JP3640476B2 - Reaction vessel for solid gas reaction powder - Google Patents

Reaction vessel for solid gas reaction powder Download PDF

Info

Publication number
JP3640476B2
JP3640476B2 JP26250296A JP26250296A JP3640476B2 JP 3640476 B2 JP3640476 B2 JP 3640476B2 JP 26250296 A JP26250296 A JP 26250296A JP 26250296 A JP26250296 A JP 26250296A JP 3640476 B2 JP3640476 B2 JP 3640476B2
Authority
JP
Japan
Prior art keywords
gas
reaction
container
hydrogen
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26250296A
Other languages
Japanese (ja)
Other versions
JPH1085582A (en
Inventor
宏之 三井
博史 青木
秀人 久保
敬司 藤
信雄 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Industries Corp
Priority to JP26250296A priority Critical patent/JP3640476B2/en
Publication of JPH1085582A publication Critical patent/JPH1085582A/en
Application granted granted Critical
Publication of JP3640476B2 publication Critical patent/JP3640476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【技術分野】
本発明は,水素吸蔵合金等の固気反応粉末の反応容器に関する。
【0002】
【従来技術】
水素吸蔵合金の反応容器を小形化し,水素の吸蔵と放出を効率的に行うには,水素吸蔵時の発熱を効率良く外部に取り除き,水素放出時の反応熱を外部から効率良く供給してやらなければならない。
それに加えて,水素吸蔵合金は,水素の吸蔵時に膨張し,水素放出時に収縮するから,容器は水素吸蔵合金の膨張収縮による応力に耐えなければならない。
【0003】
そのため,例えば図11に示すように,水素吸蔵合金の反応容器9は,円筒形の容器90とし,内部に可撓性の熱媒細管91を多数配置して熱交換を促進すると共に,水素透過性のフィルターからなるガス透過管92を配置し,水素ガスを導入又は導出する。同図において,符号911は伝熱フィンである。
【0004】
また,水素吸蔵合金の初期活性化,即ち水素吸蔵合金を加熱脱気と加圧吸蔵の繰り返しにより水素吸蔵可能にする過程において,一般的に水素吸蔵合金が微粉化するため,特に容器底部において発生する水素吸蔵合金の圧密化の不具合にも対応するものでなければならない。即ち,水素吸蔵合金が部分的に圧密化すると応力が一部に集中したり,水素ガスの流れを閉塞化する等の不具合を生ずるから,これを防止またはこれに対処できるようにしなければならない。
【0005】
そして,特開平7−286794号公報では,容器の下部に断熱性の緩衝部を設ける方法が提案されている。
また,特開平7−269795号公報には,水素吸蔵合金を充填し水素吸蔵合金の膨張力を受ける内部分割容器を容器内に複数設け,この内部分割容器と外殻を構成する容器とにより反応容器を構成する方法が提案されている。そして,水素吸蔵合金の膨張力は,複数の内部分割容器が負担し,反応ガスの圧力は外殻の容器が受容する。
【0006】
【解決しようとする課題】
しかしながら,従来の水素吸蔵合金の反応容器には,次のような問題がある。図11に示す反応容器9は,水素吸蔵合金の活性化時に容器90の下方に水素吸蔵合金の部分的な圧密化が生じ,水素の流れを阻害する閉塞領域等が生じやすいという問題がある。そのため,水素ガスの拡散が妨げられると共に水素吸蔵合金の体積膨張による応力がそこに集中し,また反応熱の熱交換能力も低下する。
【0007】
また,断熱性の緩衝材を設ける方法(特開平7−286794号公報)や,複数の内部分割容器を容器の内部に設ける方法(特開平7−269795号公報)は,反応に関与しない無駄な空間が増大し,容器が大形化するという問題がある。
本発明は,かかる従来の問題点に鑑みてなされたものであり,固気反応粉末の膨張に伴う応力の集中を抑制し,反応の進行と熱交換を効率的に行うことの出来る小形で高性能の反応容器を提供しようとするものである。
【0008】
【課題の解決手段】
本発明は,固気反応粉末に反応ガスを吸脱させる反応容器であって,
固気反応粉末を収容し外殻を形成する容器と,容器を上下方向に複数の区画に区分すると共に上記固気反応粉末を載置し反応ガスを透過することのできる仕切り棚と,熱媒を流通させ上記固気反応粉末と熱交換を行う伝熱管と,この伝熱管に装着され固気反応粉末と熱媒との間の伝熱を促進する伝熱フィンと,
上記容器の外から内に反応ガスを導入し,又は内から外に反応ガスを排出るガス管と,容器内の反応ガスを透過させ上記ガス管と連結されている1本以上のガス透過管とを有しており,
上記伝熱管は,上記仕切り棚によって分けられた各区画内の固気反応粉末に接するよう配置されていることを特徴とする固気反応粉末の反応容器にある。
【0009】
本発明にかかる反応容器は,仕切り棚によって容器内が上下方向に配置された複数の区画によって区分されている。
容器内を上下方向に区分けすることにより,水素吸蔵合金等の固気反応粉末が一部に偏在せず均一に分散する。そのため,例えば水素吸蔵合金の初期活性化により微粉化した場合に,粉末が一部で圧密化するような不具合が生じにくくなる。そのため,固気反応粉末の応力が一部に集中することがなく,固気反応粉末から放出または吸蔵される反応ガスはスムースに拡散する。
【0010】
また,仕切り棚は反応ガスを透過させるから,容器内に反応ガスがムラなく満たされることになる。
そして,各区画内における固気反応粉末の膨張力は,各区画毎に吸収することになり,応力は全体に分散される。
そして,各区画は,閉じた入れ物等ではなく仕切り棚によって区分けされるだけであるから,各区画の間に無駄なスペースが生ぜず,固気反応粉末を容器内に無駄なく収容することが出来るから,容器を小形化することができる。
【0011】
また,容器に注入または抽出される反応ガスは,ガス透過性フィルターのガス透過管とガス管とを介して行われる。
一方,伝熱管は,上記仕切り棚によって分けられた各区画毎にそれぞれの固気反応粉末に接するよう配置されているから,反応促進に必要な熱交換を効率的に行うことができ,固気反応粉末の反応を促進する。
【0012】
上記の結果,固気反応粉末の反応は,容器内において効率的かつ均一にに進行し,容器に対する応力の集中も生じない。それ故,本発明にかかる反応容器は,相対的に小形軽量化することが可能となる。
上記のように,本発明によれば,固気反応粉末の膨張に伴う応力の集中を抑制し,反応の進行と熱交換を効率的に行うことの出来る小形で高性能の反応容器を提供することができる。
【0013】
なお,請求項2記載のように,上記仕切り棚の形状は,横端部を上方に湾曲させ,容器の垂直壁面に漸次近接するようすることが好ましい(図1,湾曲部151参照)。
このように,湾曲形状とすることにより,仕切り棚は湾曲部において撓み易くなり,固気反応粉末が膨張する方向に撓むことにより膨張力を吸収することができる。
そして,本発明の反応容器は,請求項3記載のように,水素吸蔵合金の水素吸蔵,放出反応に極めて好適である。
【0014】
【発明の実施の形態】
実施形態例1
本例は,固気反応粉末としての水素吸蔵合金(MH)に反応ガスとしての水素ガスを吸脱させる反応容器である。,図1,図2に示すように,反応容器1は,水素吸蔵合金81を収容し外殻を形成する容器11と,容器11を上下方向に複数の区画に区分すると共に水素吸蔵合金81を載置し水素ガスを透過することのできる仕切り棚15と,熱媒を流通させ水素吸蔵合金81と熱交換を行う伝熱管21と,伝熱管21に装着され水素吸蔵合金81と熱媒との間の伝熱を促進する伝熱フィン25と,容器11の内と外との間に反応ガスを導入又は排出させるガス管31(図2)と,容器11内の水素がスを透過させるガス透過性フィルターからなりガス管31と連結されているガス透過管35とを有している。
【0015】
そして,伝熱管21は,仕切り棚15によって分けられた各区画内の水素吸蔵合金81に接するよう配置されている。
また,仕切り棚15は,図1に示すように,横端部を上方に湾曲させ,容器11の垂直壁面111に漸次近接するよう形成されている。
以下,それぞれについて説明を補足する。
【0016】
反応容器1は,図1,図2に示すように,断面形状が正方形に近い方形で奥行き方向に長い箱形の形状を有する。そして,容器11は,5枚の仕切り棚15により上下方向に6つの区画に区分けされている。また,伝熱管21は,各区画内において前後方向に等間隔で配置され,それぞれの区画における伝熱管21の右端部は他の区画の端部と接続され,左端部下方3区画の伝熱管21の端部は熱媒の流入口211(図2)と接続され,上方3区画の伝熱管21の端部は熱媒の流出口212(図2)に接続されている。
また,ガス透過管35は,上部中央と中心部とに奥行き方向に延設されており,それぞれの端部はガス管31に接続されている。
【0017】
反応容器1を構成する各部材11,21,25,31は,ガス透過管35及び仕切り棚15を除きアルミニウム合金からなる。そして,容器11と伝熱管21とは,アルミ押出し成形により一体構造となっている。
水素吸蔵合金81は,伝熱管21及び伝熱フィン25の周りに充填されている。なお,水素吸蔵合金81は,容器11の前後の端面または側面に設けた充填口(図示略)から充填される。
また,ガス透過管35及び仕切り棚15は,ステンレス焼結体により形成されている。
【0018】
ガス透過管35を構成するガス透過性フィルターは,1μm透過フィルターであり,水素透過性の仕切り棚15は空隙径10μmで厚さ0.4〜0.5mmのシートである。上記透過指数の決定は,使用する水素吸蔵合金の活性化処理後の粒径分布に基づいて決定したが,後述する実験に使用した水素吸蔵合金81においては,1〜30μmの範囲においてほぼ同様の結果が得られている。
ガス透過管35は,本例では2本とし水素吸蔵合金81の充填容積の減少を抑制したが,1本以上であればよい。
【0019】
伝熱フィン25は,肉厚0.25mmのアルミニウムシートを容器の長手方向に積層したものであり,伝熱管21にロウづけされている。
そして,水素吸蔵合金81は,各区画に均一に充填され,水素吸蔵合金の充填量は,粉体工学で一般的に採用されているタップ密度を基準とした。
なお,水素吸蔵合金のタップ密度は,水素吸蔵合金の活性化前と活性化後とで変化するが,容器に収容する水素吸蔵合金81の充填率(充填密度/真密度)は,活性化前のタップ密度と活性化後のタップ密度の間で選択することが好ましい。
【0020】
本例の反応容器1では,活性化後の水素吸蔵合金のタップ密度の110%程度に充填率(充填密度/真密度)を大きくしても,反応容器1に過大な応力の発生は,認められず,また容器内部での水素ガスの透過性も良好な結果が得られている。しかしながら,水素吸蔵合金81の充填率を,活性化前のタップ密度まで上昇させた場合には,本例の反応容器1が破損することは無かったが,内部における水素ガスの透過性が低下する傾向が見られた。
そのため,水素吸蔵合金の充填率(充填密度/真密度)は,活性化前のタップ密度以下に設定することが好ましいと思われる。
【0021】
反応容器1に収容された水素吸蔵合金81は,始めに活性化(水素化)処理が行われる。即ち,加熱脱気と水素加圧とを繰り返し,水素吸蔵合金が水素ガスを吸蔵できるようにし,この過程で水素吸蔵合金は水素ガスの進入により微粉化する。前記のように,内部が区画に分けられていない従来の反応容器では,この過程において微粉化した水素吸蔵合金が容器の下方に偏在し,活性化初期に発生する大きな膨張力により水素吸蔵合金が圧密化し,その結果過大な応力の集中が生じていた。
【0022】
しかしながら,本例では,仕切り棚15により内部空間が6つの区画に区分けされているから,水素吸蔵合金81は下方に集まることなく分散配置され,水素吸蔵合金の圧密化は回避される。そして,水素ガスの拡散はスムースに行われるようになる。
次に,水素吸蔵合金を活性化した後における本例の反応容器1における応力発生状況と水素ガスの流入流出速度の結果を,従来の反応容器と比較して示す。
なお,従来の反応容器の場合には,応力の集中が予測されるため,比較に用いた反応容器は,安全が高くより強度の大きい円筒形の容器(図11)を採用し,それぞれの反応容器1,9の内容積はぼ同一とした。
【0023】
始めに,応力の発生状況の測定結果を示す。
応力の発生状況の測定は,水素吸蔵合金から水素を全量放出させ,その後約250リットル/minの速度で水素ガスを吸蔵させ,その時の容器11の表面の歪みの大きさを測定した。
図3は,水素吸蔵合金に対する吸蔵水素量(H/M)の増加に対して,容器にかかる最大応力と水素ガスのガス圧による応力との比R1がどのように変化したかを示すものである。
【0024】
最大応力とガス圧応力の比R1が1であることは,水素吸蔵合金の膨張による応力が容器11に発生していないことを示す。
また,図3の曲線61は,本例の反応装置1を用い水素吸蔵合金81の充填率を50%とした場合を示し,曲線951,952は図11に示す反応容器9において水素吸蔵合金の充填率を40%とした場合と充填率を48%とした場合を示している。
【0025】
同図から分かるように,本例の反応容器1の場合(曲線61)には,吸蔵水素量(H/M)の増加に対して最大応力とガス圧応力の比R1は大きく変化せず上記比R1が1前後であるのに対して,従来装置を用いて水素吸蔵合金の充填率をほぼ同じ48%とした場合(曲線962)には,上記比R1が大幅に上昇し8倍を越えてしまう(なお,H/Mが0.8以下でデータ採取を完了したのは,後述する図4に示すように,容器の耐力限界に近づいて来たためである)。
また,曲線951が示すように,従来装置において水素吸蔵合金の充填率を本例の容器より2割落として40%とした場合にも,吸蔵水素量(H/M)が多くなると上記比R1が約3倍に上昇し,本例の反応容器1の2倍以上となる。
【0026】
一方,図4は,水素吸蔵合金に対する吸蔵水素量(H/M)の増加に対して,容器にかかる最大応力と容器材料(アルミ合金)の0.2%耐力との比R2がどのように変化したかを示すものである。そして,図4の曲線62は,本例の反応装置1を用い水素吸蔵合金81の充填率を50%とした場合を示し,曲線961,962は図11に示す反応容器9において水素吸蔵合金の充填率を40%とした場合と充填率を48%とした場合を示している。
【0027】
曲線62から分かるように,本例の反応容器1の場合には,0.2%耐力との比R2は,吸蔵水素量(H/M)が多い領域で若干の増加が見られるだけであり,この増加は,水素吸蔵合金の平衡圧力が上昇する領域に相当し内部の水素ガス圧の上昇によるものである。
一方,曲線962が示すように,従来装置を用いて水素吸蔵合金の充填率を本例の容器とほぼ同じ48%とした場合には,上記比R2が大幅に上昇しH/M比0.7以上で0.2%耐力を越える結果が得られている。
【0028】
また,曲線961が示すように,従来装置において水素吸蔵合金の充填率を本例の容器より2割落として40%とした場合にも,吸蔵水素量(H/M)が多くなると上記比R2が大幅に上昇する。
上記結果は,本例の反応容器1を用いることにより,大幅に小形にして同じ量の水素吸蔵合金の反応を処理可能なことを示している。
【0029】
次に,反応容器1,9の水素透過性能の評価結果を示す。水素透過性能の評価は,反応容器に流入流出する水素流量を指標とした(伝熱フィンのフィンピッチは両容器とも2mmで同一)。
図5は水素吸蔵時における水素流量(水素吸蔵合金の単位重量当たりの水素流量リットル/min)を示し,図6は水素放出時における水素流量(水素吸蔵合金の単位重量当たりの水素流量リットル/min)を示すものである。
水素吸蔵時の測定は,初期の吸蔵水素量H/Mを0.3とし,伝熱管21に流入させる熱媒の温度を35℃一定とし,水素ガスの圧力は35℃の水素吸蔵合金の平衡圧力に対して0.3MPa高い一定の値とした。
【0030】
図5の曲線97は,従来の反応容器9における水素吸蔵合金の単位重量当たりの水素流量を示し,曲線63は本例の水素流量を示す。
同図から分かるように,本例の反応容器1は従来容器に比べて極めて良好な水素吸蔵特性を示す。これは,従来装置では,容器内部における水素拡散が不十分であり,ガス透過管35の近傍の水素吸蔵合金では良好な水素吸蔵が行われるがガス透過管35から遠い場所の水素吸蔵合金では水素ガスが到達せず,吸蔵が少ないことを示すものである。その結果,流入する水素ガス流量は,大幅に少なくなる。
【0031】
一方,本例では,容器内部を区分けし,水素吸蔵合金の分布を均一化しているため,全域での水素ガスの透過拡散性が良好となる。また,前記のように,水素吸蔵合金の圧密化が生じないため,圧密化による水素ガスの拡散阻害も生じない。
なお,時間の経過とともに両曲線63,97の流量の差は小さくなるが,それは吸蔵可能水素量が同一量であるためである。
【0032】
一方,図6に示す水素ガス放出時の測定条件は,初期の吸蔵水素量(H/M)を0.7に設定し,伝熱管21に流入させる熱媒の温度を10℃一定とし,水素ガスは,大気圧中に放出させた。
図6の曲線98は,従来装置における水素吸蔵合金の単位重量当たりの水素流量を示し,曲線64は本例の水素流量を示す。
【0033】
水素放出の場合には,開始直後にには容器内部の圧力に対応して容器の内部に存在する水素ガスが放出されるため,両曲線64,98間に大きな差がないが,時間の経過と共に新たに水素吸蔵合金から放出される水素が主体となり,両装置における水素透過性の差が流出ガス流量の差として徐々に表れてくる。
なお,水素吸蔵時よりも両者の差が少ないのは,水素放出時には水素吸蔵合金が収縮するため従来装置の場合にも水素ガスの拡散は比較的容易となるためと思われる。
【0034】
上記のように,本例の反応容器1によれば,水素ガスの透過性が良好であり,水素ガスの流入流出速度を大きくすることができるから,反応容器1から得られる熱出力を大きくすることができる。
また,容器内部における水素透過性が良好であることから,内部での反応がほぼ均一かつ連続的にに進行するため,モデル化による数値解析が容易となり,例えば伝熱管や伝熱フィンの最適化設計が容易となる。何故ならば,従来装置のように,水素吸蔵合金に圧密化が生じ,例えばガス流通路に閉塞部等が形成されると,数値解析が困難となり,また使用したモデルとの乖離が大きくなるからである。
【0035】
また,反応容器の強度設計の場合にも,応力の集中,偏在がないことから,内部のガス圧に対する強度を中心にした設計が可能となり,設計が容易であると共に,容器の強度を低く設定することが可能となる。即ち,応力の集中を考慮しなければならない場合には,その予測が困難であることから,経験等に基づき安全サイドに強度を設定することになるからである。
【0036】
更に,本例の仕切り棚15は,図1に示すように,横端部を上方に湾曲させた湾曲部151を設けてあり,湾曲部151が撓むことにより水素吸蔵合金の膨張による応力を分担することができる。また,湾曲による水素透過面積の増加により水素ガスの透過を容易にすることができる。
上記のように,本例の反応容器1によれば,小形にして同様の性能を得ることができ,同様の大きさではより優れた性能を発揮することができる。
【0037】
実施形態例2
本例は,図7に示すように,実施形態例1において,容器11の内壁の全周に沿ってガス透過性のシート16を配置したもう一つの実施形態例である。
本例によれば,上記シート16がクッションとなり,容器11に加えられる水素吸蔵合金81の膨張力を低減することができ,また,本シート16は仕切り棚15とは異なり水素吸蔵合金を保持する機能が必要ないことから,空隙径の大きなものを使用でき,シート16内を水素ガスが容易に流通可能なため水素ガスの拡散を促進する効果がある。
また,シート16は,容器の内外間の断熱層としての効果がある。
その他については実施形態例1と同様である。
【0038】
実施形態例3
本例は,図8に示すように,実施形態例1において,伝熱管21の周囲の伝熱フィン26をスパイラル状としたもう一つの実施形態例である。
即ち,伝熱フィン26は,図9に示すように,伝熱管21の周囲にスパイラル状に形成されている。その結果,水素吸蔵合金が伝熱フィン26に沿って長手方向に,重力あるいは振動を加えることで移動可能であるから,水素吸蔵合金を充填するのが容易となる。
【0039】
伝熱フィン26は,実施形態例1の伝熱フィン25よりも放熱面積が小さいことから,熱交換性能は劣るが水素吸蔵合金81をより多く充填することが可能である。
その他については実施形態例1と同様である。
【0040】
実施形態例4
本例は,実施形態例1から実施形態例3において,仕切り棚15におけるガス透過用の細孔の大きさを場所毎に変化させるようにしたもう一つの実施形態例である。
即ち,下の段の仕切り棚15ほど細孔の径を大きく且つ粗くし,上の仕切り棚15ほど細孔の径を小さく且つ密にする。
【0041】
その結果,容器11の下方の仕切り棚15の水素透過性が良好となり,ガス透過管35との距離の差による水素ガスの回収または浸透の差がなくなり,容器11内の場所によらず均一に水素吸蔵合金の反応を促進することができる。
その他,については,実施形態例1〜実施形態例3と同様である。
【0042】
実施形態例5
本例は,図10に示すように,実施形態例1において,水素吸蔵合金81を収容する区画のうちガス透過管35の存在する最上段の区画41の上下幅L1を他の区画の上下幅L2よりも大きくしたもう一つの実施形態例である。
本例によれば,各区画の水素吸蔵合金81は,自重により区画の下の方に集まり易いから,ガス透過管35の存在する区画41(最上段)の上部に水素ガス流通路が形成される。そのため,ガス透過管35に加えて上記水素ガス流通路によって容器全体に水素ガスの拡散が可能であるから,全体の水素ガスの拡散性が向上する。
その他については実施形態例1と同様である。
【0043】
【発明の効果】
上記のように,本発明によれば,固気反応粉末の膨張に伴う応力の集中を抑制し,反応の進行と熱交換を効率的に行うことの出来る小形で高性能の反応容器を得ることができる。
【0044】
【図面の簡単な説明】
【図1】実施形態例1の水素吸蔵合金の反応容器の正面断面図。
【図2】図1のA−A矢視線断面図。
【図3】実施形態例1の反応容器における吸蔵水素量(H/M)と,容器にかかる最大応力のガス圧力に対する比R1との関係を従来装置と比較して示した図。
【図4】実施形態例1の反応容器における吸蔵水素量(H/M)と,容器にかかる最大応力の容器の0.2%耐力に対する比R2との関係を従来装置と比較して示した図。
【図5】実施形態例1の反応容器における水素吸蔵合金の単位重量当たりの吸蔵水素流量の時間変化を従来装置と比較して示した図。
【図6】実施形態例1の反応容器における水素吸蔵合金の単位重量当たりの放出水素流量の時間変化を従来装置と比較して示した図。
【図7】実施形態例2の水素吸蔵合金の反応容器の正面断面図。
【図8】実施形態例3の水素吸蔵合金の反応容器の正面断面図。
【図9】実施形態例3の伝熱フィンを伝熱管に装着した状態を示す部分拡大図。
【図10】実施形態例5の水素吸蔵合金の反応容器の正面断面図。
【図11】従来の水素吸蔵合金の反応容器の正面断面図。
【符号の説明】
1...反応容器,
11...容器,
15...仕切り棚,
21...伝熱管,
25,26...伝熱フィン,
35...ガス透過管,
81...水素吸蔵合金(固気反応粉末),
[0001]
【Technical field】
The present invention relates to a reaction vessel for a solid gas reaction powder such as a hydrogen storage alloy.
[0002]
[Prior art]
In order to reduce the size of the hydrogen storage alloy reaction vessel and efficiently store and release hydrogen, it is necessary to efficiently remove the heat generated during hydrogen storage to the outside and supply the reaction heat during hydrogen release from the outside efficiently. Don't be.
In addition, since the hydrogen storage alloy expands when hydrogen is stored and contracts when hydrogen is released, the container must withstand the stress caused by the expansion and contraction of the hydrogen storage alloy.
[0003]
Therefore, for example, as shown in FIG. 11, the reaction vessel 9 of the hydrogen storage alloy is a cylindrical vessel 90, in which a large number of flexible heat medium tubes 91 are arranged to promote heat exchange and hydrogen permeation. A gas permeation tube 92 made of a filter is arranged to introduce or lead out hydrogen gas. In the figure, reference numeral 911 denotes a heat transfer fin.
[0004]
Also, during the initial activation of the hydrogen storage alloy, that is, in the process of making the hydrogen storage alloy capable of storing hydrogen by repeated heating and degassing and pressure storage, the hydrogen storage alloy is generally pulverized. It must also cope with the problems of consolidation of hydrogen storage alloys. That is, if the hydrogen storage alloy is partially consolidated, the stress concentrates on a part of the hydrogen storage alloy and causes a problem such as blocking the flow of hydrogen gas. This must be prevented or dealt with.
[0005]
Japanese Patent Application Laid-Open No. 7-286794 proposes a method of providing a heat-insulating buffer part at the lower part of the container.
Japanese Patent Laid-Open No. 7-269995 discloses that a plurality of internal division containers filled with a hydrogen storage alloy and receiving the expansion force of the hydrogen storage alloy are provided in the container, and a reaction is caused by the internal division container and the container constituting the outer shell. A method for constructing the container has been proposed. The expansion force of the hydrogen storage alloy is borne by the plurality of inner divided containers, and the reaction gas pressure is received by the outer shell container.
[0006]
[Problems to be solved]
However, the conventional hydrogen storage alloy reaction vessel has the following problems. The reaction container 9 shown in FIG. 11 has a problem that when the hydrogen storage alloy is activated, partial consolidation of the hydrogen storage alloy occurs below the container 90, and a closed region that hinders the flow of hydrogen is likely to occur. This hinders the diffusion of hydrogen gas, concentrates the stress due to the volume expansion of the hydrogen storage alloy, and reduces the heat exchange capacity of the reaction heat.
[0007]
In addition, a method of providing a heat-insulating cushioning material (Japanese Patent Laid-Open No. 7-286794) and a method of providing a plurality of internal division containers inside a container (Japanese Patent Laid-Open No. 7-269795) are useless that does not participate in the reaction. There is a problem that the space increases and the container becomes larger.
The present invention has been made in view of such conventional problems, and is a small and high-performance apparatus capable of suppressing the concentration of stress associated with the expansion of the solid-gas reaction powder and efficiently performing the progress and heat exchange of the reaction. It is intended to provide a performance reaction vessel.
[0008]
[Means for solving problems]
The present invention is a reaction vessel for adsorbing and desorbing a reaction gas from a solid-gas reaction powder,
A container that contains solid-gas reaction powder and forms an outer shell; a partition that divides the container into a plurality of compartments in the vertical direction; and that allows the reaction gas to pass through the solid-gas reaction powder; A heat transfer tube that exchanges heat with the above solid-gas reaction powder and a heat transfer fin that is attached to this heat transfer tube and promotes heat transfer between the solid-gas reaction powder and the heat medium,
Introducing a reactive gas within the outside of the container, or a gas pipe you discharge the reaction gases out of the inner, the reaction gas is transmitted through the connection has been that one or more gas permeable and the gas tubes in the container A tube,
The heat transfer tube is provided in a solid-gas reaction powder reaction vessel, which is disposed so as to be in contact with the solid-gas reaction powder in each compartment divided by the partition shelf.
[0009]
The reaction container according to the present invention is divided into a plurality of compartments in which the inside of the container is vertically arranged by a partition shelf.
By dividing the inside of the container in the vertical direction, solid-gas reaction powders such as hydrogen storage alloys are not evenly distributed and are evenly dispersed. For this reason, for example, when the hydrogen storage alloy is pulverized by initial activation, it is difficult to cause a problem that the powder is partially consolidated. Therefore, the stress of the solid-gas reaction powder does not concentrate on a part, and the reaction gas released or occluded from the solid-gas reaction powder diffuses smoothly.
[0010]
Moreover, since the partition shelf permeates the reaction gas, the reaction gas is filled in the container evenly.
The expansion force of the solid-gas reaction powder in each compartment is absorbed in each compartment, and the stress is dispersed throughout.
Since each compartment is only divided by a partition shelf, not a closed container etc., no wasteful space is created between the compartments, and the solid-gas reaction powder can be accommodated in the container without waste. Therefore, the container can be miniaturized.
[0011]
Further, the reaction gas injected or extracted into the container is performed through the gas permeable tube and the gas tube of the gas permeable filter.
On the other hand, the heat transfer tubes are arranged in contact with the solid-gas reaction powder in each section divided by the partition shelf, so that the heat exchange required for promoting the reaction can be efficiently performed, Promotes the reaction of the reaction powder.
[0012]
As a result, the reaction of the solid-gas reaction powder proceeds efficiently and uniformly in the container, and no stress concentration occurs on the container. Therefore, the reaction container according to the present invention can be relatively small and light.
As described above, according to the present invention, there is provided a small and high-performance reaction vessel capable of suppressing the concentration of stress associated with expansion of the solid-gas reaction powder and efficiently performing the reaction progress and heat exchange. be able to.
[0013]
As described in claim 2, it is preferable that the shape of the partition shelf is such that the lateral end portion is curved upward and gradually approaches the vertical wall surface of the container (see FIG. 1, curved portion 151).
Thus, by making it a curved shape, a partition shelf becomes easy to bend in a curved part, and can absorb expansion force by bending in the direction in which solid-gas reaction powder expands.
And the reaction container of this invention is very suitable for the hydrogen occlusion and discharge | release reaction of a hydrogen storage alloy, as described in Claim 3.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
This example is a reaction vessel in which hydrogen storage alloy (MH) as solid gas reaction powder absorbs and desorbs hydrogen gas as a reaction gas. As shown in FIGS. 1 and 2, the reaction vessel 1 contains a hydrogen storage alloy 81 and a container 11 that forms an outer shell, and the container 11 is divided into a plurality of compartments in the vertical direction and the hydrogen storage alloy 81 is divided into a plurality of compartments. A partition shelf 15 that can be placed and permeate hydrogen gas, a heat transfer tube 21 that circulates the heat medium and exchanges heat with the hydrogen storage alloy 81, a heat transfer tube 21 that is attached to the heat transfer tube 21, and the heat storage medium Heat transfer fins 25 that promote heat transfer between them, a gas pipe 31 (FIG. 2) that introduces or discharges reaction gas between the inside and outside of the container 11, and a gas that allows hydrogen in the container 11 to pass through the soot It has a gas permeable pipe 35 made of a permeable filter and connected to the gas pipe 31.
[0015]
The heat transfer tubes 21 are arranged so as to be in contact with the hydrogen storage alloy 81 in each section divided by the partition shelf 15.
Further, as shown in FIG. 1, the partition shelf 15 is formed so as to gradually approach the vertical wall surface 111 of the container 11 with its lateral end curved upward.
The following is a supplementary explanation for each.
[0016]
As shown in FIGS. 1 and 2, the reaction vessel 1 has a box-like shape with a square cross section that is nearly square and long in the depth direction. The container 11 is divided into six sections in the vertical direction by five partition shelves 15. Further, the heat transfer tubes 21 are arranged at equal intervals in the front-rear direction in each section, the right end portion of the heat transfer tube 21 in each section is connected to the end portion of the other section, and the heat transfer tubes 21 in the three sections below the left end portion. Are connected to the heat medium inlet 211 (FIG. 2), and the ends of the upper three heat transfer tubes 21 are connected to the heat medium outlet 212 (FIG. 2).
The gas permeation pipe 35 extends in the depth direction at the center and the center of the upper part, and each end is connected to the gas pipe 31.
[0017]
Each member 11, 21, 25, 31 constituting the reaction vessel 1 is made of an aluminum alloy except for the gas permeation pipe 35 and the partition shelf 15. And the container 11 and the heat exchanger tube 21 have an integral structure by aluminum extrusion molding.
The hydrogen storage alloy 81 is filled around the heat transfer tubes 21 and the heat transfer fins 25. The hydrogen storage alloy 81 is filled from filling ports (not shown) provided on the front and rear end faces or side faces of the container 11.
Further, the gas permeable tube 35 and the partition shelf 15 are formed of a stainless sintered body.
[0018]
The gas permeable filter constituting the gas permeable tube 35 is a 1 μm permeable filter, and the hydrogen permeable partition shelf 15 is a sheet having a gap diameter of 10 μm and a thickness of 0.4 to 0.5 mm. The permeation index was determined based on the particle size distribution after the activation treatment of the hydrogen storage alloy to be used. However, in the hydrogen storage alloy 81 used in the experiment described later, the permeation index is almost the same in the range of 1 to 30 μm. The result is obtained.
In this example, two gas permeation pipes 35 are used to suppress a decrease in the filling volume of the hydrogen storage alloy 81, but one or more gas permeation pipes 35 may be used.
[0019]
The heat transfer fins 25 are made by laminating aluminum sheets having a thickness of 0.25 mm in the longitudinal direction of the container, and are brazed to the heat transfer tubes 21.
The hydrogen storage alloy 81 is uniformly filled in each compartment, and the filling amount of the hydrogen storage alloy is based on the tap density generally employed in powder engineering.
The tap density of the hydrogen storage alloy changes before and after the activation of the hydrogen storage alloy, but the filling rate (filling density / true density) of the hydrogen storage alloy 81 accommodated in the container is the same as before the activation. It is preferable to select between the tap density and the tap density after activation.
[0020]
In the reaction vessel 1 of this example, even if the filling rate (filling density / true density) is increased to about 110% of the tap density of the activated hydrogen storage alloy, excessive stress is observed in the reaction vessel 1. In addition, good permeability was obtained for hydrogen gas inside the container. However, when the filling rate of the hydrogen storage alloy 81 is increased to the tap density before activation, the reaction vessel 1 of the present example was not damaged, but the hydrogen gas permeability inside was reduced. There was a trend.
Therefore, it seems that the filling rate (filling density / true density) of the hydrogen storage alloy is preferably set to be equal to or lower than the tap density before activation.
[0021]
The hydrogen storage alloy 81 accommodated in the reaction vessel 1 is first activated (hydrogenated). That is, heating deaeration and hydrogen pressurization are repeated so that the hydrogen storage alloy can store hydrogen gas. In this process, the hydrogen storage alloy is pulverized by the ingress of hydrogen gas. As described above, in a conventional reaction vessel in which the interior is not divided into compartments, the hydrogen storage alloy pulverized in this process is unevenly distributed below the vessel, and the hydrogen storage alloy is generated by the large expansion force generated at the initial stage of activation. Consolidation resulted in excessive stress concentration.
[0022]
However, in this example, since the internal space is divided into six sections by the partition shelf 15, the hydrogen storage alloys 81 are distributed without being gathered downward, and the consolidation of the hydrogen storage alloys is avoided. Then, the hydrogen gas is smoothly diffused.
Next, the results of stress generation and hydrogen gas inflow / outflow velocity in the reaction vessel 1 of this example after activating the hydrogen storage alloy are shown in comparison with a conventional reaction vessel.
In the case of the conventional reaction vessel, since concentration of stress is predicted, the reaction vessel used for comparison is a cylindrical vessel (Fig. 11) that is safe and has higher strength, and each reaction vessel The internal volumes of the containers 1 and 9 were almost the same.
[0023]
First, the measurement results of the stress generation status are shown.
For the measurement of the stress generation state, the entire amount of hydrogen was released from the hydrogen storage alloy, and then hydrogen gas was stored at a rate of about 250 liters / min, and the magnitude of strain on the surface of the container 11 at that time was measured.
FIG. 3 shows how the ratio R1 between the maximum stress applied to the container and the stress due to the gas pressure of the hydrogen gas changes as the hydrogen storage amount (H / M) increases with respect to the hydrogen storage alloy. is there.
[0024]
A ratio R1 of maximum stress to gas pressure stress of 1 indicates that no stress is generated in the container 11 due to expansion of the hydrogen storage alloy.
A curve 61 in FIG. 3 shows a case where the filling rate of the hydrogen storage alloy 81 is set to 50% using the reactor 1 of this example, and curves 951 and 952 show the hydrogen storage alloy in the reaction vessel 9 shown in FIG. The case where the filling rate is 40% and the case where the filling rate is 48% are shown.
[0025]
As can be seen from the figure, in the case of the reaction vessel 1 of this example (curve 61), the ratio R1 between the maximum stress and the gas pressure stress does not change greatly with the increase in the amount of stored hydrogen (H / M). Where the ratio R1 is around 1, but when the filling rate of the hydrogen storage alloy is set to 48% (curve 962) using the conventional apparatus (curve 962), the ratio R1 rises significantly and exceeds 8 times. (Note that the reason why the data collection is completed when H / M is 0.8 or less is because the container has approached the proof stress limit as shown in FIG. 4 described later).
Further, as shown by the curve 951, even when the filling rate of the hydrogen storage alloy is 20% lower than that of the container of this example to 40% in the conventional apparatus, the ratio R1 increases as the amount of stored hydrogen (H / M) increases. Rises about 3 times, more than twice that of the reaction vessel 1 of this example.
[0026]
On the other hand, FIG. 4 shows how the ratio R2 between the maximum stress applied to the container and the 0.2% proof stress of the container material (aluminum alloy) with respect to the increase in the amount of stored hydrogen (H / M) relative to the hydrogen storage alloy. It shows whether it has changed. A curve 62 in FIG. 4 shows the case where the filling rate of the hydrogen storage alloy 81 is set to 50% using the reactor 1 of this example, and curves 961 and 962 show the hydrogen storage alloy in the reaction vessel 9 shown in FIG. The case where the filling rate is 40% and the case where the filling rate is 48% are shown.
[0027]
As can be seen from the curve 62, in the case of the reaction vessel 1 of this example, the ratio R2 to 0.2% proof stress is only slightly increased in the region where the amount of occluded hydrogen (H / M) is large. This increase corresponds to the region where the equilibrium pressure of the hydrogen storage alloy increases, and is due to the increase in the internal hydrogen gas pressure.
On the other hand, as indicated by a curve 962, when the filling rate of the hydrogen storage alloy is set to 48%, which is almost the same as that of the container of the present example, using the conventional apparatus, the ratio R2 is significantly increased, and the H / M ratio is 0. A result exceeding 0.2% proof stress was obtained at 7 or more.
[0028]
Further, as indicated by a curve 961, even when the filling rate of the hydrogen storage alloy is 20% lower than that of the container of the present example to 40% in the conventional apparatus, the ratio R2 increases as the amount of stored hydrogen (H / M) increases. Will rise significantly.
The above results show that the reaction of the same amount of hydrogen storage alloy can be processed with a much smaller size by using the reaction vessel 1 of this example.
[0029]
Next, the evaluation results of the hydrogen permeation performance of the reaction vessels 1 and 9 are shown. The hydrogen permeation performance was evaluated based on the flow rate of hydrogen flowing into and out of the reaction vessel (the fin pitch of the heat transfer fins is the same at 2 mm for both vessels).
FIG. 5 shows the hydrogen flow rate during hydrogen storage (hydrogen flow rate liter / min per unit weight of the hydrogen storage alloy), and FIG. 6 shows the hydrogen flow rate during hydrogen release (hydrogen flow rate liter / min per unit weight of the hydrogen storage alloy). ).
The measurement at the time of hydrogen storage is that the initial hydrogen storage amount H / M is 0.3, the temperature of the heat medium flowing into the heat transfer tube 21 is constant at 35 ° C., and the hydrogen gas pressure is the equilibrium of the hydrogen storage alloy at 35 ° C. The constant value was 0.3 MPa higher than the pressure.
[0030]
A curve 97 in FIG. 5 shows the hydrogen flow rate per unit weight of the hydrogen storage alloy in the conventional reaction vessel 9, and a curve 63 shows the hydrogen flow rate in this example.
As can be seen from the figure, the reaction vessel 1 of this example exhibits extremely good hydrogen storage characteristics as compared with the conventional vessel. This is because the conventional apparatus has insufficient hydrogen diffusion inside the vessel, and the hydrogen storage alloy near the gas permeation tube 35 performs good hydrogen storage, but the hydrogen storage alloy far from the gas permeation tube 35 does not absorb hydrogen. This means that the gas does not reach and there is little occlusion. As a result, the inflowing hydrogen gas flow rate is greatly reduced.
[0031]
On the other hand, in this example, because the inside of the container is divided and the distribution of the hydrogen storage alloy is made uniform, the permeation diffusivity of hydrogen gas in the entire region is improved. Further, as described above, since the consolidation of the hydrogen storage alloy does not occur, the diffusion of hydrogen gas due to the consolidation does not occur.
Note that the difference in flow rate between the curves 63 and 97 decreases with time, because the amount of hydrogen that can be stored is the same.
[0032]
On the other hand, the measurement conditions at the time of hydrogen gas release shown in FIG. 6 are that the initial hydrogen storage amount (H / M) is set to 0.7, the temperature of the heat medium flowing into the heat transfer tube 21 is kept constant at 10 ° C., The gas was released into atmospheric pressure.
A curve 98 in FIG. 6 shows the hydrogen flow rate per unit weight of the hydrogen storage alloy in the conventional apparatus, and a curve 64 shows the hydrogen flow rate in this example.
[0033]
In the case of hydrogen release, immediately after the start, hydrogen gas existing inside the container is released corresponding to the pressure inside the container, so there is no significant difference between the curves 64 and 98. At the same time, hydrogen released from the hydrogen storage alloy is mainly used, and the difference in hydrogen permeability between the two devices gradually appears as the difference in the outflow gas flow rate.
The difference between the two is smaller than that during hydrogen storage because the hydrogen storage alloy shrinks when hydrogen is released, and hydrogen gas diffusion is relatively easy even in the case of conventional devices.
[0034]
As described above, according to the reaction vessel 1 of this example, the hydrogen gas permeability is good and the inflow / outflow rate of the hydrogen gas can be increased, so that the heat output obtained from the reaction vessel 1 is increased. be able to.
In addition, because the hydrogen permeability inside the container is good, the internal reaction proceeds almost uniformly and continuously, facilitating numerical analysis by modeling, for example, optimization of heat transfer tubes and heat transfer fins. Design becomes easy. This is because, if the hydrogen storage alloy is consolidated as in the conventional device, for example, if a blockage or the like is formed in the gas flow path, numerical analysis becomes difficult and the deviation from the model used increases. It is.
[0035]
Also, in the case of reaction vessel strength design, there is no concentration or uneven distribution of stress, making it possible to design with a focus on the strength against the internal gas pressure, making the design easy and setting the vessel strength low. It becomes possible to do. That is, when the stress concentration must be taken into account, it is difficult to predict the stress concentration, and the strength is set on the safe side based on experience and the like.
[0036]
Further, as shown in FIG. 1, the partition shelf 15 of the present example is provided with a curved portion 151 whose upper end is curved upward, and the bending portion 151 is bent to cause stress due to expansion of the hydrogen storage alloy. Can be shared. In addition, hydrogen gas permeation can be facilitated by increasing the hydrogen permeation area due to bending.
As described above, according to the reaction vessel 1 of the present example, the same performance can be obtained by reducing the size, and more excellent performance can be exhibited at the same size.
[0037]
Embodiment 2
As shown in FIG. 7, this example is another embodiment in which a gas permeable sheet 16 is arranged along the entire circumference of the inner wall of the container 11 in the first embodiment.
According to this example, the sheet 16 serves as a cushion, and the expansion force of the hydrogen storage alloy 81 applied to the container 11 can be reduced, and the sheet 16 holds the hydrogen storage alloy unlike the partition shelf 15. Since the function is not required, a material having a large gap diameter can be used, and the hydrogen gas can be easily circulated through the sheet 16, so that there is an effect of promoting the diffusion of the hydrogen gas.
Further, the sheet 16 has an effect as a heat insulating layer between the inside and outside of the container.
Others are the same as in the first embodiment.
[0038]
Embodiment 3
As shown in FIG. 8, this example is another embodiment in which the heat transfer fins 26 around the heat transfer tubes 21 are spiral in the first embodiment.
That is, the heat transfer fins 26 are formed in a spiral shape around the heat transfer tube 21 as shown in FIG. As a result, the hydrogen storage alloy can be moved by applying gravity or vibration in the longitudinal direction along the heat transfer fins 26, so that the hydrogen storage alloy can be easily filled.
[0039]
Since the heat transfer fin 26 has a smaller heat radiation area than the heat transfer fin 25 of the first embodiment, the heat transfer performance is inferior, but more hydrogen storage alloy 81 can be filled.
Others are the same as in the first embodiment.
[0040]
Embodiment 4
This example is another embodiment in which the size of the gas permeation pores in the partition 15 is changed for each place in the embodiment 1 to the embodiment 3.
That is, the diameter of the pores is made larger and coarser in the lower partition shelf 15, and the pore diameter is made smaller and denser in the upper partition shelf 15.
[0041]
As a result, the hydrogen permeability of the partition shelf 15 below the container 11 is improved, the difference in the recovery or permeation of hydrogen gas due to the difference in distance from the gas permeation pipe 35 is eliminated, and it is uniform regardless of the location in the container 11. The reaction of the hydrogen storage alloy can be promoted.
About others, it is the same as that of Embodiment 1-Embodiment 3.
[0042]
Embodiment 5
In this example, as shown in FIG. 10, in the first embodiment, the vertical width L1 of the uppermost section 41 in which the gas permeation pipe 35 exists is divided into the vertical width of the other sections. It is another example of embodiment made larger than L2.
According to this example, since the hydrogen storage alloy 81 in each section is likely to gather below the section due to its own weight, a hydrogen gas flow passage is formed above the section 41 (uppermost stage) where the gas permeation pipe 35 exists. The Therefore, since the hydrogen gas can be diffused throughout the container by the hydrogen gas flow passage in addition to the gas permeation pipe 35, the diffusibility of the entire hydrogen gas is improved.
Others are the same as in the first embodiment.
[0043]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a small and high-performance reaction vessel capable of suppressing the concentration of stress associated with expansion of the solid-gas reaction powder and efficiently carrying out the reaction and heat exchange. Can do.
[0044]
[Brief description of the drawings]
FIG. 1 is a front cross-sectional view of a hydrogen storage alloy reaction vessel according to Embodiment 1;
2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a graph showing the relationship between the amount of stored hydrogen (H / M) in the reaction vessel of Embodiment 1 and the ratio R1 of the maximum stress applied to the vessel to the gas pressure in comparison with the conventional apparatus.
FIG. 4 shows the relationship between the amount of hydrogen occluded (H / M) in the reaction container of Example 1 and the ratio R2 of the maximum stress applied to the container to the 0.2% proof stress of the container in comparison with the conventional apparatus. Figure.
FIG. 5 is a view showing a change over time in the hydrogen storage flow rate per unit weight of the hydrogen storage alloy in the reaction vessel of Embodiment 1 in comparison with a conventional apparatus.
6 is a graph showing a change over time in the flow rate of released hydrogen per unit weight of the hydrogen storage alloy in the reaction vessel of Embodiment 1 in comparison with a conventional apparatus. FIG.
7 is a front cross-sectional view of a hydrogen storage alloy reaction vessel according to Embodiment 2. FIG.
8 is a front cross-sectional view of a hydrogen storage alloy reaction vessel according to Embodiment 3. FIG.
FIG. 9 is a partially enlarged view showing a state in which the heat transfer fin of Embodiment 3 is mounted on a heat transfer tube.
10 is a front cross-sectional view of a hydrogen storage alloy reaction vessel according to Embodiment 5. FIG.
FIG. 11 is a front sectional view of a conventional hydrogen storage alloy reaction vessel.
[Explanation of symbols]
1. . . Reaction vessel,
11. . . container,
15. . . Divider shelf,
21. . . Heat transfer tubes,
25, 26. . . Heat transfer fins,
35. . . Gas permeation pipe,
81. . . Hydrogen storage alloy (solid-gas reaction powder),

Claims (3)

固気反応粉末に反応ガスを吸脱させる反応容器であって,
固気反応粉末を収容し外殻を形成する容器と,容器を上下方向に複数の区画に区分すると共に上記固気反応粉末を載置し反応ガスを透過することのできる仕切り棚と,熱媒を流通させ上記固気反応粉末と熱交換を行う伝熱管と,この伝熱管に装着され固気反応粉末と熱媒との間の伝熱を促進する伝熱フィンと,
上記容器の外から内に反応ガスを導入し,又は内から外に反応ガスを排出るガス管と,容器内の反応ガスを透過させ上記ガス管と連結されている1本以上のガス透過管とを有しており,
上記伝熱管は,上記仕切り棚によって分けられた各区画内の固気反応粉末に接するよう配置されていることを特徴とする固気反応粉末の反応容器。
A reaction vessel that absorbs and desorbs reaction gas from the solid-gas reaction powder,
A container that contains solid-gas reaction powder and forms an outer shell; a partition that divides the container into a plurality of compartments in the vertical direction and that allows the reaction gas to pass through the solid-gas reaction powder; A heat transfer tube that exchanges heat with the solid-gas reaction powder and heat transfer fins that are attached to the heat transfer tube and promote heat transfer between the solid-gas reaction powder and the heat medium,
Introducing a reactive gas within the outside of the container, or a gas pipe you discharge the reaction gases out of the inner, the reaction gas is transmitted through the connection has been that one or more gas permeable and the gas tubes in the container A tube,
The reaction tube for solid-gas reaction powder, wherein the heat transfer tube is disposed so as to be in contact with the solid-gas reaction powder in each compartment divided by the partition shelf.
請求項1において,前記仕切り棚は,横端部を上方に湾曲させ,容器の垂直壁面に漸次近接するよう形成されていることを特徴とする固気反応粉末の反応容器。  2. The reaction container for solid gas reaction powder according to claim 1, wherein the partition shelf is formed so that a lateral end portion is curved upward and gradually approaches a vertical wall surface of the container. 請求項1または請求項2において,前記固気反応粉末は水素吸蔵合金であり,反応ガスは水素ガスであることを特徴とする水素吸蔵合金の反応容器。  3. The hydrogen storage alloy reaction vessel according to claim 1, wherein the solid-gas reaction powder is a hydrogen storage alloy and the reaction gas is hydrogen gas.
JP26250296A 1996-09-10 1996-09-10 Reaction vessel for solid gas reaction powder Expired - Fee Related JP3640476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26250296A JP3640476B2 (en) 1996-09-10 1996-09-10 Reaction vessel for solid gas reaction powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26250296A JP3640476B2 (en) 1996-09-10 1996-09-10 Reaction vessel for solid gas reaction powder

Publications (2)

Publication Number Publication Date
JPH1085582A JPH1085582A (en) 1998-04-07
JP3640476B2 true JP3640476B2 (en) 2005-04-20

Family

ID=17376701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26250296A Expired - Fee Related JP3640476B2 (en) 1996-09-10 1996-09-10 Reaction vessel for solid gas reaction powder

Country Status (1)

Country Link
JP (1) JP3640476B2 (en)

Also Published As

Publication number Publication date
JPH1085582A (en) 1998-04-07

Similar Documents

Publication Publication Date Title
JP2623245B2 (en) Active metal bead
US4187092A (en) Method and apparatus for providing increased thermal conductivity and heat capacity to a pressure vessel containing a hydride-forming metal material
EP0891294B1 (en) Apparatus and methods for storing and releasing hydrogen
JP2009144901A (en) Hydrogen storage system for fuel cell powered vehicle
JP7236465B2 (en) Improved transport and processing vessel for UF6 with uranium enrichment up to 20% by weight (30W type)
JP3640476B2 (en) Reaction vessel for solid gas reaction powder
JPS6233269A (en) Heat exchanger utilizing hydrogen storage alloy
JPH09242995A (en) Square heat transfer vessel filled with hydrogen storage alloy for storing hydrogen
CN116336371A (en) Metal hydride hydrogen storage tank
EP0061191A1 (en) Metal hydride reactor
JPS62288495A (en) Heat exchanger
JP4953194B2 (en) Hydrogen storage tank
JP4098043B2 (en) Method for producing hydrogen storage alloy storage container
JPH0261401B2 (en)
EP0279713B1 (en) Process and apparatus for bringing about chemical reactions under pressure in a multi-level reaction zone using intermediate, exterior thermal treatments
JP2000111193A (en) Hydrogen occlusion alloy heat exchanger
CN220727904U (en) Solid-state hydrogen storage device
JPS5899104A (en) Reactor for metallic hydride
JP2008045648A (en) High pressure hydrogen storage container
JPS6335401A (en) Container for hydrogen-occlusion alloy
CN114508695B (en) Internal heat type expansion-resistant metal hydrogen storage device
KR101279151B1 (en) Vertical cylindrical type hydrogen isotope storage vessels with a heat transfer acceleration mechanism
JPH0650499A (en) Hydrogen storage alloy holding container
JPS6366761B2 (en)
JPS63180798A (en) Vessel for hydrogen storage metal

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050118

LAPS Cancellation because of no payment of annual fees