JP4953194B2 - Hydrogen storage tank - Google Patents

Hydrogen storage tank Download PDF

Info

Publication number
JP4953194B2
JP4953194B2 JP2006167859A JP2006167859A JP4953194B2 JP 4953194 B2 JP4953194 B2 JP 4953194B2 JP 2006167859 A JP2006167859 A JP 2006167859A JP 2006167859 A JP2006167859 A JP 2006167859A JP 4953194 B2 JP4953194 B2 JP 4953194B2
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
equilibrium pressure
heat
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006167859A
Other languages
Japanese (ja)
Other versions
JP2007333158A (en
Inventor
雄彦 広瀬
徳彦 秡川
秀人 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006167859A priority Critical patent/JP4953194B2/en
Publication of JP2007333158A publication Critical patent/JP2007333158A/en
Application granted granted Critical
Publication of JP4953194B2 publication Critical patent/JP4953194B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、水素貯蔵タンクに関し、詳しくは、水素吸蔵合金を用いて水素の吸蔵および放出を行なうのに好適な水素貯蔵タンクに関する。   The present invention relates to a hydrogen storage tank, and more particularly to a hydrogen storage tank suitable for storing and releasing hydrogen using a hydrogen storage alloy.

従来より、例えば水素ガスを貯蔵する場合、水素ガスを圧縮してボンベに充填したり、水素吸蔵が可能な水素吸蔵合金や水素吸着材料に吸蔵することが広く行なわれている。   Conventionally, for example, when storing hydrogen gas, it has been widely practiced to compress the hydrogen gas and fill it into a cylinder, or store it in a hydrogen storage alloy or a hydrogen adsorbing material capable of storing hydrogen.

ところが、ボンベでは容積が大きい割りには壁厚が大きいために内容量が小さい。また、一般に水素吸蔵合金等では必ずしも水素貯蔵密度が大きくなく、例えば車両に搭載する等の場合には、必要とされる貯蔵密度を満すことは難しい。そのため、水素吸蔵合金の充填密度を高めて多量の水素を吸蔵させる技術等に関する検討が種々なされている。   However, the cylinder has a small wall capacity because the wall thickness is large for a large volume. In general, a hydrogen storage alloy or the like does not necessarily have a high hydrogen storage density. For example, when it is mounted on a vehicle, it is difficult to satisfy a required storage density. For this reason, various studies have been made on techniques for increasing the packing density of hydrogen storage alloys and storing a large amount of hydrogen.

一方、水素吸蔵合金(MH)は、一般には、冷却し水素を加圧すると吸蔵反応(発熱反応)が進行し、逆に減圧下で合金を加熱すると放出反応(吸熱反応)が進行し、水素の吸放出に際して熱の移動を伴なうことが知られている。水素を一時的に貯蔵し、必要に応じて水素を放出する使用形態において、多量の水素量を貯蔵しあるいは放出するためには、熱の移動が良好に行なわれることが重要である。
すなわち、水素吸蔵合金は、水素を放出するときには顕熱を消費して温度低下し、この温度低下が大きくなると水素の放出速度は低下し、逆に水素を吸蔵するときには発熱し、この温度上昇が大きくなると水素の吸蔵速度も低下し、反応速度は下がる。
On the other hand, a hydrogen storage alloy (MH) generally undergoes an occlusion reaction (exothermic reaction) when cooled and pressurized with hydrogen, and conversely, an exothermic reaction (endothermic reaction) proceeds when the alloy is heated under reduced pressure. It is known that a heat transfer is involved in the absorption and release of water. In a usage mode in which hydrogen is temporarily stored and hydrogen is released as needed, it is important that heat transfer is performed well in order to store or release a large amount of hydrogen.
That is, the hydrogen storage alloy consumes sensible heat when releasing hydrogen and the temperature decreases. When this temperature decrease increases, the hydrogen release rate decreases. Conversely, when hydrogen is stored, heat is generated and this temperature increase As the value increases, the hydrogen storage rate also decreases and the reaction rate decreases.

上記に関連して、水素吸蔵合金を用いて吸蔵された水素を燃料電池等の外部装置に供給する技術の一つとして、水素吸蔵合金内の循環用管路に熱媒を流して水素吸蔵合金を加熱し、水素を放出することが開示されている(例えば、特許文献1参照)。
特開平5−18261号公報
In relation to the above, as one of the techniques for supplying hydrogen occluded using a hydrogen occlusion alloy to an external device such as a fuel cell, the hydrogen occlusion alloy is made by flowing a heat medium through a circulation pipe in the hydrogen occlusion alloy. Is heated to release hydrogen (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 5-18261

ところが、熱媒を流す経路内では、熱媒の熱の大半が熱媒入口付近の水素吸蔵合金に奪われやすく、熱媒出口付近側に配置されている水素吸蔵合金との熱交換が不足するために、結果としてタンク全体で放出し得る水素放出量は少なくなってしまう。   However, in the path through which the heat medium flows, most of the heat of the heat medium is easily lost to the hydrogen storage alloy near the heat medium inlet, and heat exchange with the hydrogen storage alloy arranged near the heat medium outlet is insufficient. As a result, the hydrogen release amount that can be released by the entire tank is reduced.

このように、水素吸蔵合金が水素を充填(吸蔵)もしくは放出する際はそれぞれ発熱反応、吸熱反応を伴なうため、水素の充填時および水素放出時には、水素の吸蔵放出に寄与する水素吸蔵合金の全体に対して効率の良い熱交換が行なわれることが重要である。従来より、熱交換器や熱媒等の流量などの検討による水素の吸蔵・放出性能の向上が図られてきたが、これらの検討によっては、熱交換器の複雑、大型化、熱媒流量の増加による効率低下を招く。   As described above, when the hydrogen storage alloy is charged (occluded) or released with hydrogen, an exothermic reaction and an endothermic reaction are involved, respectively. Therefore, the hydrogen storage alloy that contributes to the storage and release of hydrogen at the time of hydrogen charging and hydrogen discharging. It is important that an efficient heat exchange is performed on the whole. Conventionally, hydrogen storage / release performance has been improved by examining the flow rate of heat exchangers and heating media, etc., but depending on these studies, the complexity and size of heat exchangers, The increase in efficiency is caused.

本発明は、上記に鑑みなされたものであり、水素吸蔵合金との間で熱交換する熱媒の流通経路での温度変化(水素の放出時の熱媒温度の低下および吸蔵時の熱媒温度の上昇)に伴なう水素の吸蔵/放出速度および水素の吸蔵/放出量の低下を防止した水素貯蔵タンクを提供することを目的とし、該目的を達成することを課題とする。   The present invention has been made in view of the above, and temperature changes in the flow path of the heat medium that exchanges heat with the hydrogen storage alloy (decrease in heat medium temperature when releasing hydrogen and heat medium temperature during storage) It is an object of the present invention to provide a hydrogen storage tank that prevents a decrease in the hydrogen storage / release rate and the hydrogen storage / release amount accompanying the increase in

上記目的を達成するために、本発明の水素貯蔵タンクは、平衡圧力が互いに異なる複数の水素吸蔵合金と、前記複数の水素吸蔵合金のうち平衡圧力の低い側の水素吸蔵合金中における配置間隔が平衡圧力の高い側の水素吸蔵合金中における配置間隔より狭幅になるように配置された熱交換フィンを管壁に有し、熱媒が流通し前記水素吸蔵合金と熱交換可能な熱媒管とを備え、前記複数の水素吸蔵合金は、それぞれの平衡圧力が前記熱媒管の一端側から他端側に向けて高くなるように配されており、前記水素吸蔵合金を加熱する場合には前記熱媒を平衡圧力が低い側から高い側へ前記熱媒管に流通するように構成したものである。 In order to achieve the above object, the hydrogen storage tank of the present invention has a plurality of hydrogen storage alloys having different equilibrium pressures and an arrangement interval between the hydrogen storage alloys on the lower equilibrium pressure side of the plurality of hydrogen storage alloys. A heat medium having heat exchange fins arranged on the tube wall so as to be narrower than the arrangement interval in the hydrogen storage alloy on the higher equilibrium pressure side, and capable of exchanging heat with the hydrogen storage alloy through circulation of the heat medium The plurality of hydrogen storage alloys are arranged such that the respective equilibrium pressures are increased from one end side to the other end side of the heat medium tube, and the hydrogen storage alloy is heated. Is configured such that the heat medium flows through the heat medium pipe from a low equilibrium pressure side to a high side.

本発明の水素貯蔵タンクにおいては、平衡圧力が異なる複数の水素吸蔵合金(以下、「MH」と略記することがある。)を、MHとの熱交換が可能な熱媒を流通する熱媒管の一端側から他端側に向けて高くなるように配し、水素吸蔵合金を加熱する場合に平衡圧力が低い側から高い側へ熱媒を熱媒管に流通する(すなわち熱媒流通方向の上流側から下流側に向けて各MHの平衡圧力を高くする)ことで、水素放出時には、従来のように熱媒の温度が流通距離と共に次第に低下して水素の放出速度が悪くなる熱媒管(例えば中〜下流側)近傍での水素の放出が保たれるように、流通距離が長くなって降下した熱媒温度に対応させて水素の放出反応を行なわせるので、水素吸蔵合金の全体において吸蔵水素の放出反応が進行しやすくなり、水素の放出速度および水素放出量の向上を図ることができる。   In the hydrogen storage tank of the present invention, a plurality of hydrogen storage alloys having different equilibrium pressures (hereinafter sometimes abbreviated as “MH”) are circulated through a heat medium that can exchange heat with MH. When the hydrogen storage alloy is heated, the heat medium is circulated through the heat medium pipe from the low equilibrium pressure side to the high side (that is, in the heat medium flow direction). By increasing the equilibrium pressure of each MH from the upstream side toward the downstream side), at the time of hydrogen release, the temperature of the heat medium gradually decreases with the flow distance as in the conventional case, and the heat medium pipe in which the hydrogen release rate becomes worse (For example, in the middle to downstream side) In order to keep the hydrogen release in the vicinity, the hydrogen release reaction is performed in response to the temperature of the heat medium that has been lowered due to the increased circulation distance. The release reaction of occluded hydrogen proceeds more easily, It is possible to improve the output rate and the amount of desorbed hydrogen.

本発明における熱媒(heating medium)は、水素吸蔵合金(MH)を所望の温度に制御するために、MHとの間の熱交換により熱を移動させるための流体である。熱媒体とも呼ばれる。   The heating medium in the present invention is a fluid for transferring heat by heat exchange with the MH in order to control the hydrogen storage alloy (MH) to a desired temperature. Also called heat medium.

本発明の水素貯蔵タンクにおいては、水素放出時にはMHの平衡圧力の低い側から高い側に向けて熱媒を流通すると共に、水素吸蔵合金を冷却する、つまり水素吸蔵時には、熱媒管に、MHの平衡圧力が高い側から低い側に向かう方向に熱媒を流通する構成にすることができる。   In the hydrogen storage tank of the present invention, when the hydrogen is released, the heat medium is circulated from the low MH equilibrium pressure side to the high side, and the hydrogen storage alloy is cooled. The heat medium can be circulated in the direction from the higher equilibrium pressure toward the lower side.

水素放出時とは逆に、MHの平衡圧力が高い側から低い側に向かう方向、すなわち熱媒を流通している熱媒管の熱媒流通方向の上流側から下流側に向けて平衡圧力が小さくなるようにMHが配置されることで、水素を吸蔵する際に流通する熱媒の流通距離、すなわち流通距離に伴ない上昇する熱媒温度に対応させて各MHでの水素の吸蔵反応が行なわれるので、タンク内に収容された水素吸蔵合金の全体において水素の吸蔵反応が進行しやすくなり、水素の吸蔵速度および吸蔵量の向上を図ることができる。   Contrary to the time when hydrogen is released, the equilibrium pressure is increased from the higher MH equilibrium pressure side to the lower side, that is, from the upstream side to the downstream side in the heat medium flow direction of the heat medium pipe through which the heat medium flows. By arranging the MH so as to be small, the hydrogen occlusion reaction at each MH corresponds to the circulation distance of the heat medium that circulates when occluding hydrogen, that is, the heat medium temperature that increases with the circulation distance. As a result, the hydrogen occlusion reaction easily proceeds in the entire hydrogen occlusion alloy accommodated in the tank, and the occlusion speed and occlusion amount of hydrogen can be improved.

また、水素吸蔵合金の平衡圧力(プラトー圧)が所期の使用圧力より低くなる温度領域であるときには、熱媒管に、MHの平衡圧力が高い側から低い側に向かう方向に、水素吸蔵合金を加熱する熱媒を流通させるようにすることができる。   Further, when the equilibrium pressure (plateau pressure) of the hydrogen storage alloy is lower than the intended working pressure, the hydrogen storage alloy is placed in the direction of the MH equilibrium pressure from the higher side to the lower side. It is possible to distribute a heating medium that heats.

低温環境下において、水素吸蔵合金の加熱が充分に行なわれ難いときには、平衡圧力の高い水素吸蔵合金(MH)に優先的に熱を与えることにより、比較的低温の環境下でも水素の放出反応が進行しやすいMHでの水素放出を促進し、外部供給が可能な水素量を確保することができる。   When it is difficult to sufficiently heat the hydrogen storage alloy in a low temperature environment, the hydrogen storage alloy (MH) having a high equilibrium pressure is preferentially heated so that the hydrogen release reaction can be achieved even in a relatively low temperature environment. It is possible to promote the hydrogen release in the MH that is easy to proceed and to secure the amount of hydrogen that can be supplied externally.

本発明の水素貯蔵タンクには、水素吸蔵合金との間で熱交換する熱媒管の管壁に熱交換フィン設けられている。本発明では、上記のように複数のMHを平衡圧力に基づいて配置することで水素の吸蔵・放出速度、放出量の向上が図られるものであるが、さらに熱交換フィンを設けることで、熱交換効率が高められるので、水素の放出/吸蔵時の吸熱/放熱効率、ひいては水素の放出/吸蔵速度、放出/吸蔵量をより向上させることができる。 In the hydrogen storage tank of the present invention, heat exchange fins are provided on the wall of the heat medium pipe that exchanges heat with the hydrogen storage alloy. In the present invention, by arranging a plurality of MHs based on the equilibrium pressure as described above, the hydrogen storage / release speed and the amount of release can be improved. Since the exchange efficiency is enhanced, the heat absorption / heat dissipation efficiency during hydrogen release / occlusion, and hence the hydrogen release / occlusion speed and the amount of release / occlusion can be further improved.

熱交換フィンの配置は、平衡圧力の低い側の水素吸蔵合金中における配置間隔が、平衡圧力の高い側の水素吸蔵合金中における配置間隔より狭幅になっている。
Arrangement of the heat exchange fins, the arrangement interval in the hydrogen-absorbing alloy having a low equilibrium pressure side is, that has become narrower than the arrangement interval in the hydrogen-absorbing alloy having a high equilibrium pressure side.

複数のMHのうち、平衡圧力の低い側の水素吸蔵合金では、水素放出時の吸熱、および水素吸蔵時の発熱に伴なう温度変化が大きいため、MHの平衡圧力の低い領域では、平衡圧力が比較的高い領域よりも熱交換フィンの配置間隔(フィンピッチ)を狭めることで、熱交換効率を高めることができ、本発明における水素放出時の吸熱効率および水素吸蔵時の放熱効率、ひいては水素の放出速度および放出量、並びに水素の吸蔵速度および吸蔵量をより向上させることができる。   Among the plurality of MHs, the hydrogen storage alloy having a lower equilibrium pressure has a large temperature change due to heat absorption during hydrogen release and heat generation during hydrogen storage. The heat exchange efficiency can be improved by narrowing the heat exchange fin arrangement interval (fin pitch) than the region where the heat sink is relatively high. In the present invention, the heat absorption efficiency at the time of hydrogen release and the heat dissipation efficiency at the time of hydrogen storage, and thus hydrogen The release rate and release amount of hydrogen, and the storage rate and storage amount of hydrogen can be further improved.

本発明は、複数の異なる平衡圧力を有する水素吸蔵合金(MH)をタンク内の適所に配置することにより、供給された水素の吸蔵(充填)・放出性能(吸蔵・放出速度および貯蔵・放出量を含む)が飛躍的に向上し、水素使用システムの構築に有効である。   In the present invention, hydrogen storage alloys (MH) having a plurality of different equilibrium pressures are arranged at appropriate positions in the tank, so that the supplied hydrogen can be stored (filled) / released (storage / release speed and storage / release amount). Is drastically improved, and is effective in building a hydrogen usage system.

本発明によれば、水素吸蔵合金との間で熱交換する熱媒の流通経路での温度変化(水素の放出時の熱媒温度の低下および吸蔵時の熱媒温度の上昇)に伴なう水素の吸蔵、放出速度および水素の吸蔵/放出量の低下を防止した水素貯蔵タンクを提供することができる。   According to the present invention, accompanying a temperature change in the flow path of the heat medium that exchanges heat with the hydrogen storage alloy (a decrease in the heat medium temperature when releasing hydrogen and an increase in the heat medium temperature during storage). It is possible to provide a hydrogen storage tank that prevents a decrease in hydrogen storage / release rate and hydrogen storage / release amount.

以下、本発明の水素貯蔵タンクの実施形態を図1〜図5を参照して説明する。本実施形態の水素貯蔵タンクは、MHを加熱する熱媒の流通方向に沿って平衡圧力が高くなるように平衡圧力の異なる3種の水素吸蔵合金(MH)を配置すると共に、平衡圧力が高くなるにつれフィンピッチが広幅になるように熱交換フィンを設けて構成したものである。   Hereinafter, embodiments of the hydrogen storage tank of the present invention will be described with reference to FIGS. In the hydrogen storage tank of this embodiment, three types of hydrogen storage alloys (MH) having different equilibrium pressures are arranged so that the equilibrium pressure becomes higher along the flow direction of the heat medium that heats MH, and the equilibrium pressure is higher. Accordingly, the heat exchange fins are provided so that the fin pitch becomes wider.

本実施形態では、平衡圧力が1MPa、4MPa、8MPaの異なる3種の水素吸蔵合金をタンク内に収容し、これらの水素吸蔵合金との間で熱交換を行なう熱媒として、LLC〔ロングライフクーラント(長期間使用可能な液)〕を用いた場合を中心に説明する。但し、本発明においては下記実施形態に制限されるものではない。   In the present embodiment, three kinds of hydrogen storage alloys having different equilibrium pressures of 1 MPa, 4 MPa, and 8 MPa are accommodated in a tank, and LLC (Long Life Coolant) is used as a heat medium that exchanges heat with these hydrogen storage alloys. The case where (Liquid that can be used for a long time)] is used will be mainly described. However, the present invention is not limited to the following embodiment.

図1および図2に示すように、本実施形態の水素貯蔵タンクは、水素を給排する水素給排口を備え、断面円形で耐圧性を有する高圧タンク11と、高圧タンク11の内部に収容された水素吸蔵合金であるTi20Cr4535合金MH1、Ti36Cr32Mn32合金MH2、およびTi30Cr4510Mo15合金MH3と、各水素吸蔵合金との間で熱交換が行なえるように水素吸蔵合金中に埋設された熱媒管である熱交換管12とを備えている。 As shown in FIGS. 1 and 2, the hydrogen storage tank of the present embodiment includes a hydrogen supply / discharge port for supplying and discharging hydrogen, and has a high-pressure tank 11 having a circular cross section and pressure resistance, and is accommodated in the high-pressure tank 11. Heat exchange can be performed between the hydrogen storage alloys Ti 20 Cr 45 V 35 alloy MH1, Ti 36 Cr 32 Mn 32 alloy MH2, and Ti 30 Cr 45 V 10 Mo 15 alloy MH3. In this way, a heat exchange pipe 12 that is a heat medium pipe embedded in the hydrogen storage alloy is provided.

高圧タンク11は、図1に示すように、ステンレス合金(SUS316L)を用いて断面円形の筒型に成形し、筒の長さ方向の両端が閉塞された中空体であり、35MPaの耐圧性能を有している。壁厚や断面形状、サイズなどは、目的等に応じて、上記以外の任意の厚み、矩形、楕円形などの任意の形状、サイズを選択することができる。タンクの材質も、アルミニウム合金や、アルミニウム合金の中空状ライナと炭素繊維強化樹脂とを組み合わせた構造なども選択可能である。   As shown in FIG. 1, the high-pressure tank 11 is a hollow body formed of a stainless steel alloy (SUS316L) with a circular cross-section and closed at both ends in the length direction of the cylinder, and has a pressure resistance of 35 MPa. Have. As the wall thickness, cross-sectional shape, size, and the like, any thickness, rectangle, ellipse, and other shapes other than those described above can be selected according to the purpose and the like. As the material of the tank, an aluminum alloy, a structure in which an aluminum alloy hollow liner and a carbon fiber reinforced resin are combined can be selected.

高圧タンク11の長手方向の一端には、水素給排口13が形成されており、この水素給排口13に水素を供給排出するための水素給排管(不図示)が接続されている。この水素給排管を挿通してタンク内に水素が供給されたときには、供給された水素を高圧タンク11内の水素吸蔵合金(MH1、MH2、およびMH3)に吸蔵させて貯蔵すると共に、外部に設けられた図示しない水素使用装置から水素の要求があったときには、貯蔵されている水素を水素給排管を通じて水素使用装置に供給できるようになっている。   A hydrogen supply / discharge port 13 is formed at one end in the longitudinal direction of the high-pressure tank 11, and a hydrogen supply / discharge tube (not shown) for supplying and discharging hydrogen is connected to the hydrogen supply / discharge port 13. When hydrogen is supplied into the tank through the hydrogen supply / discharge pipe, the supplied hydrogen is stored in the hydrogen storage alloy (MH1, MH2, and MH3) in the high-pressure tank 11 and stored outside. When there is a request for hydrogen from a provided hydrogen using device (not shown), the stored hydrogen can be supplied to the hydrogen using device through a hydrogen supply / discharge pipe.

高圧タンク11の他端には、LLC給排口(熱媒給排口)が形成されており、このLLC給排口に熱交換管12が取り付けられている。タンク外部から熱交換管12を通じて供給されたLLCは、水素貯蔵タンク内のMH中に埋設された管内を流通しながら各MHとの間で熱交換が行なえるようになっている。   An LLC supply / exhaust port (heat medium supply / exhaust port) is formed at the other end of the high-pressure tank 11, and a heat exchange pipe 12 is attached to the LLC supply / exhaust port. The LLC supplied from the outside of the tank through the heat exchange pipe 12 can exchange heat with each MH while flowing through the pipe embedded in the MH in the hydrogen storage tank.

熱交換管12は、U字型に成形された断面円形のアルミニウム管であり、アルミニウム管の一端(以下、熱媒供給端ともいう)から供給されたLLC(熱媒)は他端(以下、熱媒排出端ともいう)から排出され、アルミニウム管の熱媒供給端、熱媒排出端と接続して構築された図示しない循環系によりLLCの循環が可能な構成になっている。   The heat exchange tube 12 is a U-shaped aluminum tube having a circular cross section, and an LLC (heat medium) supplied from one end of the aluminum tube (hereinafter also referred to as a heat medium supply end) is connected to the other end (hereinafter referred to as a heat medium). It is configured so that the LLC can be circulated by a circulation system (not shown) constructed by being connected to the heat medium supply end of the aluminum tube and the heat medium discharge end.

熱交換管12の管外壁には、図2に示すように壁面から突出するようにして、アルミニウム製の熱交換用のフィン15A、15B、15Cが所定の間隔(フィンピッチ)で取り付けられており、各フィン間にMHが入り込んでMHとの間で迅速に効率良く熱交換し得るようになっている。   As shown in FIG. 2, aluminum heat exchange fins 15A, 15B, and 15C are attached to the outer wall of the heat exchange pipe 12 at predetermined intervals (fin pitch) as shown in FIG. MH enters between the fins so that heat can be exchanged with MH quickly and efficiently.

フィン15Aは、Ti20Cr4535合金MH1中にフィンピッチaで等間隔に配置されており、フィン15BはTi36Cr32Mn32合金MH2中にフィンピッチbで等間隔に配置されており、フィン15CはTi30Cr4510Mo15合金MH3中にフィンピッチcで等間隔に配置されている。各フィンピッチは、a<b<cの関係にあり、水素放出時には吸熱量が大きく水素吸蔵時には発熱量が大きくなるMH、すなわち平衡圧力の低いMH中に位置する熱交換管に多くのフィンを設け、熱交換効率がより高められるように構成されている。 The fins 15A are arranged at equal intervals in the fin pitch a in the Ti 20 Cr 45 V 35 alloy MH1, and the fins 15B are arranged at equal intervals in the fin pitch b in the Ti 36 Cr 32 Mn 32 alloy MH2. The fins 15C are arranged at equal intervals with the fin pitch c in the Ti 30 Cr 45 V 10 Mo 15 alloy MH3. Each fin pitch has a relationship of a <b <c, and when the hydrogen is released, the heat absorption amount is large, and when the hydrogen is occluded, the heat generation amount is large. That is, many fins are attached to the heat exchange pipe located in the MH having a low equilibrium pressure. The heat exchange efficiency is further improved.

本実施形態では、平衡圧力の異なる3種のMH領域を平衡圧力の順に熱交換管に沿って設けることにより、水素の吸蔵、放出速度および水素吸蔵・放出量を向上させ得るように構成しているが、上記のようにフィンピッチをMHの平衡圧力に合わせて狭めることにより、水素の吸蔵、放出速度および水素吸蔵・放出量を更に向上させることができる。   In this embodiment, three kinds of MH regions having different equilibrium pressures are provided along the heat exchange tube in the order of the equilibrium pressures, so that the hydrogen occlusion, release speed, and hydrogen occlusion / release amount can be improved. However, by narrowing the fin pitch in accordance with the MH equilibrium pressure as described above, it is possible to further improve the hydrogen storage / release speed and the hydrogen storage / release amount.

高圧タンク11の内部には、図2に示すように、水素吸蔵合金(MH)として、熱交換管12のLLCの熱媒供給端から熱媒排出端に向かうLLC流通経路に沿って平衡圧力がPMH1<PMH2<PMH3(同温度下)で大きくなる配置順となるように、平衡圧力1MPaのTi20Cr4535合金MH1、平衡圧力4MPaのTi36Cr32Mn32合金MH2、および平衡圧力8MPaのTi30Cr4510Mo15合金MH3が収容されている。 As shown in FIG. 2, as shown in FIG. 2, the high pressure tank 11 has an equilibrium pressure along the LLC flow path from the heat medium supply end of the heat exchange pipe 12 toward the heat medium discharge end as a hydrogen storage alloy (MH). Ti 20 Cr 45 V 35 alloy MH1 with an equilibrium pressure of 1 MPa, Ti 36 Cr 32 Mn 32 alloy MH2 with an equilibrium pressure of 4 MPa, and an arrangement order that increases with P MH1 <P MH2 <P MH3 (under the same temperature), and A Ti 30 Cr 45 V 10 Mo 15 alloy MH3 having an equilibrium pressure of 8 MPa is accommodated.

MH1、MH2およびMH3の3種のMHは、外部から水素給排口を介して水素が供給されると水素を吸蔵して貯蔵することができ、必要に応じて加熱したりタンク内圧を低くしたときには、MHに吸蔵されている水素が解離し、貯蔵された水素を外部に放出し、燃料電池等の水素使用装置に供給することができる。具体的には、下記のようにして水素の吸蔵および排出が行なわれる。   Three types of MH, MH1, MH2 and MH3 can store and store hydrogen when hydrogen is supplied from the outside through a hydrogen supply / exhaust port, and can be heated or reduced in tank pressure as necessary. Sometimes, the hydrogen stored in MH dissociates, and the stored hydrogen can be released to the outside and supplied to a hydrogen-using device such as a fuel cell. Specifically, hydrogen is occluded and discharged as follows.

本実施形態においては、各MHの平衡圧力が熱媒であるLLC流通方向に沿ってMH1<MH2<MH3(同温度下)の順に大きくなるように3種のMHを配置することにより、水素を外部に放出する場合には、熱交換管12に熱媒として温度TのLLCが供給され、供給されたLLCはまずMH1との間で熱交換し、最も平衡圧力の低いMH1に熱が与えられるとMH1から水素が放出される。その後、MH1と熱交換して温度低下した温度T(<T)のLLCは、熱交換管12を挿通してMH2に到達し、MH2との間で熱交換してMH1の次に平衡圧力の低いMH2に熱が与えられるとMH2から水素が放出される。MH2と熱交換して更に温度低下した温度T(<T)のLLCはMH3に達し、MH3は平衡圧力が最も高いために比較的低温の温度Tの熱が与えられても水素の放出が可能である。 In this embodiment, by arranging three types of MH so that the equilibrium pressure of each MH increases in the order of MH1 <MH2 <MH3 (under the same temperature) along the LLC flow direction as a heat medium, when released to the outside, LLC temperature T 1 is as heating medium is supplied to the heat exchange tubes 12, the supplied LLC first exchanging heat between the MH1, heat is applied to the lowest equilibrium pressure MH1 When released, hydrogen is released from MH1. After that, the LLC at the temperature T 2 (<T 1 ), which has decreased in temperature due to heat exchange with MH1, reaches the MH2 through the heat exchange pipe 12, and exchanges heat with the MH2 to equilibrate next to the MH1. When heat is applied to the low-pressure MH2, hydrogen is released from the MH2. MH2 temperature T 3 which further temperature drop in the heat exchanger (<T 2) of the LLC reached MH3, MH3 is hydrogen it is relatively heat cold temperature T 3 is provided for the equilibrium pressure is the highest Release is possible.

一般に水素吸蔵合金は、その平衡圧力が高いと水素を放出しやすく、したがって平衡圧力を低くすることで比較的安定に吸蔵(貯蔵)しておける水素量は増える反面、吸蔵された水素を放出し難くなるが、本実施形態のようにMHの温度制御を担う熱媒の温度変化に合わせて平衡圧力の異なるMHを選択することによって、水素の吸蔵・放出性、吸蔵・放出される水素量を高めることが可能である。   In general, hydrogen storage alloys tend to release hydrogen when the equilibrium pressure is high. Therefore, reducing the equilibrium pressure increases the amount of hydrogen that can be stored (stored) relatively stably, but releases the stored hydrogen. Although it becomes difficult, by selecting MH with different equilibrium pressure according to the temperature change of the heating medium responsible for MH temperature control as in this embodiment, the hydrogen occlusion / release property and the amount of hydrogen occluded / released can be reduced. It is possible to increase.

すなわち、従来のように1種のMHを用いた構成では、LLCが熱交換管12の熱媒供給端から熱媒排出端に向かって流通する過程で温度Tから温度Tまで低下することになるが、この温度低下に伴なってMHの平衡圧力も低下するため、平衡圧力と燃料電池等の水素使用装置に必要とされる下限圧力(例えば燃料電池の作動下限圧力)との圧力差を充分に保つことができない。本実施形態においては、上記のように熱交換を行なう熱交換管に沿ってMHを平衡圧力の順に配置することでLLC温度が流通に伴ない次第に低下してもより高い平衡圧力を持つMH2、MH3は圧力差を保つことができる。つまり、図3に示すように、LLC温度がTではMH1で所望の平衡圧力(すなわち水素放出性;以下同様)を満たすが、その後LLC温度が低下したときには、T(<T)では主としてMH2により、MH1の平衡圧力が下がって得られない所望の平衡圧力を保ち、T(<T)では主としてMH3により、MH1およびMH2の平衡圧力が下がって得られない所望の平衡圧力を保つ。
以上により、水素の放出速度、ひいては水素の放出量を向上させることができる。
That is, in the conventional configuration using one type of MH, the temperature drops from the temperature TH to the temperature TL in the process in which the LLC flows from the heat medium supply end to the heat medium discharge end of the heat exchange pipe 12. However, since the MH equilibrium pressure also decreases with this temperature decrease, the pressure difference between the equilibrium pressure and the lower limit pressure (for example, the fuel cell operating lower limit pressure) required for a hydrogen-using device such as a fuel cell. Cannot be maintained sufficiently. In the present embodiment, MH2 having a higher equilibrium pressure even if the LLC temperature gradually decreases with circulation by arranging MH in the order of the equilibrium pressure along the heat exchange pipe for performing heat exchange as described above, MH3 can maintain a pressure difference. That is, as shown in FIG. 3, when the LLC temperature is T H , MH1 satisfies the desired equilibrium pressure (that is, hydrogen releasing property; the same applies hereinafter), but when the LLC temperature subsequently decreases, T M (<T H ) The desired equilibrium pressure that cannot be obtained by lowering the equilibrium pressure of MH1 is mainly maintained by MH2, and the desired equilibrium pressure that cannot be obtained by lowering the equilibrium pressure of MH1 and MH2 by MH3 mainly at T L (<T M ). keep.
As described above, the hydrogen release rate, and hence the hydrogen release amount, can be improved.

また、水素充填時には、MH1/MH2/MH3の配置構造のまま、上記の温度TのLLC(熱媒)の流通方向とは逆方向(熱交換管12の熱媒排出端から熱媒供給端に向かう方向)に、冷却用の熱媒として温度tのLLCを供給し、流通する。このとき、MHの平衡圧力は、熱交換管12の熱媒(LLC)の流通経路に沿って小さくなる(MH3>MH2>MH1;同温度下)。 Further, at the time of hydrogen filling, the arrangement structure of MH1 / MH2 / MH3 is maintained, and the direction opposite to the flow direction of the LLC (heat medium) at the temperature T 1 (from the heat medium discharge end of the heat exchange pipe 12 to the heat medium supply end). In the direction of) to supply and circulate LLC at a temperature t 1 as a cooling heat medium. At this time, the equilibrium pressure of MH decreases along the flow path of the heat medium (LLC) in the heat exchange pipe 12 (MH3>MH2>MH1; under the same temperature).

すなわち、従来のように1種のMHを用いた構成では、LLCが熱交換管12の熱媒排出端から熱媒供給端に向かって流通する過程で温度tから温度tまで上昇するが、この温度上昇に伴なってMHの平衡圧力も上昇するため、LLCが排出される熱媒供給端に近づくに従い、充填圧力と平衡圧力との圧力差が小さくなり、充填速度が低下する。本実施形態においては、上記のように熱交換を行なう熱交換管に沿ってMHの平衡圧力の順に配置することでLLC温度が流通に伴ない次第に上昇しても、より高い平衡圧力を持つMH2、MH3は圧力差を保つことができる。つまり、図4に示すように、LLC温度がTではMH3で所望の充填能力(すなわち水素吸蔵性;以下同様)を示すが、その後LLC温度が上昇したときには、T(>T)では主としてMH2により、MH3の平衡圧力が上がって得られない所望の充填能力を保ち、T(>T)では主としてMH1により、MH3およびMH2の平衡圧力が上がって得られない所望の充填能力を保つ。
以上により、水素の吸蔵速度、ひいては水素の吸蔵量を向上させることができる。
That is, in the configuration using one type of MH as in the prior art, the temperature rises from the temperature t L to the temperature t H while the LLC flows from the heat medium discharge end of the heat exchange pipe 12 toward the heat medium supply end. As the temperature rises, the equilibrium pressure of MH also rises. Therefore, as the LLC approaches the heat medium supply end from which the LLC is discharged, the pressure difference between the filling pressure and the equilibrium pressure decreases, and the filling speed decreases. In the present embodiment, the MH2 having a higher equilibrium pressure even when the LLC temperature gradually increases with the flow by arranging the MH in the order of the equilibrium pressure of the MH along the heat exchange pipe for performing heat exchange as described above. , MH3 can keep the pressure difference. That is, as shown in FIG. 4, when the LLC temperature is TL , MH3 shows a desired filling capacity (that is, hydrogen storage ability; the same applies hereinafter), but when the LLC temperature rises thereafter, T M (> T L ) Mainly due to MH2, the desired filling capacity that cannot be obtained by increasing the equilibrium pressure of MH3 is maintained, and at T H (> T M ), the desired filling capacity that cannot be obtained by mainly increasing the equilibrium pressure of MH3 and MH2 by MH1. keep.
As described above, it is possible to improve the hydrogen storage speed, and hence the hydrogen storage amount.

本実施形態の水素貯蔵タンクでは、低温環境下で水素を外部供給しようとする場合、水素吸蔵合金の平衡圧力(プラトー圧)が、所期の使用圧力であるタンク使用時の圧力Pより低くなる温度領域になったときには、MH1/MH2/MH3の配置構造のまま、上記の温度TのLLC(熱媒)の流通方向とは逆方向(熱交換管12の熱媒排出端から熱媒供給端に向かう方向)に、加熱用の熱媒として温度TのLLCを供給し、流通する。このとき、MHの平衡圧力は、水素充填(吸蔵)時と同様に、熱交換管12の熱媒(LLC)の流通経路に沿って平衡圧力が高い側から低い側に向かって小さくなる(MH3>MH2>MH1;同温度下)。 In the hydrogen storage tank of this embodiment, when hydrogen is to be externally supplied in a low temperature environment, the equilibrium pressure (plateau pressure) of the hydrogen storage alloy is lower than the pressure P when the tank is used, which is the intended use pressure. When the temperature range is reached, the arrangement structure of MH1 / MH2 / MH3 is maintained, and the direction opposite to the flow direction of the LLC (heat medium) at the temperature T 1 (the heat medium supply from the heat medium discharge end of the heat exchange pipe 12) In the direction toward the end), LLC of temperature Ta is supplied as a heating medium for heating and distributed. At this time, the equilibrium pressure of MH decreases from the higher equilibrium pressure toward the lower side along the flow path of the heat transfer medium (LLC) of the heat exchange pipe 12 (MH3) as in the case of hydrogen filling (occlusion). >MH2>MH1; under the same temperature).

低温環境下での例えば燃料電池(FC)の始動時には、FCが暖機されるまでの間は平衡圧力の高いMH側から低いMH側に向けてMHを加熱するLLCの流通し、平衡圧力の最も高いMH3から優先的に水素が放出されるようにMH3側から熱を付与することにより、低温環境下での水素の放出速度および放出量を確保することができる。
温水をタンク内に供給できる程度までFCが暖機されれば、定常の水素放出を行なうためにLLCの流通方向をさらに逆転し、上記の水素放出時と同様に熱交換管12の熱媒供給端から熱媒排出端に向けてLLCを流通する。
For example, when starting a fuel cell (FC) in a low-temperature environment, an LLC that heats MH from the high MH side of the equilibrium pressure toward the low MH side flows until the FC is warmed up. By applying heat from the MH3 side so that hydrogen is preferentially released from the highest MH3, it is possible to ensure the hydrogen release rate and amount in a low temperature environment.
When the FC is warmed up to such an extent that hot water can be supplied into the tank, the flow direction of the LLC is further reversed in order to perform steady hydrogen release, and the heating medium supply of the heat exchange tube 12 is performed in the same manner as in the above hydrogen release. The LLC is circulated from the end toward the heat medium discharge end.

ここで、水素吸蔵合金の平衡圧力(プラトー圧)がタンク使用時の圧力Pより低くなる温度領域は、環境温度の低下により、MHの平衡圧力が、水素を吸蔵もしくは放出する使用状態の使用圧力として予め設定された所期の圧力Pを下回って、水素の吸蔵、放出が低下またはできなくなる温度領域である。   Here, the temperature range in which the equilibrium pressure (plateau pressure) of the hydrogen storage alloy is lower than the pressure P when the tank is used is the use pressure in the operating state where the equilibrium pressure of MH stores or releases hydrogen due to a decrease in the environmental temperature. Is a temperature range in which the occlusion and release of hydrogen are reduced or become impossible when the pressure P falls below a predetermined pressure P set in advance.

すなわち、低温環境下ではMHの平衡圧力も低下するため、従来のように1種のMHを用いた構成では平衡圧力(充填圧力)と下限圧力との圧力差が小さくなって水素の放出速度や放出量も低下するが、本実施形態においては、上記のように平衡圧力の異なる3種のMHを用いることで、より高い平衡圧力を持つMH3、MH2で圧力差を保つことができ、また、3種のMHを熱交換管に沿って平衡圧力の順に配置し、最も平衡圧力の高いMH3側からMHを加熱するLLCを流通するようにすることで、MHの平衡圧力が所期の使用状態での圧力Pより低くなる低温環境下でも、水素の放出速度、放出量を確保することができる。つまり、図5に示すように、MH温度が高い(>T)とMH1のみでもある程度の平衡圧力(すなわち水素吸蔵性;以下同様)が得られるが、MH温度が低下していくと(<T)MH1のみでは圧力差を保てず、したがって、特に低温環境下では、主としてMH3、MH2により、MH1の平衡圧力が下がるために得られない所望の平衡圧力(充填圧力)を保つ。
以上により、低温環境下での水素の放出速度、ひいては水素の放出量を向上させることができる。
That is, since the equilibrium pressure of MH also decreases in a low-temperature environment, the pressure difference between the equilibrium pressure (filling pressure) and the lower limit pressure becomes smaller in the configuration using one type of MH as in the past, and the hydrogen release rate and Although the discharge amount is also reduced, in this embodiment, by using three types of MH having different equilibrium pressures as described above, the pressure difference can be maintained between MH3 and MH2 having higher equilibrium pressures. Three kinds of MH are arranged in the order of the equilibrium pressure along the heat exchange pipe, and the MH equilibrium pressure is circulated through the LLC that heats the MH from the MH3 side having the highest equilibrium pressure, so that the MH equilibrium pressure is in the intended use state. Even under a low temperature environment where the pressure P is lower than the hydrogen pressure P, the hydrogen release rate and amount can be secured. That is, as shown in FIG. 5, when the MH temperature is high (> T M ), a certain amount of equilibrium pressure (that is, hydrogen storage ability; the same applies hereinafter) can be obtained only with MH1, but as the MH temperature decreases (< T M ) MH1 alone does not maintain a pressure difference, and therefore, particularly in a low temperature environment, mainly MH3 and MH2 maintain a desired equilibrium pressure (filling pressure) that cannot be obtained because the equilibrium pressure of MH1 decreases.
As described above, it is possible to improve the hydrogen release rate in a low temperature environment, and hence the hydrogen release amount.

水素吸蔵合金(MH)としては、2元系合金、3元系合金、4元系合金などを挙げることができ、例えば、TiCrV系合金、TiCrMn系合金、LaNi系合金、TiFe系合金、TiVMo合金、TiCrVNi合金、TiCrMoV系合金などから平衡圧力を考慮して適宜選択することができる。   Examples of the hydrogen storage alloy (MH) include binary alloys, ternary alloys, quaternary alloys, and the like, for example, TiCrV alloys, TiCrMn alloys, LaNi alloys, TiFe alloys, TiVMo alloys. , TiCrVNi alloy, TiCrMoV alloy, etc., can be appropriately selected in consideration of the equilibrium pressure.

MHの具体例としては、LaNi、Ti25Cr5025、Ti25Cr2550、Ti36Cr32Mn32、Ti30Cr35Mn35、Ti20Cr4535、Ti30Cr4510Mo15、Ti25Cr5020Mo、Ti25Cr4425Fe、Ti25Cr5020Ni、Ti11Cr1271MoNiなどが挙げられる。 Specific examples of the MH, LaNi 5, Ti 25 Cr 50 V 25, Ti 25 Cr 25 V 50, Ti 36 Cr 32 Mn 32, Ti 30 Cr 35 Mn 35, Ti 20 Cr 45 V 35, Ti 30 Cr 45 V 10 Mo 15, Ti 25 Cr 50 V 20 Mo 5, Ti 25 Cr 44 V 25 Fe 6, Ti 25 Cr 50 V 20 Ni 5, such as Ti 11 Cr 12 V 71 Mo 5 Ni 1 can be mentioned.

複数の水素吸蔵合金の組合せとしては、例えば、(1)50〜80℃での平衡圧力が1×10−1〜7×10−1MPaの水素吸蔵合金(例えば、Ti20Cr4535合金)、(2)10〜30℃での平衡圧力が0.8×10−1〜7×10−1MPaの水素吸蔵合金(例えば、Ti36Cr32Mn32合金)、および、(3)−30〜−10℃での平衡圧力が0.2×10−1〜4×10−1MPaの水素吸蔵合金(例えば、Ti30Cr4510Mo15合金)から選択される、平衡圧力の異なる2種もしくは3種以上の組合せが好ましい。
具体的な例としては、本実施形態の3種の組合せ以外に、例えば、Ti20Cr4535とTi30Cr4510Mo15との組合せ、Ti20Cr4535とTi25Cr5025との組合せや、Ti20Cr4535とTi30Cr35Mn35とTi25Cr5025との組合せを好適に挙げることができる。
As a combination of a plurality of hydrogen storage alloys, for example, (1) a hydrogen storage alloy having an equilibrium pressure of 1 × 10 −1 to 7 × 10 −1 MPa at 50 to 80 ° C. (for example, Ti 20 Cr 45 V 35 alloy) ), (2) a hydrogen storage alloy (for example, Ti 36 Cr 32 Mn 32 alloy) having an equilibrium pressure at 10 to 30 ° C. of 0.8 × 10 −1 to 7 × 10 −1 MPa, and (3) — 30-10 equilibrium pressure at ℃ is 0.2 × 10 -1 ~4 × 10 -1 MPa hydrogen storage alloy (e.g., Ti 30 Cr 45 V 10 Mo 15 alloy) is selected from, different equilibrium pressure Two or three or more combinations are preferred.
As a specific example, in addition to the three combinations of the present embodiment, for example, a combination of Ti 20 Cr 45 V 35 and Ti 30 Cr 45 V 10 Mo 15 , Ti 20 Cr 45 V 35 and Ti 25 Cr 50 are used. A combination with V 25 and a combination of Ti 20 Cr 45 V 35 , Ti 30 Cr 35 Mn 35 and Ti 25 Cr 50 V 25 can be preferably exemplified.

水素吸蔵合金(MH)の形態は、粉状、粒状、ペレット状などのいずれの形状、サイズであってもよい。
水素吸蔵合金は、例えば、所望の組成、組成比となるように金属粉をアーク溶解して粗合金とし、(好ましくは更にアニールして)これをボールミル等の粉砕機を用いて粉砕処理する等して得たものを使用することができ、得られた粉状物等のMHをタンク内に(好ましくは高密度に)充填する等して本発明の水素貯蔵タンクを作製することができる。
The form of the hydrogen storage alloy (MH) may be any shape and size such as powder, granule, and pellet.
For the hydrogen storage alloy, for example, the metal powder is arc-melted so as to have a desired composition and composition ratio to obtain a crude alloy (preferably further annealed), and this is pulverized using a pulverizer such as a ball mill. The hydrogen storage tank of the present invention can be produced by filling the tank with MH such as the obtained powdery substance (preferably at a high density).

MHとの間で熱交換を行なう熱媒としては、本実施形態ではLLCを用いた場合を説明したが、LLC以外に種々の物質を利用することができ、(1)使用できる圧力が適当である、(2)単位体積あたりの熱容量または潜熱が大きく、伝熱係数が大きい、(3)装置を腐食しない、(4)不燃性・安価・無毒などの環境や経済性の面で負担が少ない等の特徴から目的に合わせて選択することができる。LLC以外には、例えば、オイル、水などの液体を用いることができる。   In this embodiment, the case where LLC is used as the heat medium that exchanges heat with MH has been described. However, various substances other than LLC can be used, and (1) the pressure that can be used is appropriate. Yes, (2) Large heat capacity or latent heat per unit volume, large heat transfer coefficient, (3) Does not corrode equipment, (4) Non-flammable, inexpensive, non-toxic, etc. It can be selected according to the purpose from the features such as. Other than LLC, for example, a liquid such as oil or water can be used.

上記の実施形態では、最も平衡圧力の低いMH1中に位置する熱交換管の距離(管長)を長くした構成となっており、MH1中の管長を長くしてMH1での水素の吸蔵・放出性能を高く確保すると共に、熱交換管の中〜下流側における低温になりやすい(MH1では吸蔵/放出性が低下しやすい)領域での吸蔵・放出性能を高めて、水素の吸蔵/放出速度、ひいては水素の吸蔵/放出量をより向上させることができる。
本実施形態のMH構成のほか、複数種が配置されるMHの形状、サイズについては、平衡圧力や内部構造、使用環境などに応じて選択すればよい。
In the above embodiment, the distance (tube length) of the heat exchange pipe located in the MH1 having the lowest equilibrium pressure is increased, and the length of the pipe in the MH1 is increased so that hydrogen is absorbed and released in the MH1. And increasing the storage / release performance in the region where the temperature is likely to be low in the middle to downstream of the heat exchange pipe (the MH1 tends to decrease the storage / release performance), and the hydrogen storage / release speed, The amount of occlusion / release of hydrogen can be further improved.
In addition to the MH configuration of the present embodiment, the shape and size of the MH in which a plurality of types are arranged may be selected according to the equilibrium pressure, the internal structure, the use environment, and the like.

また、上記では、複数のMHとして、平衡圧力の異なる3種のMHを用いた場合を説明したが、平衡圧力の異なる2種を用いて熱媒供給端側から熱媒排出端側に向けて平衡圧力が大きくなるようにMHを配置した構成にしてもよいし、平衡圧力の異なる4種以上のMHを用いた構成とすることもできる。
また、平衡圧力PαのMHおよび平衡圧力Pβ(Pα<Pβ)のMHと、この2種のMHの混合よりなる平衡圧力PγのMH(Pα<Pγ<Pβ)とを用いて構成するようにしてもよい。
In the above description, the case where three types of MH having different equilibrium pressures are used as the plurality of MHs has been described. However, two types of MH having different equilibrium pressures are used to move from the heat medium supply end side toward the heat medium discharge end side. A configuration may be adopted in which MH is arranged so that the equilibrium pressure is increased, or a configuration using four or more MHs having different equilibrium pressures may be employed.
Further, the MH of the equilibrium pressure P α and the MH of the equilibrium pressure P β (P α <P β ), and the MH (P α <P γ <P β ) of the equilibrium pressure P γ composed of a mixture of these two types of MH, You may make it comprise using.

本発明の実施形態に係る水素貯蔵タンクの斜視図である。It is a perspective view of the hydrogen storage tank concerning the embodiment of the present invention. 本発明の実施形態に係る水素貯蔵タンクの内部構成を示す概略断面図である。It is a schematic sectional drawing which shows the internal structure of the hydrogen storage tank which concerns on embodiment of this invention. 水素放出時におけるMHの温度と平衡圧力との関係を示す関係図である。It is a relationship figure which shows the relationship between the temperature of MH and the equilibrium pressure at the time of hydrogen discharge | release. 水素吸蔵時におけるMHの温度と平衡圧力との関係を示す関係図である。It is a relationship figure which shows the relationship between the temperature of MH at the time of hydrogen occlusion, and an equilibrium pressure. 低温環境下でのMHの温度と平衡圧力との関係を示す関係図である。It is a relationship figure which shows the relationship between the temperature of MH in a low temperature environment, and an equilibrium pressure.

符号の説明Explanation of symbols

12…熱交換管
15A,15B,15C…フィン
MH1…Ti20Cr4535合金
MH2…Ti36Cr32Mn32合金
MH3…Ti30Cr4510Mo15合金
12 ... heat exchange tubes 15A, 15B, 15C ... fins MH1 ... Ti 20 Cr 45 V 35 alloy MH2 ... Ti 36 Cr 32 Mn 32 alloy MH3 ... Ti 30 Cr 45 V 10 Mo 15 alloy

Claims (4)

平衡圧力が互いに異なる複数の水素吸蔵合金と、
前記複数の水素吸蔵合金のうち平衡圧力の低い側の水素吸蔵合金中における配置間隔が平衡圧力の高い側の水素吸蔵合金中における配置間隔より狭幅になるように配置された熱交換フィンを管壁に有し、熱媒が流通し前記水素吸蔵合金と熱交換可能な熱媒管と、を備え、
前記複数の水素吸蔵合金は、それぞれの平衡圧力が前記熱媒管の一端側から他端側に向けて高くなるように配されており、前記水素吸蔵合金を加熱する場合には前記熱媒を前記平衡圧力が低い側から高い側へ前記熱媒管に流通する水素貯蔵タンク。
A plurality of hydrogen storage alloys having different equilibrium pressures;
Heat exchange fins arranged such that the arrangement interval in the hydrogen storage alloy on the lower equilibrium pressure side among the plurality of hydrogen storage alloys is narrower than the arrangement interval in the hydrogen storage alloy on the higher equilibrium pressure side It has a wall, comprising a hydrogen absorbing alloy heat exchangeable heat transfer tube heat medium to flow, and
The plurality of hydrogen storage alloys are arranged such that the respective equilibrium pressures increase from one end side to the other end side of the heat medium pipe, and when the hydrogen storage alloy is heated, The hydrogen storage tank which distribute | circulates to the said heat-medium pipe | tube from the side where the said equilibrium pressure is low to the high side.
前記熱媒管は、前記水素吸蔵合金を冷却する場合には、前記熱媒を前記平衡圧力が高い側から低い側へ流通することを特徴とする請求項1に記載の水素貯蔵タンク。   2. The hydrogen storage tank according to claim 1, wherein, when the hydrogen storage alloy is cooled, the heat medium pipe circulates the heat medium from a high equilibrium pressure side to a low side. 前記熱媒管は、前記水素吸蔵合金の平衡圧力が所期の使用圧力より低くなる温度領域であるときには、前記熱媒を前記平衡圧力が高い側から低い側へ流通することを特徴とする請求項1又は2に記載の水素貯蔵タンク。   The heat medium pipe circulates the heat medium from a higher side of the equilibrium pressure to a lower side when the equilibrium pressure of the hydrogen storage alloy is lower than an intended working pressure. Item 3. The hydrogen storage tank according to Item 1 or 2. 前記複数の水素吸蔵合金は、50〜80℃での平衡圧力が1×10 −1 〜7×10 −1 MPaの水素吸蔵合金、10〜30℃での平衡圧力が0.8×10 −1 〜7×10 −1 MPaの水素吸蔵合金、及び−30〜−10℃での平衡圧力が0.2×10 −1 〜4×10 −1 MPaの水素吸蔵合金から選択される平衡圧力の異なる2種以上を含む請求項1〜請求項3のいずれか1項に記載の水素貯蔵タンク。 The plurality of hydrogen storage alloys have an equilibrium pressure at 50 to 80 ° C. of 1 × 10 −1 to 7 × 10 −1 MPa, and an equilibrium pressure at 10 to 30 ° C. of 0.8 × 10 −1. different ~7 × 10 -1 MPa of hydrogen-absorbing alloy, and the equilibrium pressure at -30 to-10 ° C. is the equilibrium pressure is selected from 0.2 × 10 -1 ~4 × 10 -1 MPa of hydrogen storage alloy The hydrogen storage tank of any one of Claims 1-3 containing 2 or more types .
JP2006167859A 2006-06-16 2006-06-16 Hydrogen storage tank Expired - Fee Related JP4953194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006167859A JP4953194B2 (en) 2006-06-16 2006-06-16 Hydrogen storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167859A JP4953194B2 (en) 2006-06-16 2006-06-16 Hydrogen storage tank

Publications (2)

Publication Number Publication Date
JP2007333158A JP2007333158A (en) 2007-12-27
JP4953194B2 true JP4953194B2 (en) 2012-06-13

Family

ID=38932810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167859A Expired - Fee Related JP4953194B2 (en) 2006-06-16 2006-06-16 Hydrogen storage tank

Country Status (1)

Country Link
JP (1) JP4953194B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021128437B3 (en) 2021-11-02 2023-03-30 Arianegroup Gmbh Spacecraft tank with heat exchanger, spacecraft and method for cooling a tank's contents

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6407589B2 (en) * 2014-07-04 2018-10-17 株式会社神戸製鋼所 Hydrogen storage / release device and hydrogen storage / release method
EP3268658B1 (en) * 2015-03-13 2019-12-11 Cenergy Solutions Inc. Increased storage capacity of gas in pressure vessels

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317398A (en) * 1986-07-08 1988-01-25 日本電気株式会社 Missile drop-point predicting system
JPS63125898A (en) * 1986-11-17 1988-05-30 Kawasaki Heavy Ind Ltd Hydrogen storage apparatus and method for detecting quantity of stored hydrogen in hydrogen storage apparatus
JPH0518261A (en) * 1991-07-09 1993-01-26 Toyota Autom Loom Works Ltd Control method for temperature of hydrogen storage alloy in hydrogen storage alloy containing container
JP3525484B2 (en) * 1993-12-02 2004-05-10 マツダ株式会社 Hydrogen storage alloy tank structure
JP2002060201A (en) * 2000-08-11 2002-02-26 Honda Motor Co Ltd Hydrogen occlusion alloy type hydrogen supplying apparatus
JP2006097785A (en) * 2004-09-29 2006-04-13 Toyota Industries Corp Hydrogen storage tank and cap

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021128437B3 (en) 2021-11-02 2023-03-30 Arianegroup Gmbh Spacecraft tank with heat exchanger, spacecraft and method for cooling a tank's contents

Also Published As

Publication number Publication date
JP2007333158A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
Chandra et al. Modeling and numerical simulation of a 5 kg LaNi5-based hydrogen storage reactor with internal conical fins
Tong et al. Thermal management of metal hydride hydrogen storage reservoir using phase change materials
Nguyen et al. Review of metal hydride hydrogen storage thermal management for use in the fuel cell systems
US8778063B2 (en) Coiled and microchannel heat exchangers for metal hydride storage systems
US7124790B2 (en) System and method for storing and discharging hydrogen
Alqahtani et al. Thermal performance analysis of a metal hydride reactor encircled by a phase change material sandwich bed
US6709497B2 (en) Honeycomb hydrogen storage structure
CN101459249B (en) Hydrogen storage system for fuel cell vehicle
US8636836B2 (en) Finned heat exchangers for metal hydride storage systems
Duan et al. Thermal performance of structured packed bed with encapsulated phase change materials
Singh et al. Experiments on solid state hydrogen storage device with a finned tube heat exchanger
Sreeraj et al. Integration of thermal augmentation methods in hydride beds for metal hydride based hydrogen storage systems: review and recommendation
Chippar et al. Numerical investigation of hydrogen absorption in a stackable metal hydride reactor utilizing compartmentalization
US20050145378A1 (en) Hydrogen-storage container and method of occluding hydrogen
KR102317404B1 (en) Hydrogen storage system and operation method thereof
JP4953194B2 (en) Hydrogen storage tank
Ye et al. Performance improvement of metal hydride hydrogen storage tanks by using phase change materials
Ayub et al. Numerical modeling and performance comparison of high-temperature metal hydride reactor equipped with bakery system for solar thermal energy storage
Muthukumar Experimental investigation on annular metal hydride reactor for medium to large-scale hydrogen storage applications
JP4844233B2 (en) Hydrogen storage device and hydrogen storage method
JP2008045650A (en) Hydrogen storage device
JP2008039108A (en) Hydrogen storage device
KR102634450B1 (en) Solid hydrogen storage apparatus
JP2007315546A (en) Hydrogen storage vessel and hydrogen absorption and desorption device
JP3046975B2 (en) Hydrogen storage container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees