JPH0253362B2 - - Google Patents

Info

Publication number
JPH0253362B2
JPH0253362B2 JP58092141A JP9214183A JPH0253362B2 JP H0253362 B2 JPH0253362 B2 JP H0253362B2 JP 58092141 A JP58092141 A JP 58092141A JP 9214183 A JP9214183 A JP 9214183A JP H0253362 B2 JPH0253362 B2 JP H0253362B2
Authority
JP
Japan
Prior art keywords
hydrogen
storage
pressure
heat
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58092141A
Other languages
Japanese (ja)
Other versions
JPS59217601A (en
Inventor
Yoshio Imamura
Yoichi Mizuno
Masataka Shichiri
Shigeru Tsuboi
Koichi Yanai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP58092141A priority Critical patent/JPS59217601A/en
Publication of JPS59217601A publication Critical patent/JPS59217601A/en
Publication of JPH0253362B2 publication Critical patent/JPH0253362B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

【発明の詳細な説明】 本発明は水素吸蔵・放出装置の運転方法に関
し、詳細には水素吸蔵用金属(金属及び金属水素
化物の総称:以下同じ)と熱媒体の仕切壁を可及
的に薄くすることを可能とし、それにより熱交換
効率を向上させると共に、水素ガスの吸蔵・放出
速度を早めることに成功した水素吸蔵・放出装置
の運転方法に関するものである。
[Detailed Description of the Invention] The present invention relates to a method of operating a hydrogen storage/release device, and more specifically, the present invention relates to a method of operating a hydrogen storage/release device, and in particular, a partition wall between a hydrogen storage metal (a general term for metals and metal hydrides; the same shall apply hereinafter) and a heat medium is separated as much as possible. The present invention relates to a method of operating a hydrogen storage/release device that can be made thinner, thereby improving heat exchange efficiency and increasing the storage/release rate of hydrogen gas.

水素吸蔵用金属の収納部と熱媒体の通過経路を
熱交換壁によつて仕切ることにより構成される水
素吸蔵・放出装置としては、第1図及び第2図
(第1図における−線断面矢視図)に示す外
部熱媒体流路型と第3図及び第4図(第3図にお
ける−線断面矢視図)に示す内部熱媒体流路
型がある。尚第1〜4図において、1はシエル、
6は水素吸蔵用金属の収納容器、6aは熱交換
壁、7は水素ガス管、7aは水素ガス分配及び収
集用ヘツダ、13はフイルターを夫々示し、フイ
ルター13を介して容器6内に水素ガスを供給
し、又排出する構造となつている。そして第1,
2図では水素吸蔵用金属Mを収納した容器6の周
りに熱媒体Lを流すことによつて熱交換を行ない
ながら水素ガスの吸蔵又は放出が行なわれ、又第
3,4図では収納容器6内に熱媒体通路を形成
し、該通路に熱媒体Lを矢印A,Bで示す如く流
すことによつて熱交換を行ないながら同じく水素
ガスの吸蔵又は放出を行なう。ところでこの様な
形式の水素吸蔵・放出装置では水素吸蔵用金属M
と熱媒体Lとの熱交換壁6aは相当厚肉とする必
要があつた。即ち下記反応式 金属+H2金属水素化物 における平衡解離圧は、水素吸蔵用金属の種類や
運転温度によつて変わるが、例えば水素吸蔵用金
属をLaNi5とし、運転温度を80℃とすると約21
Kg/cm2にも及ぶことが知られている。これに対し
熱媒体側の圧力は熱媒体供給ポンプの吐出力にも
よるが一般に低く、通常は4Kg/cm2以下であるか
ら、熱交換壁6aを挾む圧力差は17Kg/cm2以上と
なる。従つて熱交換壁6aについては、この様な
大きい圧力差を十分に考慮した耐圧設計を施す必
要があつた。その結果、熱交換壁6aの肉厚を厚
くしなければならず下記の様な欠点に甘んじなけ
ればならなかつた。
A hydrogen storage/release device constructed by partitioning the hydrogen storage metal storage part and the passage path of the heat medium with a heat exchange wall is shown in Figures 1 and 2 (-line cross-sectional arrow in Figure 1). There are an external heat medium flow path type shown in FIG. 3 and FIG. 4 (a cross-sectional view taken along the line - in FIG. 3). In Figures 1 to 4, 1 is Ciel,
Reference numeral 6 indicates a metal storage container for storing hydrogen, 6a indicates a heat exchange wall, 7 indicates a hydrogen gas pipe, 7a indicates a header for hydrogen gas distribution and collection, and 13 indicates a filter. Hydrogen gas is introduced into the container 6 through the filter 13. It is structured to supply and discharge. And the first,
In FIG. 2, hydrogen gas is stored or released while exchanging heat by flowing a heat medium L around the container 6 containing the hydrogen storage metal M, and in FIGS. A heat medium passage is formed inside the chamber, and by flowing a heat medium L through the passage as shown by arrows A and B, hydrogen gas is stored or released while exchanging heat. By the way, in this type of hydrogen storage/release device, hydrogen storage metal M
The heat exchange wall 6a between the heat exchanger and the heat medium L had to be considerably thick. That is, the following reaction formula: Metal + H 2 The equilibrium dissociation pressure in a metal hydride varies depending on the type of hydrogen storage metal and operating temperature, but for example, if the hydrogen storage metal is LaNi 5 and the operating temperature is 80°C, it is approximately 21
It is known that it can reach up to Kg/ cm2 . On the other hand, the pressure on the heat medium side is generally low, although it depends on the discharge power of the heat medium supply pump, and is usually less than 4 kg/cm 2 , so the pressure difference across the heat exchange wall 6a is 17 kg/cm 2 or more. Become. Therefore, it was necessary for the heat exchange wall 6a to have a pressure-resistant design that fully takes such a large pressure difference into consideration. As a result, the thickness of the heat exchange wall 6a had to be increased, and the following disadvantages had to be complied with.

(1) 水素吸蔵用金属における水素ガス吸蔵及び放
出の各反応速度は、一般に伝熱速度に支配され
ているが、熱交換壁の肉厚が大きい為に伝熱速
度が低下し水素ガスの吸蔵・放出速度が低下す
る。
(1) The reaction rates of hydrogen gas storage and desorption in hydrogen storage metals are generally controlled by the heat transfer rate, but because the heat exchange wall is thick, the heat transfer rate decreases and the hydrogen gas storage and release rate decreases.・Release rate decreases.

(2) 水素吸蔵・放出のサイクルを繰返す際には収
納容器の温度も上昇・降下を繰返すが、熱交換
壁の肉厚が大きいと収納容器の熱容量が大きく
なる。従つて顕熱ロスが大きくなり水素吸蔵・
放出装置の熱効率が低下する。
(2) When the cycle of hydrogen absorption and desorption is repeated, the temperature of the storage container also rises and falls repeatedly, and if the heat exchange wall is thick, the heat capacity of the storage container increases. Therefore, sensible heat loss increases and hydrogen storage and
The thermal efficiency of the emitting device is reduced.

(3) 水素吸蔵用金属は通常微粉体状で充填されて
いるが、水素ガスを吸蔵することによつて金属
格子が膨張し金属粉体は一層微粉化されて嵩密
度が低下し、その結果金属粉体全体の体積が膨
張する。一方圧力容器では可撓性のある材料で
製作したり、可撓性を付与する加工を行なうこ
とが不可能であり、しかも耐圧設計の為に容器
の肉厚を大きくしなければならないので容器の
弾性変形能力は殆んどなく、金属粉体層の膨張
は微粉体同士の圧密増大力や熱交換壁面への押
圧力となつて表われる。これらの圧力は意外に
大きいもので、例えばLaNi5における実験では
450Kg/cm2にも達する。そして熱交換壁面に加
わる押圧力が過大になると容器が塑性変形を起
こし極端な場合には破壊に至る。
(3) Hydrogen storage metals are usually filled in the form of fine powder, but by storing hydrogen gas, the metal lattice expands and the metal powder becomes even more finely divided, reducing its bulk density. The volume of the entire metal powder expands. On the other hand, pressure vessels cannot be made of flexible materials or processed to give them flexibility, and in order to be designed to withstand pressure, the wall thickness of the vessel must be increased. There is almost no elastic deformation ability, and the expansion of the metal powder layer appears as an increased compaction force between the fine powder particles and a pressing force against the heat exchange wall surface. These pressures are surprisingly large; for example, in experiments on LaNi 5 ,
It can reach up to 450Kg/ cm2 . If the pressing force applied to the heat exchange wall surface becomes excessive, the container will undergo plastic deformation, leading to destruction in extreme cases.

(4) 微粉体に加わる圧縮力が一定値を越えると金
属粉体が焼結固化しはじめ水素ガスの通過抵抗
が増大する。その結果収納熱容器内部において
水素ガスの流動方向に圧力分布が形成される。
ところで水素吸蔵・放出反応速度は、吸熱・発
熱のし易さに左右されるが勿論水素ガス圧力、
正確には水素ガス圧力と平衡解離圧との差圧の
影響も受ける。従つて収納容器内に水素ガス圧
力の分布があると均一反応が起こり難くなり水
素吸蔵・放出装置の運転効率が低下する。尚収
納容器の変形や破壊あるいは金属粉体層の焼結
固化を防止する為に、収納容器における水素吸
蔵用金属の充填率を下げるという対策あるいは
水素圧自体を低下させるという対策もあり得る
が、これらの対策全ては当然水素ガス吸蔵・放
出能力を犠牲にすることになり水素吸蔵・放出
装置としての実用的価値を喪失してしまう。
(4) When the compressive force applied to the fine powder exceeds a certain value, the metal powder begins to sinter and solidify, increasing the resistance to passage of hydrogen gas. As a result, a pressure distribution is formed in the flow direction of the hydrogen gas inside the storage heat container.
By the way, the hydrogen absorption/release reaction rate depends on the ease of heat absorption and heat generation, and of course, the hydrogen gas pressure,
To be precise, it is also affected by the pressure difference between the hydrogen gas pressure and the equilibrium dissociation pressure. Therefore, if there is a distribution of hydrogen gas pressure within the storage container, a uniform reaction will be difficult to occur and the operating efficiency of the hydrogen storage/release device will be reduced. In order to prevent deformation or destruction of the storage container or sintering and solidification of the metal powder layer, it is possible to take measures such as lowering the filling rate of the hydrogen storage metal in the storage container or reducing the hydrogen pressure itself. Naturally, all of these measures sacrifice the hydrogen gas storage/release ability, resulting in the loss of practical value as a hydrogen storage/release device.

以上の様に従来装置では熱交換壁の肉厚が大き
くなるということの為に種々の欠点を生じ、熱交
換壁厚さを可及的に小さくすることが望まれてい
た。
As described above, the conventional apparatus has various drawbacks due to the large thickness of the heat exchange wall, and it has been desired to reduce the thickness of the heat exchange wall as much as possible.

本発明はこうした事情に着目してなされたもの
であつて、水素を吸蔵・放出させるに当り、装置
を損耗させることがないと共に、優れた熱効率並
びに水素吸蔵・放出速度を得ることができる様な
水素吸蔵・放出装置の運転方法を提供しようとす
るものである。
The present invention has been made with attention to these circumstances, and is a method for storing and desorbing hydrogen without causing wear and tear on the device, and in which excellent thermal efficiency and hydrogen storage and desorption speed can be obtained. This paper attempts to provide a method for operating a hydrogen storage/release device.

しかして本発明の運転方法は、水素吸蔵用金属
の収納部に接して熱媒体を通過させる様にした水
素吸蔵・放出装置の運転方法であつて、前記収納
部内外の圧力差を均圧操作により可及的に少なく
して運転する点に要旨を有するものである。
Therefore, the operating method of the present invention is a method of operating a hydrogen storage/release device in which a heat medium is passed through in contact with a housing portion of a hydrogen storage metal, and the method includes equalizing the pressure difference between the inside and outside of the storage portion. The key point is to operate with as little energy as possible.

以下実施例図面を参照しながら本発明の構成及
び作用効果を説明する。
The configuration and effects of the present invention will be explained below with reference to the drawings.

第5図は本発明方法を実施する為の水素吸蔵・
放出装置例を示すフロー図で、1はシエル、2は
熱媒体送給ポンプ、4は均圧装置、9は熱媒体加
熱・冷却装置(以下加熱・冷却装置という)を
夫々示す。図示する水素吸蔵・放出装置5は前述
の外部熱媒体流路型であり、シエル1内には水素
吸蔵用金属Mを収納した容器6が複数個配設され
ると共に、収納容器6の一方端側にヘツダ7aを
介して水素ガス管7が接続されている。尚水素ガ
ス管7には開閉バルブ3が介設されている。
Figure 5 shows hydrogen storage and storage for carrying out the method of the present invention.
1 is a flowchart showing an example of a discharge device, 1 is a shell, 2 is a heat medium feeding pump, 4 is a pressure equalization device, and 9 is a heat medium heating/cooling device (hereinafter referred to as a heating/cooling device). The illustrated hydrogen storage/release device 5 is of the above-mentioned external heat medium flow path type, and a plurality of containers 6 storing hydrogen storage metals M are disposed in the shell 1, and one end of the storage container 6 is disposed in the shell 1. A hydrogen gas pipe 7 is connected to the side via a header 7a. An on-off valve 3 is interposed in the hydrogen gas pipe 7.

又シエル1には熱媒体導入管8及び熱媒体排出
管8aが取付けられ、シエル1、加熱・冷却装置
9及び熱媒体送給ポンプ2が上記熱媒体導入管8
や排出管8a等で連結されることによつて熱媒体
循環系を形成している。
Further, a heat medium introduction pipe 8 and a heat medium discharge pipe 8a are attached to the shell 1, and the shell 1, the heating/cooling device 9, and the heat medium supply pump 2 are connected to the heat medium introduction pipe 8.
A heat medium circulation system is formed by connecting them through a discharge pipe 8a and the like.

一方図例の均圧装置4は、装置内を摺動できる
ピストン11によつて2室に区画されたものであ
り、熱媒体導入管8からの分岐管8bが一方の室
に、又水素ガス管7からの分岐管7bが他方の室
に、夫々接続されている。
On the other hand, the pressure equalizing device 4 in the illustrated example is divided into two chambers by a piston 11 that can slide inside the device, and a branch pipe 8b from the heat medium introduction pipe 8 is in one chamber, and a hydrogen gas Branch pipes 7b from the pipe 7 are connected to the other chamber, respectively.

本図例装置によつて水素ガスの吸蔵運転を行な
う場合には、加熱・冷却装置9によつて冷却され
た熱媒体Lをシエル1内に流しながら水素ガス管
7から収納容器6内に水素ガスを圧入する。一方
水素ガスの放出運転を行なう場合には、加熱・冷
却装置9によつて加熱された熱媒体Lをシエル1
内に流しつつ、収納容器6内の水素吸蔵用金属M
から水素ガスを解離させて水素ガス管7に集め系
外へ取出す。
When performing a hydrogen gas storage operation using the device shown in this figure, hydrogen is introduced from the hydrogen gas pipe 7 into the storage container 6 while flowing the heat medium L cooled by the heating/cooling device 9 into the shell 1. Inject gas under pressure. On the other hand, when performing a hydrogen gas release operation, the heat medium L heated by the heating/cooling device 9 is transferred to the shell 1.
Hydrogen storage metal M inside the storage container 6
Hydrogen gas is dissociated from the hydrogen gas, collected in the hydrogen gas pipe 7, and taken out of the system.

ところで前述の通り、水素ガス圧力と熱媒体圧
力は分岐管7b,8bを介して夫々均圧装置4に
伝達されているので、上記水素吸蔵操作並びに水
素放出操作の各工程中を含む全ての状態におい
て、水素ガス圧力が高い場合には均圧装置4内の
ピストン11が熱媒体側へ押されて摺動し、熱媒
体Lの圧力を上昇させる。又水素ガス圧力の方が
低い場合には前記とは反対にピストン11が水素
ガス側へ摺動し、熱媒体Lの圧力を低下させる。
即ち熱交換壁6aを内面から押圧する水素ガス圧
力と外面側から押圧する熱媒体圧力は、均圧装置
の働きによつて常に同等になろうとするので、熱
交換壁6aを挾む内外からの圧力差は極めて小さ
くなり、従つて従来の様に熱交換壁6aの肉厚を
大きくする必要がなくなつた。即ち比較的薄肉で
構成しても変形や破損の恐れはなくなつた。その
結果、熱交換壁6aを介する熱伝達は速やかに行
なわれると共に収納容器6自体の熱容量も小さ
く、顕熱ロスも大巾に低減されたので熱交換効率
は極めて高いものとなる。
By the way, as mentioned above, the hydrogen gas pressure and the heat medium pressure are transmitted to the pressure equalizing device 4 via the branch pipes 7b and 8b, respectively, so that all conditions including during each step of the hydrogen storage operation and hydrogen release operation described above In this case, when the hydrogen gas pressure is high, the piston 11 in the pressure equalizing device 4 is pushed and slid toward the heat medium side, and the pressure of the heat medium L is increased. Moreover, when the hydrogen gas pressure is lower, contrary to the above, the piston 11 slides toward the hydrogen gas side, thereby lowering the pressure of the heat medium L.
In other words, the pressure of the hydrogen gas that presses the heat exchange wall 6a from the inside and the pressure of the heat medium that presses the heat exchange wall 6a from the outside always try to be equal due to the function of the pressure equalization device, so that The pressure difference has become extremely small, so it is no longer necessary to increase the thickness of the heat exchange wall 6a as in the past. In other words, there is no longer any risk of deformation or breakage even if the structure is made relatively thin. As a result, heat transfer through the heat exchange wall 6a is rapid, the heat capacity of the storage container 6 itself is small, and sensible heat loss is greatly reduced, resulting in extremely high heat exchange efficiency.

本発明の基本的構成は上記の通りであるが、均
圧操作を行なう為の具体的な手段及び装置として
は、以下に示す様な実施態様に依ることもでき
る。第6図はシリンダーS内にベローズ18を設
けた例であり、ベローズ18内は水素ガス分岐管
7b、シリンダーSとベローズ18の間の空間は
熱媒体分岐管8bに、夫々連通されている。尚ベ
ローズ18の代りにダイヤフラムを用いることも
できる。又第7図は均圧装置を2つのシリンダー
室S1,S2から構成した例であり、両シリンダー室
S1,S2内に配設したピストン11a,11b同士
をロツド22で連結している。そして一方のシリ
ンダーS1を水素ガス分岐管7bに連通し、他方の
シリンダー室S2を熱媒体分岐管8bに連通したも
のである。その他、熱媒体が液体であつて、上記
運転温度における蒸気圧が小さいと共に、微量の
蒸気が水素ガス中に混入しても差支えない場合に
は第5図に示す均圧装置においてピストン11を
省略したものであつてもよい。
Although the basic structure of the present invention is as described above, the specific means and apparatus for performing the pressure equalization operation may also be based on the embodiments shown below. FIG. 6 shows an example in which a bellows 18 is provided inside the cylinder S. The inside of the bellows 18 is communicated with a hydrogen gas branch pipe 7b, and the space between the cylinder S and the bellows 18 is communicated with a heat medium branch pipe 8b. Note that a diaphragm may be used instead of the bellows 18. Fig. 7 shows an example in which the pressure equalization device is composed of two cylinder chambers S 1 and S 2 .
Pistons 11a and 11b disposed in S 1 and S 2 are connected by a rod 22. One cylinder S1 is connected to the hydrogen gas branch pipe 7b, and the other cylinder chamber S2 is connected to the heat medium branch pipe 8b. In addition, if the heat medium is a liquid, the vapor pressure at the above operating temperature is low, and there is no problem even if a small amount of vapor mixes into the hydrogen gas, the piston 11 is omitted in the pressure equalizing device shown in FIG. It may be something that has been done.

尚上記実施例においてはいずれも均圧装置を使
用したが、要は水素吸蔵用金属収納容器の熱交換
壁を挾んで内圧と外圧の圧力差が可及的に少なく
なれば良いのであるから上記以外の手段として例
えば第5図において均圧装置の設置を省略すると
共に水素ガス管7並びに熱媒体導入管8に夫々圧
力検出装置を取付け、水素ガスの圧力と熱媒体の
圧力が同等となる様に例えば収納シエルへの熱媒
体押込圧を調整する方法をとつてもよい。
In each of the above embodiments, a pressure equalization device was used, but the point is that the pressure difference between the internal pressure and the external pressure should be as small as possible by sandwiching the heat exchange wall of the hydrogen storage metal storage container. As an alternative method, for example, in Fig. 5, the installation of the pressure equalizing device is omitted, and pressure detection devices are attached to the hydrogen gas pipe 7 and the heating medium introduction pipe 8, respectively, so that the pressure of the hydrogen gas and the pressure of the heating medium are equalized. For example, a method may be used to adjust the pressure to push the heat medium into the storage shell.

以上の様に水素ガス圧力と熱媒体の圧力を実質
的に同等とすることにより、従来のように熱交換
壁を耐圧設計する必要がなくなるので多くの制約
条件が解消され、装置の熱効率及び装置効率を向
上させることが可能となつた。
As described above, by making the hydrogen gas pressure and the pressure of the heat medium substantially equal, there is no need to design the heat exchange wall to withstand pressure as in the past, and many constraints are eliminated, improving the thermal efficiency of the equipment. It became possible to improve efficiency.

本発明方法は以上の様な構成を有しているもの
であるから熱交換壁を薄く形成することが可能で
あり、従来当分野で使用されていなかつた様な構
造の装置を設計製造することが可能である。その
代表例としては第8〜19図に示す様な装置が例
示される。
Since the method of the present invention has the above-described configuration, it is possible to form a thin heat exchange wall, and it is possible to design and manufacture a device with a structure that has not been previously used in this field. is possible. As a typical example, devices as shown in FIGS. 8 to 19 are exemplified.

第8図及び第9図(第8図における−線断
面図)は、伝熱フイン付フイルター管13を内装
してなる水素吸蔵用金属収納容器6を示し、容器
6は可撓性を有する金属薄板からなる波板12に
側板10を接合して成形されると共に、一端に水
素吸蔵用金属Mの充填口14を設け、且つ他端に
フイルター管13に連通する水素ガス管7を取付
けている。尚充填口14は水素吸蔵用金属Mを容
器12内に収納した後は封鎖される。又容器が波
板状に形成されているのは水素吸蔵用金属Mが水
素を吸蔵して体積膨張した場合に波板12の谷部
がふくらんで膨張分を吸収させる為である。一方
伝熱フイン15は、フイルター管13に端縁が固
設された横板16と、容器12のふくらみ部分に
相当する位置に前記横板16に対して直交する方
向に付設された縦板17からなり、水素吸蔵用金
属Mに埋まる様に容器6内に収納されている。そ
してこの様な伝熱フイン15は熱交換壁を介して
侵入してきた熱を速やかに伝達させ収納容器6内
の熱分布を均質化させる機能を発揮することによ
り伝熱効果を一層向上させ、迅速な水素ガスの吸
蔵・放出サイクルが可能となる。
8 and 9 (a cross-sectional view taken along the line - in FIG. 8) show a hydrogen storage metal storage container 6 which is equipped with a filter tube 13 with heat transfer fins, and the container 6 is a flexible metal storage container 6. It is formed by joining a side plate 10 to a corrugated plate 12 made of a thin plate, and has a hydrogen storage metal M filling port 14 at one end, and a hydrogen gas pipe 7 communicating with a filter pipe 13 at the other end. . Note that the filling port 14 is closed after the hydrogen storage metal M is stored in the container 12. The reason why the container is formed in the shape of a corrugated plate is that when the hydrogen storage metal M stores hydrogen and expands in volume, the troughs of the corrugated plate 12 swell to absorb the expansion. On the other hand, the heat transfer fin 15 includes a horizontal plate 16 whose end edge is fixed to the filter tube 13 and a vertical plate 17 attached in a direction perpendicular to the horizontal plate 16 at a position corresponding to the bulge of the container 12. It is housed in the container 6 so as to be buried in the hydrogen storage metal M. The heat transfer fins 15 have the function of quickly transferring the heat that has entered through the heat exchange wall and homogenizing the heat distribution inside the storage container 6, thereby further improving the heat transfer effect and quickly transferring the heat. This enables a hydrogen gas storage/release cycle.

第10図は第8,9図に示した収納容器6を、
複数本の棒状スペーサ18を介して組み合わせて
なる水素吸蔵・放出体5aを示す一部破断側面図
で、熱媒体Lは導入口8cからシエル1内に入り
スペーサ18及び前記容器12の間をぬつて通過
し、更に排出口8dから放出される。尚水素吸
蔵・放出体5aの組合わせに当つては枠で固定す
ることも可能である。組合わされた水素吸蔵・放
出体5aはシエル1内壁に取付具23等を用いて
固定する。
FIG. 10 shows the storage container 6 shown in FIGS. 8 and 9.
This is a partially cutaway side view showing a hydrogen absorbing/releasing body 5a combined via a plurality of rod-shaped spacers 18. The heat medium L enters the shell 1 from the inlet 8c and passes between the spacer 18 and the container 12. The liquid then passes through and is further discharged from the discharge port 8d. In addition, when combining the hydrogen storage/release body 5a, it is also possible to fix it with a frame. The combined hydrogen storage/release body 5a is fixed to the inner wall of the shell 1 using a fixture 23 or the like.

第11図は他の適用例を示す一部破断斜視図
で、薄肉金属板製の箱状収納容器6bの内部に
は、伝熱部材として作用する波形金属板17が配
設されると共に、波形金属板17の長手方向一端
(図面では左手前側開口部)にはフイルター13
を介して水素ガス収集通路19が形成され、該水
素ガス収集通路19はヘツダー管を介して水素ガ
ス管7に連通している。又波形金属板17の長手
方向他端(図では右向う側開口部)は水素吸蔵用
金属充填口14に通じており、充填口14は金属
充填後には封鎖される。この様な収納容器6を複
数個組合わせるに当つては前記波形金属板17と
同様形状の波形スペーサ20を、夫々直交する様
に交互に組合わせ水素吸蔵・放出体5aが形成さ
れる。そして熱媒体Lはスペーサ20の波に沿つ
て矢印C方向へ流されている。この様な水素吸
蔵・放出体5aを第12図に示す様にシエル1内
に組込めば外部熱媒体流路型の水素吸蔵・放出装
置5を製造することができる。又第13図は内部
熱媒体流路型の水素吸蔵・放出装置5を示す模式
側面図で、第11図に示す水素吸蔵・放出体5a
において水素ガス収集通路19を省略した形に相
当する水素吸蔵・放出体5b(但しフイルター1
3a及びスペーサ20はそのまま取付けられてい
る)を用いると共にスペーサ20の長手方向両端
開口部に若干の空間を封じ込める様に蓋板21を
取付け、且つ該蓋板21に蓋板21を貫通して前
記封じ込め空間に連通する熱媒体導入管8e並び
に熱媒体排出管8fを取付けてシエル1内に納め
たものである。尚シエル1には水素ガス管7を取
付けているが各容器6bにはヘツダー管を取付け
る必要がない。
FIG. 11 is a partially cutaway perspective view showing another application example, in which a corrugated metal plate 17 acting as a heat transfer member is disposed inside a box-shaped storage container 6b made of a thin metal plate, and a corrugated A filter 13 is installed at one longitudinal end of the metal plate 17 (the opening on the left front side in the drawing).
A hydrogen gas collection passage 19 is formed through the hydrogen gas collection passage 19, and the hydrogen gas collection passage 19 communicates with the hydrogen gas pipe 7 through a header pipe. The other longitudinal end of the corrugated metal plate 17 (the opening on the right side in the figure) communicates with the hydrogen storage metal filling port 14, and the filling port 14 is closed after the metal is filled. When a plurality of such storage containers 6 are combined, the corrugated spacers 20 having the same shape as the corrugated metal plates 17 are alternately combined so as to be perpendicular to each other to form the hydrogen storage/release body 5a. The heat medium L is flowing in the direction of arrow C along the waves of the spacer 20. By incorporating such a hydrogen storage/release body 5a into the shell 1 as shown in FIG. 12, an external heat medium flow path type hydrogen storage/release device 5 can be manufactured. Further, FIG. 13 is a schematic side view showing the internal heat medium flow path type hydrogen storage/release device 5, in which the hydrogen storage/release body 5a shown in FIG.
The hydrogen storage/release body 5b corresponds to the form in which the hydrogen gas collection passage 19 is omitted (however, the filter 1
3a and the spacer 20 are attached as they are), a cover plate 21 is attached to the openings at both ends of the spacer 20 in the longitudinal direction so as to seal some space, and the cover plate 21 is penetrated through the cover plate 21 to A heat medium inlet pipe 8e and a heat medium discharge pipe 8f communicating with the containment space are attached and housed in the shell 1. Although the hydrogen gas pipe 7 is attached to the shell 1, it is not necessary to attach a header pipe to each container 6b.

第14図及び第15図(第14図における
−線断面矢視図)は、径の異なる複数の円筒
形収納容器6をスペーサ20を介して層状に組合
わせてなる水素吸蔵・放出体5cの例を示し、熱
媒体Lは導入管8aからシエル1内を通り出口管
8bへ流れる。
14 and 15 (cross-sectional view taken along the line - in FIG. 14) show a hydrogen storage/release body 5c formed by combining a plurality of cylindrical containers 6 with different diameters in a layered manner with spacers 20 interposed therebetween. For example, the heat medium L flows from the inlet pipe 8a through the shell 1 to the outlet pipe 8b.

第16図及び第17図(第16図における
−線断面矢視図)は、平板状の収納容器を渦
巻状に湾曲させた適用例でフイルター管13が最
外層の終端縁に沿つて内装されている。
16 and 17 (cross-sectional view taken along the line - in FIG. 16) are application examples in which a flat storage container is spirally curved, and the filter tube 13 is installed inside along the terminal edge of the outermost layer. ing.

第18図及び第19図(第18図における
−線断面矢視図)は、上記と同様渦巻状収納
容器例を示すが、フイルター管13も渦巻状に湾
曲して片側の渦巻状端縁に沿つて内装されてい
る。
18 and 19 (a cross-sectional view taken along the line - in FIG. 18) show an example of a spiral storage container similar to the above, but the filter tube 13 is also curved in a spiral shape and has a spiral edge on one side. It is decorated along.

上記第14図から第19図に示される適用例は
いずれも熱交換壁を薄くしたために採用できる構
造であり、小容積のシエル内に収納容器を緻密に
配設することができるので、単位容積当りの伝熱
面積を大きくとることができ、優れた伝熱効率を
得ることができる。
The application examples shown in FIGS. 14 to 19 above are all structures that can be adopted because the heat exchange walls are thin, and the storage containers can be arranged densely in a small-volume shell, so the unit volume A large heat transfer area can be obtained, and excellent heat transfer efficiency can be obtained.

本発明は以上の様に構成されており、以下要約
する効果を得ることができた。
The present invention is configured as described above, and has been able to obtain the effects summarized below.

(1) 収納容器内の水素ガス圧力と熱媒体の圧力を
ほぼ均等とするので、収納容器の肉厚を薄くす
ることができ、熱交換壁を介して行なわれる熱
伝達効率が極めて良くなつた。例えば水素吸蔵
用合金としてLaNi5を用いる場合、これを外径
21.7mmのステンレスパイプに充填し、110℃で
熱媒体と熱交換を行なうと、水素の解離圧が48
Kg/cm2Gになるので、従来法であればステンレ
スパイプの肉厚を3mm以上必要としたが、本発
明方法では熱媒体と水素の圧力差を4Kg/cm2
以内にとどめることができるのでパイプの肉厚
は1mm以下でよいことになる。このため伝熱速
度は約5%よくなつた。
(1) Since the pressure of the hydrogen gas inside the storage container and the pressure of the heat medium are almost equal, the wall thickness of the storage container can be made thinner, and the efficiency of heat transfer through the heat exchange wall is extremely improved. . For example, when using LaNi 5 as a hydrogen storage alloy, the outer diameter
When hydrogen is filled in a 21.7mm stainless steel pipe and heat exchanged with a heat medium at 110℃, the dissociation pressure of hydrogen is 48℃.
Kg/cm 2 G, so the conventional method required the wall thickness of the stainless steel pipe to be 3 mm or more, but with the method of the present invention, the pressure difference between the heat medium and hydrogen is 4 Kg/cm 2 G.
This means that the wall thickness of the pipe can be kept within 1 mm. Therefore, the heat transfer rate was improved by about 5%.

(2) 収納容器の熱交換壁厚を薄くすることができ
たので収納容器の熱容量が小さくなり、水素吸
蔵・放出サイクルに伴い顕熱ロスが僅かとなり
熱効率が向上した。上述の例において、ステン
レスチユーブ内に合金を40容量%充填した場合
には、従来法では合金1Kg当りの熱容量は
0.37cal/gであつたのに対し、本発明ではチ
ユーブの肉厚を薄くできるので熱容量は
0.09cal/gとなり、その結果顕熱ロスが34%
減少する。
(2) Since the heat exchange wall thickness of the storage container could be made thinner, the heat capacity of the storage container was reduced, and sensible heat loss during the hydrogen storage/release cycle was minimized, improving thermal efficiency. In the above example, when the stainless steel tube is filled with 40% by volume of alloy, the heat capacity per 1 kg of alloy is
The heat capacity was 0.37 cal/g, whereas in the present invention, the wall thickness of the tube can be made thinner, so the heat capacity is lower.
0.09cal/g, resulting in sensible heat loss of 34%
Decrease.

(3) 熱交換壁を薄肉とすることができたので、容
器の加工性が向上し、可撓性を有するタイプや
形状の複雑なタイプ等でも自在に形成すること
が可能となつた。
(3) Since the heat exchange wall could be made thinner, the processability of the container improved, and it became possible to freely form flexible types or types with complex shapes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は外部熱媒流路型の収納容器を示す側面
説明図、第2図は第1図における−線断面矢
視図、第3図は内部熱媒流路型の収納容器を示す
側面図、第4図は第3図における−線断面矢
視図、第5図は本発明方法を適用した水素吸蔵・
放出装置のフロー図、第6図及び第7図は均圧装
置の実施例図、第8〜19図は本発明方法を適用
した収納容器の説明図である。 1……シエル、4……均圧装置、5……水素吸
蔵・放出装置、6……収納容器、7……水素ガス
管、8……熱媒体導入管、8a……同排出管、1
3……フイルター、20……スペーサ。
Fig. 1 is an explanatory side view showing an external heat medium flow type storage container, Fig. 2 is a cross-sectional view taken along the line - in Fig. 1, and Fig. 3 is a side view showing an internal heat medium flow type storage container. 4 is a cross-sectional view taken along the - line in FIG. 3, and FIG. 5 is a hydrogen storage system using the method of the present invention.
FIGS. 6 and 7 are flow diagrams of the discharge device, FIGS. 6 and 7 are examples of the pressure equalization device, and FIGS. 8 to 19 are explanatory diagrams of the storage container to which the method of the present invention is applied. 1... Shell, 4... Pressure equalization device, 5... Hydrogen storage/release device, 6... Storage container, 7... Hydrogen gas pipe, 8... Heat medium introduction pipe, 8a... Discharge pipe, 1
3...Filter, 20...Spacer.

Claims (1)

【特許請求の範囲】[Claims] 1 水素吸蔵用金属の収納部に接して熱媒体を通
過させる様にした水素吸蔵・放出装置の運転方法
であつて、前記収納部内外の圧力差を均圧操作に
より可及的に少なくして運転することを特徴とす
る水素吸蔵・放出装置の運転方法。
1. A method of operating a hydrogen storage/release device in which a heat medium is passed through in contact with a metal housing for hydrogen storage, the method comprising reducing the pressure difference between the inside and outside of the housing as much as possible by pressure equalization operation. A method of operating a hydrogen storage/release device characterized by:
JP58092141A 1983-05-25 1983-05-25 Method for operating hydrogen occluding and releasing apparatus Granted JPS59217601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58092141A JPS59217601A (en) 1983-05-25 1983-05-25 Method for operating hydrogen occluding and releasing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58092141A JPS59217601A (en) 1983-05-25 1983-05-25 Method for operating hydrogen occluding and releasing apparatus

Publications (2)

Publication Number Publication Date
JPS59217601A JPS59217601A (en) 1984-12-07
JPH0253362B2 true JPH0253362B2 (en) 1990-11-16

Family

ID=14046155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58092141A Granted JPS59217601A (en) 1983-05-25 1983-05-25 Method for operating hydrogen occluding and releasing apparatus

Country Status (1)

Country Link
JP (1) JPS59217601A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177537A (en) * 2004-12-24 2006-07-06 Toyota Industries Corp High pressure tank system
FR3016021B1 (en) * 2014-01-02 2016-02-05 Commissariat Energie Atomique REVERSIBLE H2 STORAGE SYSTEM WITH PRESSURE BALANCING CONTAINING METAL HYDRIDE RESERVOIR
DE102017203462A1 (en) * 2017-03-02 2018-09-06 Deutsches Zentrum für Luft- und Raumfahrt e.V. Storage tank, tempering, method for producing a storage container and tempering

Also Published As

Publication number Publication date
JPS59217601A (en) 1984-12-07

Similar Documents

Publication Publication Date Title
US4457136A (en) Metal hydride reactor
US4548044A (en) Metal hydride container and metal hydride heat storage system
US5019358A (en) Reactor with hydrogen adsorption alloy
RU81568U1 (en) HYDROGEN EXTERNAL SURFACE METAL HYDROGEN CARTRIDGE
JP2001248795A (en) Hydrogen absorbing alloy tank
ES2907065T3 (en) Reactor for receiving a storage material and manufacturing method thereof
JPH0253362B2 (en)
EP0061191A1 (en) Metal hydride reactor
US5046247A (en) Method for manufacturing heat transfer module with hydrogen adsorption alloy
JPS5925956B2 (en) metal hydride container
RU167781U1 (en) METAL HYDROGEN BATTERY OF HYDROGEN REPEATED ACTION WITH IMPROVED HEAT EXCHANGE
JPS6176887A (en) Vessel for accommodating metallic hydrides
JPS6334487A (en) Hydrogenated metal heat exchanger
JPS5848480Y2 (en) Hydrogen storage device using metal hydride
JPH0121279Y2 (en)
JPS63225799A (en) Manufacture of reactor for hydrogen absorption alloy
JPS5899104A (en) Reactor for metallic hydride
JP2578650B2 (en) Metal hydride containers
JP2002295798A (en) Hydrogen transport vessel
KR970009520B1 (en) Reaction container of hydrogen accumulate alloy
JP3032998B2 (en) Hydrogen storage alloy holding container
KR940011075B1 (en) Heat pump
JPS61202091A (en) Utilizing device for metallic hydrogen compound
JPS6231238B2 (en)
JPS58145601A (en) Reaction vessel for metal hydride