸蔵金属材料が水素を吸収して金属水素化物に
なる際の体積膨張によって圧力容器が変形するというこ
とがなく、熱交換器を長期にわたって安定して使用でき
るようにすると共に、圧力容器内に水素吸蔵金属材料を
十分に充填させて効率のよい熱交換が行えるようにし、
さらに圧力容器内に熱交換用媒体を通す媒体管を設け、
この媒体管内を流れる熱交換用媒体を水素吸蔵金属材料
によって加熱或は冷却する場合に、圧力容器における熱
損失を少なくし、効率のよい熱交換が行えるようにする
ことを目的とするものである。
That is, according to the present invention, in the above-described heat exchanger, the operation of absorbing and releasing hydrogen in the hydrogen-absorbing metal material is repeated many times. Even in the case of pulverization, the pressure vessel does not deform due to volume expansion when the hydrogen storage metal material absorbs hydrogen to become metal hydride, so that the heat exchanger can be used stably for a long time. In addition, the pressure vessel is sufficiently filled with the hydrogen storage metal material so that efficient heat exchange can be performed,
Further, a medium pipe for passing a heat exchange medium is provided in the pressure vessel,
It is an object of the present invention to reduce the heat loss in a pressure vessel and perform efficient heat exchange when heating or cooling a heat exchange medium flowing in the medium pipe with a hydrogen storage metal material. .

【0012】[0012]

【課題を解決するための手段】この発明においては、上
記のような課題を解決するため、水素吸蔵金属材料が収
容された圧力容器と、この圧力容器内に水素を供給しま
たこの圧力容器内から水素を排出させる水素供給排出手
段とを有する熱交換器において、水素吸蔵金属材料を上
記圧力容器内の上部側に収容させて、この圧力容器内の
下部側に緩衝部を設けるようにしたのである。
According to the present invention, in order to solve the above-mentioned problems, a pressure vessel containing a hydrogen storage metal material, a method for supplying hydrogen into the pressure vessel, and a method for supplying hydrogen to the pressure vessel. In a heat exchanger having a hydrogen supply / discharge means for discharging hydrogen from a hydrogen storage metal material, the hydrogen storage metal material is accommodated in an upper side of the pressure vessel, and a buffer section is provided in a lower side of the pressure vessel. is there.

【0013】ここで、上記のように水素吸蔵金属材料を
圧力容器内の上部側に収容させて圧力容器内の下部側に
緩衝部を設ける場合、この緩衝部は空間であっても良い
が、この熱交換器における圧力容器の顕熱による熱損失
をさらに少なくして熱交換効率を高めるためには、この
緩衝部にクッション性及び断熱性の高い緩衝用断熱材を
設けることが好ましい。
Here, when the hydrogen storage metal material is accommodated in the upper part of the pressure vessel and the buffer is provided in the lower part of the pressure vessel as described above, the buffer may be a space, In order to further reduce the heat loss due to the sensible heat of the pressure vessel in this heat exchanger and increase the heat exchange efficiency, it is preferable to provide a cushioning heat insulating material having high cushioning and heat insulating properties in this buffer portion.

【0014】[0014]

【作用】この発明における熱交換器においては、上記の
ように水素吸蔵金属材料を圧力容器内の上部側に収容さ
せて、この圧力容器内の下部側に緩衝部を設けるように
したため、水素吸蔵金属材料が水素を吸収して金属水素
化物になった場合に、その体積が膨張しても、この体積
膨張が圧力容器の下部側に設けられた緩衝部において吸
収されて圧力容器には作用せず、圧力容器が変形した
り、破壊されたりするということがない。
In the heat exchanger according to the present invention, the hydrogen storage metal material is accommodated in the upper portion of the pressure vessel as described above, and the buffer portion is provided in the lower portion of the pressure vessel. When the metal material absorbs hydrogen and becomes a metal hydride, even if its volume expands, this volume expansion is absorbed by the buffer provided on the lower side of the pressure vessel and acts on the pressure vessel. And the pressure vessel is not deformed or destroyed.

【0015】また、このように圧力容器が水素吸蔵金属
材料の体積膨張によって変形するということがないた
め、水素吸蔵金属材料の充填率を圧力容器内の上部側に
おいて高めることができ、効率の良い熱交換が行なえる
ようになる。
Further, since the pressure vessel is not deformed by the volume expansion of the hydrogen storage metal material as described above, the filling rate of the hydrogen storage metal material can be increased on the upper side in the pressure vessel, which is efficient. Heat exchange can be performed.

【0016】また、この発明の熱交換器においては、上
記のように圧力容器の下部側に緩衝部を設けているた
め、水素吸蔵金属材料の熱がこの緩衝部を通して圧力容
器に伝わるということが少なく、前記のように圧力容器
内に熱交換用媒体を通す媒体管を設け、この媒体管内を
流れる熱交換用媒体を水素吸蔵金属材料によって加熱或
は冷却させる場合に、圧力容器を通した熱損失が少なく
なると共に、その顕熱による熱損失も少なくなる。
Further, in the heat exchanger of the present invention, since the buffer is provided on the lower side of the pressure vessel as described above, the heat of the hydrogen storage metal material is transmitted to the pressure vessel through the buffer. At least, a medium pipe for passing a heat exchange medium is provided in the pressure vessel as described above, and when the heat exchange medium flowing in the medium pipe is heated or cooled by a hydrogen absorbing metal material, the heat passing through the pressure vessel is reduced. The loss is reduced, and the heat loss due to the sensible heat is also reduced.

【0017】また、この発明の熱交換器においては、水
素吸蔵金属材料が水素を吸収して体積膨張した場合に変
形が生じやすい圧力容器内の下部側にだけ緩衝部を設け
ているため、圧力容器が大きくなり過ぎるということが
ない。
Further, in the heat exchanger of the present invention, since the buffer portion is provided only on the lower side in the pressure vessel which is likely to be deformed when the hydrogen storage metal material absorbs hydrogen and expands in volume, the pressure is reduced. The container never gets too large.

【0018】さらに、前記のように圧力容器内の下部側
における緩衝部にクッション性の高い緩衝用断熱材を設
けると、この緩衝用断熱材によって圧力容器の変形が抑
制されると共に、この緩衝部を通して圧力容器に伝わる
熱もより少なくなり、この圧力容器における熱損失が一
層抑制されるようになる。
Further, as described above, when a cushioning heat insulating material having a high cushioning property is provided in the buffering portion on the lower side in the pressure vessel, the deformation of the pressure vessel is suppressed by the buffering heat insulating material, and the buffering portion is formed. The heat transmitted to the pressure vessel through the pressure vessel is also reduced, and the heat loss in the pressure vessel is further suppressed.

【0019】[0019]

【実施例】以下、この発明の実施例に係る熱交換器を添
付図面に基づいて具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A heat exchanger according to an embodiment of the present invention will be specifically described below with reference to the accompanying drawings.

【0020】この実施例における熱交換器においては、
図3に示すように、圧力容器10として、筒状で一方の
開口された端部にフランジ11aが設けられると共に他
方の端部が閉塞された容器本体11と、この容器本体1
1の開口された端部を閉塞させる蓋部12とからなるも
のを用い、この蓋部12を容器本体11の開口された端
部のフランジ11aにボルト,ナット(図示せず)等で
取り付けて、圧力容器10を密閉させるようにした。
In the heat exchanger in this embodiment,
As shown in FIG. 3, as a pressure vessel 10, a vessel body 11 having a cylindrical shape provided with a flange 11 a at one open end and having the other end closed is provided.
1 and a lid 12 for closing the opened end, and the lid 12 is attached to the flange 11a of the opened end of the container body 11 with bolts, nuts (not shown) or the like. The pressure vessel 10 was hermetically sealed.

【0021】ここで、上記の圧力容器10内に水素吸蔵
金属材料Mを収容させるにあたり、この実施例の熱交換
器においては、図3及び図4に示すように、圧力容器1
0内のの軸方向に沿って多数の円板状になった熱交換用
フィン13を配すると共に、このように圧力容器10の
軸方向に沿って設けられた熱交換用フィン13の周囲に
アルミニウムシート等で構成された保持部材14を配す
るようにした。
Here, when the hydrogen storage metal material M is accommodated in the pressure vessel 10, in the heat exchanger of this embodiment, as shown in FIGS.
A large number of disc-shaped heat exchange fins 13 are arranged along the axial direction within 0, and around the heat exchange fins 13 provided along the axial direction of the pressure vessel 10 as described above. The holding member 14 made of an aluminum sheet or the like is provided.

【0022】そして、このように多数設けられた熱交換
用フィン13の周囲に保持部材14を配した状態で、粉
体状になった水素吸蔵金属材料Mを各熱交換用フィン1
3間に充填させて圧力容器10内の上部側に保持させ、
その下部側に空間になった緩衝部15を形成し、さらに
図5に示すように、この緩衝部15にクッション性や断
熱性に優れると共に耐熱性にも優れたセラミックファイ
バー系の緩衝用断熱材16を充填させた。
Then, in a state where the holding members 14 are arranged around the heat exchange fins 13 provided in large numbers as described above, the powdery hydrogen-absorbing metal material M is put into each heat exchange fin 1.
3 and filled in the upper part of the pressure vessel 10,
A buffer portion 15 which is a space is formed at a lower portion thereof, and as shown in FIG. 5, the buffer portion 15 has a cushioning and heat insulating property and a ceramic fiber type buffer heat insulating material having excellent heat resistance. No. 16 was charged.

【0023】また、この実施例の熱交換器においては、
上記の圧力容器10内に水素を供給したり、この圧力容
器10内から水素を排出させたりする水素供給排出手段
20を設けるにあたり、水素供給排出管21を圧力容器
10の蓋部12を通して圧力容器10内に導くと共に、
この圧力容器10内において、この水素供給排出管21
を複数のフィルター式水素通気管22に分岐させ、分岐
されたフィルター式水素通気管22を上記の熱交換用フ
ィン13を貫通させて圧力容器10内に配するようにし
た。なお、このフィルター式水素通気管22としては、
その周囲が非常に細かいメッシュ状に形成され、水素を
通すが水素吸蔵金属材料Mの粉体を通さないものを用い
た。
In the heat exchanger of this embodiment,
In providing the hydrogen supply / discharge means 20 for supplying hydrogen into the pressure vessel 10 or discharging hydrogen from the pressure vessel 10, the hydrogen supply / discharge pipe 21 is connected to the pressure vessel 10 through the lid 12 of the pressure vessel 10. Lead into 10,
In the pressure vessel 10, the hydrogen supply / discharge pipe 21
Is branched into a plurality of filter-type hydrogen ventilation pipes 22, and the branched filter-type hydrogen ventilation pipes 22 are arranged in the pressure vessel 10 through the heat exchange fins 13. In addition, as this filter type hydrogen ventilation pipe 22,
The periphery thereof was formed in a very fine mesh shape and used to allow passage of hydrogen but not passage of the powder of the hydrogen storage metal material M.

【0024】また、この実施例においては、上記の圧力
容器10内において水素吸蔵金属材料Mとの間で熱交換
を行なう熱交換用媒体を通すため、圧力容器10の蓋部
12を通して媒体管30を圧力容器10内に導入させる
と共に、この媒体管30を上記の熱交換用フィン13を
貫通させて圧力容器10内において何度も折り返すよう
に配した後、上記の蓋部12を通して圧力容器10内か
ら導出させるようにした。
Further, in this embodiment, a medium pipe 30 is passed through the lid 12 of the pressure vessel 10 to allow a heat exchange medium for performing heat exchange with the hydrogen storage metal material M to pass through the pressure vessel 10. Is introduced into the pressure vessel 10, and the medium tube 30 is arranged so as to be folded many times in the pressure vessel 10 through the heat exchange fins 13, and then the pressure vessel 10 is passed through the lid 12. Derived from inside.

【0025】次に、この実施例の熱交換器を用いて熱交
換を行うにあたっては、上記の水素供給排出管21から
水素を圧力容器10内に導き、この水素を各フィルター
式水素通気管22を通して圧力容器10内に収容された
水素吸蔵金属材料Mに万遍なく供給し、このように供給
された水素を水素吸蔵金属材料Mに吸収させて金属水素
化物MHにしたり、またこのように水素が吸収された金
属水素化物MHから水素を放出させて水素吸蔵金属材料
Mに戻すと共に、このように放出された水素を圧力容器
10内から水素供給排出管21を通して排出させるよう
にした。
Next, when performing heat exchange using the heat exchanger of this embodiment, hydrogen is introduced into the pressure vessel 10 from the hydrogen supply / discharge pipe 21 and the hydrogen is passed through each of the filter-type hydrogen vent pipes 22. To the hydrogen-storing metal material M contained in the pressure vessel 10 through the hydrogen-absorbing metal material M. The hydrogen thus supplied is absorbed by the hydrogen-storing metal material M to form a metal hydride MH, or The hydrogen is released from the metal hydride MH having absorbed therein and returned to the hydrogen storage metal material M, and the hydrogen thus released is discharged from the pressure vessel 10 through the hydrogen supply / discharge pipe 21.

【0026】そして、上記のように水素吸蔵金属材料M
が水素を供給して金属水素化物MHになる際の発熱を利
用し、この熱を上記の熱交換用フィン13を介して媒体
管30内を流れる熱交換用媒体に伝えて熱交換用媒体を
加熱させ、これを熱源として用いるようにしたり、逆に
金属水素化物MHから水素が放出されて水素吸蔵金属材
料Mに戻る際の吸熱を利用し、上記熱交換用フィン13
を介して媒体管30内を流れる熱交換用媒体の熱を吸熱
し、熱交換用媒体を冷やして冷却を行なうようにした。
Then, as described above, the hydrogen storage metal material M
Utilizes the heat generated by supplying hydrogen to the metal hydride MH, and transfers this heat to the heat exchange medium flowing through the medium pipe 30 through the heat exchange fins 13 to transfer the heat exchange medium. The heat exchange fins 13 are heated and used as a heat source. Conversely, the heat absorption when hydrogen is released from the metal hydride MH and returned to the hydrogen storage metal material M is used.
Then, the heat of the heat exchange medium flowing through the medium pipe 30 is absorbed by the heat exchange medium, and the heat exchange medium is cooled to perform cooling.

【0027】ここで、上記のように水素吸蔵金属材料M
に水素を吸収させて金属水素化物MHに変換させたり、
金属水素化物MHから水素を放出させて水素吸蔵金属材
料Mに戻したりする操作を繰り返して行うと、前記のよ
うに水素吸蔵金属材料Mが微粉化し、このように微粉化
した水素吸蔵金属材料Mが保持部材14によって保持さ
れた圧力容器10上部側の底部に片寄ってその密度が高
くなった。
Here, as described above, the hydrogen storage metal material M
To absorb hydrogen and convert it to metal hydride MH,
By repeatedly performing the operation of releasing hydrogen from the metal hydride MH and returning it to the hydrogen storage metal material M, the hydrogen storage metal material M is pulverized as described above, and the hydrogen storage metal material M thus pulverized as described above. Of the pressure vessel 10 held by the holding member 14 and shifted toward the bottom on the upper side, thereby increasing the density.

【0028】このため、水素吸蔵金属材料Mが水素を吸
収して金属水素化物MHになった場合における体積膨張
は圧力容器10上部側の底部において大きくなったが、
このような体積膨張は圧力容器10内の下部側に設けら
れた緩衝用断熱材16によって吸収され、圧力容器10
自体が変形するということがなかった。
For this reason, when the hydrogen storage metal material M absorbs hydrogen and becomes the metal hydride MH, the volume expansion is large at the bottom on the upper side of the pressure vessel 10.
Such a volume expansion is absorbed by the cushioning heat insulating material 16 provided on the lower side in the pressure vessel 10 and the pressure vessel 10
There was no deformation itself.

【0029】また、上記のように水素吸蔵金属材料Mが
水素を供給して金属水素化物MHになる際の発熱反応を
利用して熱交換用媒体を加熱したり、金属水素化物MH
が水素を放出して水素吸蔵金属材料Mに戻る際の吸熱反
応を利用して熱交換用媒体を冷却したりする場合、この
圧力容器10内の下部側においては、熱が上記の緩衝用
断熱材16により断熱されて圧力容器10に伝わらず、
圧力容器10自体が加熱されたり冷却されたりすること
が少なくなり、圧力容器10を通した熱損失が少なくな
ると共に、圧力容器10の顕熱による熱損失も低減さ
れ、効率のよい熱交換が行えるようになった。
Further, as described above, the heat exchange medium is heated by utilizing the exothermic reaction when the hydrogen storage metal material M supplies hydrogen to become the metal hydride MH, or the metal hydride MH
When the heat exchange medium is cooled by utilizing an endothermic reaction that occurs when hydrogen is released and returns to the hydrogen storage metal material M, heat is generated at the lower side in the pressure vessel 10 by the above-described heat insulating buffer. Insulated by the material 16 and not transmitted to the pressure vessel 10,
Heating or cooling of the pressure vessel 10 itself is reduced, heat loss through the pressure vessel 10 is reduced, and heat loss due to sensible heat of the pressure vessel 10 is also reduced, so that efficient heat exchange can be performed. It became so.

【0030】なお、この実施例の熱交換器においては、
圧力容器10内の下部側における緩衝部15に緩衝用断
熱材16を配するようにしたが、必ずしも緩衝部15に
緩衝用断熱材16を設ける必要はなく、緩衝用断熱材1
6を設けていない場合においても、圧力容器10の変形
が抑制されると共に、圧力容器10のにおける熱損失が
少なくなり、効率のよい熱交換が行えるようになった。
In the heat exchanger of this embodiment,
Although the buffer heat insulating material 16 is arranged in the buffer portion 15 on the lower side in the pressure vessel 10, it is not always necessary to provide the buffer heat insulating material 16 in the buffer portion 15.
Even when the pressure vessel 6 is not provided, the deformation of the pressure vessel 10 is suppressed, the heat loss in the pressure vessel 10 is reduced, and efficient heat exchange can be performed.

【0031】[0031]

【発明の効果】以上詳述したように、この発明における
熱交換器においては、水素吸蔵金属材料を圧力容器内の
上部側に収容させて、この圧力容器内の下部側に緩衝部
を設けたため、水素吸蔵金属材料が水素を吸収して金属
水素化物になった場合に、その体積が膨張しても、この
体積膨張が圧力容器の下部側に設けられた緩衝部におい
て吸収されて圧力容器には作用せず、この結果、この熱
交換器の使用によって水素吸蔵金属材料が微粉化した場
合であっても、従来の熱交換器のように水素吸蔵金属材
料が水素を吸収した際の体積膨張によって、圧力容器が
変形したり破壊されたりするということがなく、この熱
交換器を長期にわたって安定して使用できるようになっ
た。
As described above in detail, in the heat exchanger of the present invention, the hydrogen storage metal material is accommodated in the upper portion of the pressure vessel, and the buffer portion is provided in the lower portion of the pressure vessel. When the hydrogen-absorbing metal material absorbs hydrogen and turns into a metal hydride, even if its volume expands, this volume expansion is absorbed by the buffer provided on the lower side of the pressure vessel, and is absorbed by the pressure vessel. Does not work, and as a result, even if the hydrogen storage metal material is finely divided by the use of this heat exchanger, the volume expansion when the hydrogen storage metal material absorbs hydrogen as in the conventional heat exchanger As a result, the heat exchanger can be stably used for a long time without being deformed or broken.

【0032】また、この発明における熱交換器において
は、上記のように圧力容器が水素吸蔵金属材料の体積膨
張によって変形したりするということがないため、圧力
容器内の上部側に収容させる水素吸蔵金属材料の充填率
を高くして、効率の良い熱交換が行なえるようになっ
た。
Further, in the heat exchanger according to the present invention, since the pressure vessel is not deformed by the volume expansion of the hydrogen storage metal material as described above, the hydrogen storage stored in the upper portion of the pressure vessel is performed. By increasing the filling rate of the metal material, efficient heat exchange can be performed.

【0033】また、この発明の熱交換器においては、上
記のように圧力容器の下部側に緩衝部を設けているた
め、水素吸蔵金属材料の熱がこの緩衝部を通して圧力容
器に伝わるということが少なく、圧力容器内に熱交換用
媒体を通す媒体管を設け、この媒体管内を流れる熱交換
用媒体を水素吸蔵金属材料によって加熱或は冷却させる
場合に、圧力容器を通した熱損失が少なくなると共に、
その顕熱による熱損失も少なくなり、効率の良い熱交換
が行なえるようになった。
Further, in the heat exchanger of the present invention, since the buffer is provided on the lower side of the pressure vessel as described above, the heat of the hydrogen storage metal material is transmitted to the pressure vessel through the buffer. When the heat exchange medium flowing through the medium pipe is heated or cooled by the hydrogen storage metal material, the heat loss through the pressure vessel is reduced. Along with
The heat loss due to the sensible heat is reduced, and efficient heat exchange can be performed.

【0034】また、この発明の熱交換器においては、水
素吸蔵金属材料が水素を吸収して体積膨張した場合に変
形が生じやすい圧力容器内の下部側にだけ緩衝部を設け
ているため、圧力容器が大きくなり過ぎて、熱交換器が
大型化するということもなかった。
Further, in the heat exchanger of the present invention, since the buffer portion is provided only on the lower side in the pressure vessel where the hydrogen storage metal material tends to be deformed when it absorbs hydrogen and expands in volume, the pressure is reduced. The heat exchanger did not become too large because the container became too large.

【0035】さらに、この発明の熱交換器において、圧
力容器内の下部側における緩衝部にクッション性の高い
緩衝用断熱材を設けると、この緩衝用断熱材によって圧
力容器の変形が抑制されると共に、緩衝部を通して圧力
容器に伝わる熱もより少なくなり、この圧力容器におけ
る熱損失が一層抑制され、より効率の良い熱交換が行な
えるようになった。
Further, in the heat exchanger of the present invention, when a cushioning heat insulating material having a high cushioning property is provided in the buffer portion on the lower side in the pressure vessel, the deformation of the pressure vessel is suppressed by the buffering heat insulating material. Also, the heat transmitted to the pressure vessel through the buffer section is reduced, and the heat loss in the pressure vessel is further suppressed, so that more efficient heat exchange can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の熱交換器の概略断面図である。FIG. 1 is a schematic sectional view of a conventional heat exchanger.

【図2】従来の熱交換器において圧力容器内に熱交換用
媒体を通す媒体管を設けた状態を示した概略断面図であ
る。
FIG. 2 is a schematic cross-sectional view showing a state in which a medium pipe for passing a heat exchange medium is provided in a pressure vessel in a conventional heat exchanger.

【図3】この発明の一実施例に係る熱交換器において、
圧力容器内の下部側における緩衝部に緩衝用断熱材を配
する前の状態を示した概略横断面図である。
FIG. 3 shows a heat exchanger according to one embodiment of the present invention.
FIG. 3 is a schematic cross-sectional view showing a state before a buffer heat insulating material is arranged in a buffer section on a lower side in the pressure vessel.

【図4】この発明の一実施例に係る熱交換器において、
圧力容器内の下部側における緩衝部に緩衝用断熱材を配
する前の状態を示した概略縦断面図である。
FIG. 4 shows a heat exchanger according to one embodiment of the present invention.
FIG. 3 is a schematic vertical sectional view showing a state before a buffer heat insulating material is arranged in a buffer section on a lower side in the pressure vessel.

【図5】この発明の一実施例に係る熱交換器において、
圧力容器内の下部側における緩衝部に緩衝用断熱材を配
した状態を示した概略縦断面図である。
FIG. 5 shows a heat exchanger according to one embodiment of the present invention.
FIG. 4 is a schematic longitudinal sectional view showing a state in which a buffer heat insulating material is arranged in a buffer section on a lower side in the pressure vessel.

【符号の説明】[Explanation of symbols]

10 圧力容器 14 保持部材 15 緩衝部 16 緩衝用断熱材 20 水素供給排出手段 M 水素吸蔵金属材料 MH 金属水素化物 DESCRIPTION OF SYMBOLS 10 Pressure vessel 14 Holding member 15 Buffer part 16 Buffer heat insulating material 20 Hydrogen supply / discharge means M Hydrogen storage metal material MH Metal hydride

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素吸蔵金属材料が収容された圧力容器
と、この圧力容器内に水素を供給しまたこの圧力容器内
から水素を排出させる水素供給排出手段とを有する熱交
換器において、水素吸蔵金属材料を上記圧力容器内の上
部側に収容させて、この圧力容器内の下部側に緩衝部を
設けたことを特徴とする熱交換器。
1. A heat exchanger comprising: a pressure vessel containing a hydrogen storage metal material; and a hydrogen supply / discharge means for supplying hydrogen to the pressure vessel and discharging hydrogen from the pressure vessel. A heat exchanger wherein a metal material is accommodated in an upper portion of the pressure vessel, and a buffer is provided in a lower portion of the pressure vessel.
JP6104692A 1994-04-18 1994-04-18 Heat exchanger Expired - Fee Related JP2695615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6104692A JP2695615B2 (en) 1994-04-18 1994-04-18 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6104692A JP2695615B2 (en) 1994-04-18 1994-04-18 Heat exchanger

Publications (2)

Publication Number Publication Date
JPH07286794A JPH07286794A (en) 1995-10-31
JP2695615B2 true JP2695615B2 (en) 1998-01-14

Family

ID=14387533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6104692A Expired - Fee Related JP2695615B2 (en) 1994-04-18 1994-04-18 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2695615B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4000608B2 (en) * 1996-11-07 2007-10-31 トヨタ自動車株式会社 Hydrogen production filling device and electric vehicle
JP4575107B2 (en) * 2004-10-13 2010-11-04 株式会社豊田自動織機 Pressure vessel
CN115107983B (en) * 2021-03-19 2023-09-29 株式会社岩谷技研 Container for flying body

Also Published As

Publication number Publication date
JPH07286794A (en) 1995-10-31

Similar Documents

Publication Publication Date Title
US6709497B2 (en) Honeycomb hydrogen storage structure
US7431756B2 (en) Modular metal hydride hydrogen storage system
US4548044A (en) Metal hydride container and metal hydride heat storage system
US7225860B2 (en) Compact heat battery
US4599867A (en) Hydrogen storage cell
US7124790B2 (en) System and method for storing and discharging hydrogen
Alqahtani et al. Thermal performance analysis of a metal hydride reactor encircled by a phase change material sandwich bed
US20030209149A1 (en) Honeycomb hydrogen storage structure
US6626323B2 (en) Vane heat transfer structure
US6708546B2 (en) Honeycomb hydrogen storage structure with restrictive neck
KR20110125206A (en) Adiabatic tank for metal hydride
JP2013511002A (en) Hydrogen storage tank with metal hydride
US20050145378A1 (en) Hydrogen-storage container and method of occluding hydrogen
US6378601B1 (en) Hydrogen cooled hydrogen storage unit having a high packing density of storage alloy and encapsulation
JP2695615B2 (en) Heat exchanger
JP4420445B2 (en) Hydrogen storage alloy container
JP2005009549A (en) Capsule container and hydrogen storage tank
JPS60188697A (en) Heat radiating vessel for alloy absorbing and storing hydrogen
RU167781U1 (en) METAL HYDROGEN BATTERY OF HYDROGEN REPEATED ACTION WITH IMPROVED HEAT EXCHANGE
JPS5925956B2 (en) metal hydride container
JPS5890A (en) Structure of heat exchanger utilizing metal hydride
KR940011075B1 (en) Heat pump
JPH06221500A (en) Alloy storage tank for storing hydrogen
WO2004031645A1 (en) Metal hydride container
Lewis et al. A numerical study of metal hydride reactor embedded with helical coil heat exchanger

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees