JP2007315546A - Hydrogen storage vessel and hydrogen absorption and desorption device - Google Patents

Hydrogen storage vessel and hydrogen absorption and desorption device Download PDF

Info

Publication number
JP2007315546A
JP2007315546A JP2006147724A JP2006147724A JP2007315546A JP 2007315546 A JP2007315546 A JP 2007315546A JP 2006147724 A JP2006147724 A JP 2006147724A JP 2006147724 A JP2006147724 A JP 2006147724A JP 2007315546 A JP2007315546 A JP 2007315546A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
heat
container
storage body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006147724A
Other languages
Japanese (ja)
Inventor
Toyoyuki Kubokawa
豊之 窪川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2006147724A priority Critical patent/JP2007315546A/en
Publication of JP2007315546A publication Critical patent/JP2007315546A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storage vessel and a hydrogen storage device of high efficiency in heating a storage body for hydrogen absorption and desorption, a simple structure and light weight without deteriorating a circulation property of gas. <P>SOLUTION: The hydrogen storage vessel 100 fluidally filled with a hydrogen storage body 30 is provided with a fluidizing part filled with a plurality of heat accumulation mediums 10 and including a mixing blade 41 and a mixing shaft 40 mixing and fluidizing the hydrogen storage body and the heat accumulation mediums, a heating part 60 heating the hydrogen storage body and the heat accumulation mediums, and a hydrogen outlet and inlet part installed to enable to be ventilated with the outside. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水素を吸蔵放出する水素貯蔵体を含む水素貯蔵容器および水素吸放出装置に関する。 The present invention relates to a hydrogen storage container and a hydrogen storage / release device including a hydrogen storage body that stores and releases hydrogen.

従来から、容器に充填された水素吸蔵合金等の水素貯蔵体を容器の外から加熱して、水素の吸蔵および放出を行なう水素貯蔵容器が知られている。水素貯蔵体とは、一定の温度以上に加熱して活性化させると、水素を吸蔵または放出させることのできる粉体である。
一方で、水素吸蔵体への熱の伝導性を向上させるため、熱媒管と熱媒管から延出するフィン部とを容器に嵌めこんだ水素貯蔵タンクが提案されている(たとえば、特許文献1)。このような貯蔵タンクでは、外筒部材、熱媒管、およびフィンにより画定される空間に水素吸蔵金属が収納され、熱媒が容器内部の熱媒管を流れ、熱媒管からフィンを介して水素吸蔵金属に熱が伝達される。
又、特許文献2には、水素再吸蔵時に水素が十分に接触できるように、水素貯蔵体周囲に熱媒配管を配した発明が開示されている。
特開平6−281097号公報 特開2002−364943号公報
2. Description of the Related Art Conventionally, hydrogen storage containers that store and release hydrogen by heating a hydrogen storage body such as a hydrogen storage alloy filled in the container from the outside of the container are known. The hydrogen storage body is a powder that can occlude or release hydrogen when activated by being heated above a certain temperature.
On the other hand, a hydrogen storage tank has been proposed in which a heat medium pipe and a fin portion extending from the heat medium pipe are fitted in a container in order to improve the heat conductivity to the hydrogen storage body (for example, Patent Documents). 1). In such a storage tank, the hydrogen storage metal is stored in a space defined by the outer cylinder member, the heat medium pipe, and the fin, and the heat medium flows through the heat medium pipe inside the container, and passes through the fin from the heat medium pipe. Heat is transferred to the hydrogen storage metal.
Patent Document 2 discloses an invention in which a heat medium pipe is arranged around a hydrogen storage body so that hydrogen can be sufficiently brought into contact during re-storage of hydrogen.
Japanese Unexamined Patent Publication No. 6-281097 JP 2002-364944 A

しかしながら、一般的な水素貯蔵体は粉体であり、容器の外から加熱しても熱伝導性が悪く、容器内の水素貯蔵体を均一に加熱することは困難である。特に、容器の容量が大きくなればなるほど、水素貯蔵体の均一な加熱が困難となる。 However, a general hydrogen storage body is powder, and heat conductivity is poor even when heated from outside the container, and it is difficult to uniformly heat the hydrogen storage body in the container. In particular, the larger the capacity of the container, the more difficult it is to uniformly heat the hydrogen storage body.

一方、特許文献1に例示される容器のように、水素貯蔵容器の内部に熱媒管を配管し、熱媒管内に熱溶媒を流し、その熱媒管に連結して設けた熱伝導フィンにより熱拡散を促す方式があるが、この場合には容器の構造が複雑になり、水素貯蔵体の粉体を効率充填に不向きである。また、熱媒管およびこれに連結される熱伝導フィンを設けると、そのために容器全体の重量が大きくなる。 On the other hand, like a container exemplified in Patent Document 1, a heat medium pipe is provided inside a hydrogen storage container, a thermal solvent is caused to flow inside the heat medium pipe, and a heat conduction fin provided in connection with the heat medium pipe is provided. There is a method for promoting thermal diffusion, but in this case, the structure of the container becomes complicated, and the powder of the hydrogen storage body is not suitable for efficient filling. Moreover, when the heat medium pipe and the heat conducting fin connected to the heat medium pipe are provided, the weight of the entire container increases.

また、水素貯蔵容器では、水素貯蔵体へ水素を吸蔵させ、水素貯蔵体から水素を放出させるため、ガスの流通性を確保する必要があるが、上記のように熱媒管や熱伝導フィンが設けられると、ガスの流通性が阻害される。特に、無機錯体系の水素貯蔵体は、従来の合金系の水素貯蔵体に比べて、熱伝導率が悪いために水素吸放出のための貯蔵体の加熱の効率は、更に低下している。ここに、粉体系の水素貯蔵体は、La−Ni系、Ti−Cr−V系などの水素吸蔵合金、MgH2、AlH3などのなどの金属水素化物、NaAlH4などアラネート系材料、リチウム−窒素系あるいはリチウム−ボロン系材料や、グラファイトやカーボンナノチューブなどのカーボン系材料が利用でき、特に限定されない。更に、無機錯体系粉体の水素貯蔵体は、アルカリ金属又はアルカリ土類金属の金属アミドと前記金属水素化物との混合部及び反応物が用いられるが、その吸蔵、放出の熱履歴により、粉体が固結しやすく、効率的な熱伝達を阻害し、水素貯蔵体の本来の水素吸蔵・放出能力を十分に引き出せない欠点があった。 In addition, in the hydrogen storage container, it is necessary to ensure gas flowability because hydrogen is stored in the hydrogen storage body and hydrogen is released from the hydrogen storage body. If provided, the gas flow is hindered. In particular, since the inorganic complex-based hydrogen storage body has a lower thermal conductivity than the conventional alloy-based hydrogen storage body, the efficiency of heating the storage body for absorbing and releasing hydrogen is further reduced. Here, the powder-type hydrogen storage body is composed of hydrogen storage alloys such as La—Ni and Ti—Cr—V, metal hydrides such as MgH 2 and AlH 3, alanate materials such as NaAlH 4, lithium-nitrogen or Lithium-boron materials and carbon materials such as graphite and carbon nanotubes can be used, and are not particularly limited. Furthermore, the hydrogen storage body of the inorganic complex-based powder uses a mixed part and a reaction product of an alkali metal or alkaline earth metal metal amide and the metal hydride. The body tends to consolidate, hinders efficient heat transfer, and the hydrogen storage body's original hydrogen storage / release ability cannot be fully exploited.

本発明は、水素吸放出のための貯蔵体の加熱の効率が高く、ガスの流通性を損なうことなく、構造が単純で軽量である水素貯蔵容器および水素貯蔵装置を提供することを目的とする。 It is an object of the present invention to provide a hydrogen storage container and a hydrogen storage device that have high efficiency in heating a storage body for absorbing and releasing hydrogen, and have a simple structure and light weight without impairing gas flowability. .

上記の目的を達成するため、本発明に係る水素貯蔵容器は、水素貯蔵体を流動可能に充填した水素貯蔵容器であって、更に、複数の蓄熱媒体を充填し、前記水素貯蔵体及び前記蓄熱媒体を混合攪拌流動化する攪拌翼と攪拌軸を含む流動化部と、前記水素貯蔵体及び前記蓄熱媒体を加熱する加熱部と、外部と通気可能に装着された水素出入部と、を備えることを特徴とする水素貯蔵容器。 In order to achieve the above object, a hydrogen storage container according to the present invention is a hydrogen storage container filled with a hydrogen storage body so as to be flowable, and further filled with a plurality of heat storage media, and the hydrogen storage body and the heat storage medium. A fluidizing section including a stirring blade and a stirring shaft for mixing and fluidizing the medium, a heating section for heating the hydrogen storage body and the heat storage medium, and a hydrogen inlet / outlet section that is attached to the outside so as to be ventilated. A hydrogen storage container.

更に、本発明に係る水素吸放出装置は、温度制御可能な加熱部により所定温度で、前記流動化部を駆動させながら、水素を吸蔵し、更に、所定温度で、前記水素出入部から水素を放出する水素吸放出装置であり、流動部化の駆動に、前記放出水素の燃焼エネルギーや化学反応エネルギーを用いることを特徴とする。 Furthermore, the hydrogen storage / release device according to the present invention occludes hydrogen while driving the fluidizing section at a predetermined temperature by a temperature-controllable heating section, and further stores hydrogen from the hydrogen inlet / outlet section at a predetermined temperature. A hydrogen absorbing / releasing device that discharges, wherein the combustion energy or chemical reaction energy of the released hydrogen is used to drive the fluidized portion.

本発明の本発明の蓄熱媒体は、通常、カプセル構造を有し、その表面の熱伝導が良く、内部に蓄熱可能である。蓄熱媒体を介して加熱部から水素貯蔵体への熱伝導を向上させることができる。また、容器内に充填された水素貯蔵体及び前記蓄熱媒体を攪拌する攪拌翼と攪拌軸を含む流動化部により、前記貯蔵体を、蓄熱媒体とともに、容器内を循環するため、水素貯蔵体全体を均一に混合することができる。本混合によって、熱伝導は、より効率的となる。水素貯蔵体は、蓄熱媒体が混合媒体の役割を担うため、水素貯蔵体全体に効率よく熱が伝わりやすい。さらに、全体が流動化しているので、固結防止も可能で、固結による水素吸蔵放出反応阻害を防止することができる。また、これにより、高い熱伝導性を維持しつつ水素ガスの通気性を良くすることができる。 The heat storage medium of the present invention of the present invention usually has a capsule structure, has good heat conduction on the surface, and can store heat inside. Heat conduction from the heating unit to the hydrogen storage body can be improved via the heat storage medium. In addition, since the hydrogen storage body filled in the container and the fluidizing unit including the stirring blade and the stirring shaft for stirring the heat storage medium are circulated in the container together with the heat storage medium, the entire hydrogen storage body Can be mixed uniformly. By this mixing, heat conduction becomes more efficient. In the hydrogen storage body, since the heat storage medium plays the role of a mixed medium, heat is easily transmitted efficiently to the entire hydrogen storage body. Furthermore, since the whole is fluidized, it is possible to prevent consolidation, and it is possible to prevent inhibition of hydrogen storage and release reaction due to consolidation. In addition, this makes it possible to improve hydrogen gas permeability while maintaining high thermal conductivity.

また、熱媒管を容器内部全体に通すような内部加熱方式の構成に比べ、簡易な構成とすることができる。また、加熱方法が、熱媒管等を用いる内部加熱ではなく、外部加熱方式を採用することができ、衝撃を受けた場合にも、熱媒管が損傷し、加熱媒体がもれる不都合が生じない。 Moreover, it can be set as a simple structure compared with the structure of the internal heating system which passes a heat-medium pipe | tube through the whole container inside. In addition, the heating method can adopt an external heating method rather than internal heating using a heat medium tube or the like, and even when subjected to an impact, the heat medium tube is damaged and the heating medium leaks. Absent.

また、水素貯蔵容器は、外形を概略円柱、概略多角柱に形成することが好適である。これにより、複数の水素貯蔵容器を並べて集合体にして用いることができ、必要な容量に応じて水素貯蔵装置を作製することができる。また、外形が多角柱であると、水素貯蔵容器をコンパクトに並置することができる。また、ユニットとして量産することにより、製造コストを低くすることができる。 In addition, it is preferable that the hydrogen storage container is formed in a substantially cylindrical shape or a substantially polygonal column. Thereby, a plurality of hydrogen storage containers can be arranged and used as an aggregate, and a hydrogen storage device can be produced according to the required capacity. Moreover, the hydrogen storage container can be juxtaposed compactly when the external shape is a polygonal column. In addition, the production cost can be reduced by mass production as a unit.

また、本発明の水素貯蔵装置は、外部と通気可能に装着された水素出入部を備え、その加熱部の温度制御を行なう温度制御部とを備えることが好ましい。また、水素を流通させる流路を形成する流路形成部を、容器外部に備えている。 Moreover, it is preferable that the hydrogen storage device of the present invention includes a hydrogen inlet / outlet portion that is attached so as to be able to vent from the outside, and a temperature control portion that controls the temperature of the heating portion. Moreover, the flow path formation part which forms the flow path which distribute | circulates hydrogen is provided in the container exterior.

本発明の水素貯蔵容器は、加熱部から熱を効率良く水素貯蔵体に伝達可能で、水素放出反応阻害を防止することができる。 The hydrogen storage container of the present invention can efficiently transfer heat from the heating unit to the hydrogen storage body and can prevent inhibition of hydrogen release reaction.

また、外部加熱方式を採用することができるので、このときは、熱媒管を容器内部全体に通すような内部加熱方式の構成に比べ、簡易な構成とすることができる。また、加熱方法が、熱媒管等を用いた内部加熱方式でも、加熱部を容器内の一部に限定して設けることができ、この部分を堅固にすれば、なんらかの衝撃を受けたときも、加熱媒体がもれる不都合が生じない。 Moreover, since an external heating system can be employ | adopted, it can be set as a simple structure compared with the structure of the internal heating system which passes a heat-medium pipe | tube through the whole container inside at this time. In addition, even if the heating method is an internal heating method using a heat medium pipe or the like, the heating part can be limited to a part in the container, and if this part is solid, even when it receives some impact Inconvenience that the heating medium leaks does not occur.

また、水素貯蔵容器は、外形を概略円柱、概略多角柱に形成されていることが好適である。これにより、複数の水素貯蔵容器を並べて集合体にして用いることができ、必要な容量に応じて水素貯蔵装置を作製することができる。また、外形を概略多角柱とすると、密に充填することができる。また、ユニットとして量産することにより、製造コストを低くすることができる。 Moreover, it is preferable that the hydrogen storage container is formed in a substantially cylindrical shape and a substantially polygonal column in outer shape. Thereby, a plurality of hydrogen storage containers can be arranged and used as an aggregate, and a hydrogen storage device can be produced according to the required capacity. Further, when the outer shape is a substantially polygonal column, it can be filled densely. In addition, the production cost can be reduced by mass production as a unit.

以下、本発明の実施形態を、図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、水素貯蔵容器100の断面図である。水素貯蔵容器100は、蓄熱媒体10を充填容器20内に流動可能に水素貯蔵体30とともに充填し、両者を攪拌する攪拌翼41と攪拌軸42を含む流動化部40を備える横型置きタイプである。攪拌軸42と充填容器40の接する部分は、水素吸蔵圧力や放出圧力でもガス漏れの生じないメカニカルシール機構、ウィルソンシール機構や軸シール機構などを有するものが好ましい。更に、外部と通気可能に装着された水素出入部50と、前記水素貯蔵体30を加熱する加熱部60を備え、その加熱部の温度制御を行なう温度制御部(図示せず)とを備えることが好ましい。また、水素を流通させる流通管51を、フィルター部50からの水素を流通するように充填容器20と連結し水素出入部としている。蓄熱媒体10及び水素貯蔵体30の充填口は、容器蓋21、容器側面に設ける。または、特別に充填口を設けず、容器蓋21の一部をはずした状態で、これらを充填容器に充填しても良い。水素出入部は複数個を設けて、出部と入部に機能を分けて、水素の流路を整えることができる。加熱部60として、充填容器の外部に電熱式のヒータが設けられている。 FIG. 1 is a cross-sectional view of the hydrogen storage container 100. The hydrogen storage container 100 is a horizontal type in which the heat storage medium 10 is filled in the filling container 20 together with the hydrogen storage body 30 so as to be flowable, and includes a fluidizing unit 40 including a stirring blade 41 and a stirring shaft 42 for stirring both. . The part where the stirring shaft 42 and the filling container 40 are in contact with each other preferably has a mechanical seal mechanism, a Wilson seal mechanism, a shaft seal mechanism, or the like that does not cause gas leakage even under hydrogen storage pressure or discharge pressure. Furthermore, a hydrogen inlet / outlet part 50 mounted so as to be able to ventilate to the outside, a heating part 60 for heating the hydrogen storage body 30, and a temperature control part (not shown) for controlling the temperature of the heating part are provided. Is preferred. Further, the flow pipe 51 through which hydrogen is circulated is connected to the filling container 20 so as to circulate hydrogen from the filter section 50, thereby forming a hydrogen inlet / outlet section. Filling ports for the heat storage medium 10 and the hydrogen storage body 30 are provided on the container lid 21 and the container side surface. Alternatively, the filling container may be filled in a state in which a part of the container lid 21 is removed without specially providing a filling port. A plurality of hydrogen inlet / outlet portions can be provided, and the hydrogen flow path can be adjusted by dividing the functions into the outlet portion and the inlet portion. As the heating unit 60, an electrothermal heater is provided outside the filling container.

蓄熱媒体10は、蓄熱材を封入するカプセル構造のもの、或いは、金属製球体であることが好ましい。
(1)形状等
図3にその外形を示す。図3(a)は、コア−シェルカプセル型の蓄熱媒体を示す。外殻(シェル)に蓄熱材が封入されている。図4にその製造工程を模式的に示す。これは、半球状や上部が開いた球状のシェル図4(a)に、コアとなる蓄熱材を充填して(図4(b)に示す。)開口部を封入して(図4(c),図4(d))作製する。この場合、蓄熱材を融点以上の温度で加熱して融液状として充填しても良いし、粉末状、塊状とした物を充填しても良い。この時、コア部の相変化に伴う体積膨張がある場合はこれを吸収できるように、シェルの上部には空間を設けておくことが好ましい。次に、蓄熱材の充填後、シェル部の開いた部分をロウ材や半田などを使用して塞ぐ。カプセルの上部を蓋で閉める場合には、シェルの蓋部と本体部とをロウ材などで接合する。
The heat storage medium 10 is preferably a capsule structure enclosing a heat storage material or a metal sphere.
(1) Shape, etc. FIG. FIG. 3A shows a core-shell capsule type heat storage medium. A heat storage material is enclosed in an outer shell. FIG. 4 schematically shows the manufacturing process. This is because a hemispherical shell or a spherical shell with an open top is filled with a heat storage material as a core (shown in FIG. 4B), and the opening is enclosed (FIG. 4C). ), FIG. 4 (d)). In this case, the heat storage material may be heated at a temperature equal to or higher than the melting point and filled as a molten liquid, or may be filled with a powder or lump. At this time, it is preferable to provide a space in the upper portion of the shell so that the volume expansion accompanying the phase change of the core portion can be absorbed. Next, after the heat storage material is filled, the open portion of the shell portion is closed using a brazing material or solder. When the upper part of the capsule is closed with a lid, the lid portion of the shell and the main body portion are joined with a brazing material or the like.

図3(b)は、薬剤カプセル型の蓄熱媒体を示す。その製造工程の概略を、図5に図示する。工程順を矢印であらわす。シェル形成にパイプを使用し、蓄熱材料をあらかじめ充填する。パイプの切断部分の圧縮、絞り、両側からの引っ張りなどによって、蓄熱材料を封入する。パイプの該当部位の径をあらかじめ細くしておき、コアとなる蓄熱材料を充填しても良い。次に、径を細くした部分を切断し、孔をロウ材や半田などで封止する。 FIG. 3B shows a medicine capsule type heat storage medium. An outline of the manufacturing process is shown in FIG. The process order is indicated by arrows. Pipes are used to form the shell and pre-filled with heat storage material. The heat storage material is sealed by compressing, constricting, or pulling from both sides of the cut part of the pipe. The diameter of the corresponding part of the pipe may be narrowed in advance and filled with a heat storage material serving as a core. Next, the portion with the reduced diameter is cut, and the hole is sealed with a brazing material or solder.

なお、コアおよびシェルの厚さは、適時変えても良い。図3(a)のコアーシェルカプセル型では、例えば、直径5〜50mmの球形で厚さ1〜10mm程度のものが好適に用いられる。図3(b)は、薬剤カプセル型では、直径5〜50mmの円形底面で長さ20〜50mmの概略円柱状のものが好適に用いられる。図3(C)の球状型では、アルミニウムやその合金、銅などの金属球が用いられる。 The thickness of the core and shell may be changed as appropriate. In the core-shell capsule type of FIG. 3A, for example, a spherical shape having a diameter of 5 to 50 mm and a thickness of about 1 to 10 mm is preferably used. In FIG. 3 (b), in the drug capsule type, a roughly cylindrical shape having a circular bottom surface with a diameter of 5 to 50 mm and a length of 20 to 50 mm is preferably used. In the spherical shape of FIG. 3C, a metal sphere such as aluminum, an alloy thereof, or copper is used.

(2)材質等
水素貯蔵体の加熱温度が100℃以下であるか、100℃以上であるかにより、シェルの材質を適時使い分ける。加熱温度が、100℃以下の場合は、合成樹脂製のシェルを用いることが可能である(冷暖房用など)。しかし、例えば、Li-Mg-N-H系水素貯蔵体(150〜200℃加熱)を用いた場合は、100℃以上を必要とするので、合成樹脂は、耐熱性に問題がある。アルミニウム、Al合金、銅などの金属製シェルが耐熱性、熱伝導率の点で好ましい。また、コアに充填する充填材は、低融点合金(融点160〜210℃程度)を用いることが好ましい。例えば、150℃で使用する場合は、Sn-Pb42-Cd18合金(融点160℃)、200℃で使用する場合は、Sn-Ag3.5-Bi0.5-In8合金(融点204℃)を用いることができる。シェル封止に用いる接合材は、アルミニウム・ロウ、アルミニウム用半田、銅ロウなどが好適に用いられる。
(2) The material of the shell, such as material, is used properly according to whether the heating temperature of the hydrogen storage body is 100 ° C or lower or 100 ° C or higher. When the heating temperature is 100 ° C. or lower, it is possible to use a synthetic resin shell (for cooling and heating, etc.). However, for example, when a Li-Mg-NH-based hydrogen storage body (150 to 200 ° C. heating) is used, 100 ° C. or higher is required, so the synthetic resin has a problem in heat resistance. A metal shell such as aluminum, Al alloy, or copper is preferable in terms of heat resistance and thermal conductivity. Moreover, it is preferable to use a low-melting-point alloy (melting point of about 160 to 210 ° C.) as the filling material to fill the core. For example, use Sn-Pb42-Cd18 alloy (melting point 160 ° C) when using at 150 ° C, and Sn-Ag3.5-Bi0.5-In8 alloy (melting point 204 ° C) when using at 200 ° C. Can do. As the bonding material used for shell sealing, aluminum / wax, solder for aluminum, copper brazing or the like is preferably used.

(3)熱伝導率
Li-Mg-N-H系水素貯蔵材料は、熱伝導率が0.2W/mK(水素1MPa中:0.5W/mK)であり、金属アルミニウム:236W/mK、金属銅:390W/mKであり、水素貯蔵材料の熱伝導率はシェルの金属に比べて非常に小さいため、熱交換器からの熱エネルギーを効率良く伝達できない。しかしながら、水素貯蔵体より熱伝導率の良い蓄熱媒体を用いれば、加熱部からの熱エネルギーを熱伝導の良い材料のシェルで一旦吸熱し、コア部の相転移物質(ここでは固体・液体の相転移、水素吸放出温度より高い相転移温度が良い)へ蓄熱させ、流動させながらこの熱を水素貯蔵材料に伝達させることで、水素貯蔵材料全体に効率的に熱エネルギーを伝達させることができる。相転移物質は、例えば、低融点合金(例えば、Sn-Pb42-Cd18合金)である。潜熱が大きいパラフィン系(例えば、炭素数14〜16のもの)などの炭化水素類や無機水和塩(例えば、CaCl2・6H2OやNH4Al(SO4)2・12H2O)などを好適に用いることができる。
(3) Thermal conductivity
The Li-Mg-NH hydrogen storage material has a thermal conductivity of 0.2 W / mK (in 1 MPa of hydrogen: 0.5 W / mK), metal aluminum: 236 W / mK, metal copper: 390 W / mK, and hydrogen storage Since the thermal conductivity of the material is much smaller than that of the shell metal, the heat energy from the heat exchanger cannot be transferred efficiently. However, if a heat storage medium with higher thermal conductivity than the hydrogen storage body is used, the heat energy from the heating part is once absorbed by the shell of the material with good heat conduction, and the phase transition material (here, solid / liquid phase) in the core part. By transferring the heat to the hydrogen storage material while flowing, the heat energy can be efficiently transferred to the entire hydrogen storage material. The phase change material is, for example, a low melting point alloy (for example, Sn—Pb42—Cd18 alloy). Hydrocarbons such as paraffinic compounds having a large latent heat (for example, those having 14 to 16 carbon atoms) and inorganic hydrated salts (for example, CaCl 2 · 6H 2 O and NH 4 Al (SO 4) 2 · 12H 2 O) can be suitably used.

充填容器は、外部から加熱する場合は熱伝導の良い金属製の容器が良く使用圧力および温度により、アルミニウム製やSUS製の容器を適時選択可能である。容器の材料および形状は、水素貯蔵体30に水素を吸蔵させる際の圧力に耐える材料および形状であれば、特に限定はされない。水素放出の際に急激な放出による圧力上昇を伴う場合であっても、容器の強度としては十分であり、安全を確保できる。また、充填容器41は、加熱されることから、使用温度における温度上昇、降下の繰返しにも、変形や変質の少ないものが使用される。金属であれば限定されず、2種以上の合金であってもよい。特に外部加熱方式であるときは、熱伝導の面から検討すると、銅の熱伝導率は403W/mK、アルミニウムの熱伝導率は236W/mKであり、銅およびアルミニウムは、熱伝導率が高い。また、アルミニウムの密度は2.70×10-3kg/m3、マグネシウムの密度は1.74×10-3kg/m3で、アルミニウムおよびマグネシウムは密度が小さい。これらの優れた特性から、特に、銅、アルミニウム、またはマグネシウムを主成分とする金属であっても良い。さらには、銅の密度が8.96×10-3kg/m3と高く、一方、マグネシウムの熱伝導率は157W/mKと低いことから、熱伝導性および密度のバランスを考慮すると、アルミニウムを主成分とする金属であることも好ましい。 When the filling container is heated from the outside, a metal container having good thermal conductivity is often used, and an aluminum or SUS container can be selected as appropriate depending on the use pressure and temperature. The material and shape of the container are not particularly limited as long as the material and shape can withstand the pressure when the hydrogen storage body 30 stores hydrogen. Even in the case of a pressure increase due to abrupt release during hydrogen release, the strength of the container is sufficient and safety can be ensured. In addition, since the filling container 41 is heated, a container with little deformation or alteration is used even when the temperature rises and falls at the operating temperature. It is not limited as long as it is a metal, and two or more kinds of alloys may be used. In particular, in the case of the external heating method, from the viewpoint of heat conduction, the heat conductivity of copper is 403 W / mK, the heat conductivity of aluminum is 236 W / mK, and copper and aluminum have high heat conductivity. Further, the density of aluminum is 2.70 × 10 −3 kg / m 3 , the density of magnesium is 1.74 × 10 −3 kg / m 3 , and aluminum and magnesium are low in density. In view of these excellent characteristics, a metal mainly composed of copper, aluminum, or magnesium may be used. Furthermore, the density of copper is as high as 8.96 × 10 −3 kg / m3, while the thermal conductivity of magnesium is as low as 157 W / mK. Therefore, considering the balance between thermal conductivity and density, aluminum is the main component. A metal as a component is also preferable.

図1に示すとおり、充填容器の形状は、その底面の中心を攪拌軸42が通る円形である円柱形状としている。攪拌翼は、ヘリカル翼、パドル翼、マリンプロペラ翼、タービン翼、アンカー翼等を用いることができる。ヘリカル翼、パドル翼、マリンプロペラ翼は、被攪拌物を一定方向に流動化する機能があり、蓄熱媒体と水素貯蔵体を広範囲に混合し、接触を密にする効果がある。タービン翼、アンカー翼は、被攪拌物を流動化する効果は少ないが、充填容器中に、いわゆる「邪魔板」を備えて混合を促進することができる。いわゆる「連れ回り」を防止するためである。ヘリカル翼、パドル翼、マリンプロペラ翼でも、流路を一部遮断して、乱流をつくることにより、混合を促進できる。なお、水素貯蔵媒体、蓄熱媒体は、混合して、またはそれぞれ単独に、攪拌軸を回転しながら、充填容器内に充填するとスムースに充填できる。 As shown in FIG. 1, the shape of the filling container is a cylindrical shape in which the stirring shaft 42 passes through the center of the bottom surface. As the stirring blade, a helical blade, a paddle blade, a marine propeller blade, a turbine blade, an anchor blade, or the like can be used. Helical blades, paddle blades, and marine propeller blades have a function of fluidizing the object to be stirred in a certain direction, and have an effect of mixing the heat storage medium and the hydrogen storage body over a wide range to close contact. Turbine blades and anchor blades have little effect of fluidizing the material to be stirred, but the filling vessel can be provided with a so-called “baffle plate” to promote mixing. This is to prevent so-called “accompaniment”. Even helical wings, paddle wings, and marine propeller wings can promote mixing by partially blocking the flow path and creating turbulent flow. In addition, the hydrogen storage medium and the heat storage medium can be smoothly filled by mixing or individually filling the filling container while rotating the stirring shaft.

水素出入部は、充填容器の底面又は側面の開口部と、必要に応じて、フィルター50及び流通管51とを備える。150〜200℃と加熱温度が高い場合には、フィルター50には耐熱性が必要とされるので、金属性の焼結フィルターが好適に用いられる。フィルターは、容器外へ水素貯蔵体及び蓄熱媒体が排出されることを防止し、水素ガスである気体のみを通過させる。また、水素吸蔵時の固形物の充填容器中への持ち込みを防止することができる。流通管は、安全弁を取り付けることができる。 The hydrogen inlet / outlet section includes an opening on the bottom surface or side surface of the filling container, and a filter 50 and a flow pipe 51 as necessary. When the heating temperature is as high as 150 to 200 ° C., heat resistance is required for the filter 50, and therefore, a metallic sintered filter is preferably used. The filter prevents the hydrogen storage body and the heat storage medium from being discharged out of the container, and allows only the gas that is hydrogen gas to pass through. Further, it is possible to prevent the solid matter from being brought into the filling container during the hydrogen storage. The flow pipe can be fitted with a safety valve.

加熱部60は、温度制御部(図示せず)が接続される。さらに電源(図示せず)が接続されている。加熱部60には、このように収容器の外側から収容器の外壁を通して水素貯蔵体30を加熱するものだけではなく、容器内にヒータに連結した熱伝導のための固定部材を設け、固定部材を加熱することにより、水素貯蔵体を加熱するものも含む。また、加熱部60は、80℃以上の温度に加熱可能な機能を有しており、300℃まで加熱可能であることが好ましい。効率よく水素の吸蔵および放出を行なうために、使用される水素貯蔵材料の特性に応じて100℃〜300℃の温度に調整される。 The heating unit 60 is connected to a temperature control unit (not shown). Further, a power source (not shown) is connected. The heating unit 60 is provided with not only a member that heats the hydrogen storage body 30 from the outside of the container through the outer wall of the container as described above, but also a fixing member for heat conduction connected to the heater in the container. The thing which heats a hydrogen storage body by heating is also included. The heating unit 60 has a function of heating to a temperature of 80 ° C. or higher, and is preferably capable of heating to 300 ° C. In order to efficiently store and release hydrogen, the temperature is adjusted to 100 ° C. to 300 ° C. according to the characteristics of the hydrogen storage material used.

加熱部60で水素貯蔵体30が加熱された場合には、水素貯蔵体30の水素を吸蔵または放出する機能が活性化するため、速やかに水素の吸蔵・放出を行なうことができる。更に、加熱部30は、充填容器20に装着され、内部の温度測定のための熱電対(図示せず)、熱電対の一般的な温度コントローラを含む温度制御部を備えることができる。 When the hydrogen storage body 30 is heated by the heating unit 60, the function of occluding or releasing hydrogen of the hydrogen storage body 30 is activated, so that hydrogen can be stored and released quickly. Furthermore, the heating unit 30 may be equipped with a temperature control unit that is mounted on the filling container 20 and includes a thermocouple (not shown) for measuring the internal temperature and a general temperature controller of the thermocouple.

次に、図1の水素貯蔵容器100の動作について説明する。水素貯蔵体30及び蓄熱部材10は、流動可能に充填容器20に充填され、容器上部には、空隙部がある。水素ガスを水素貯蔵容器100に貯蔵する場合には、外部に設けられた加熱部60を吸蔵の所定温度に制御し、攪拌軸42を回転させながら攪拌翼41で水素貯蔵体30及び蓄熱部材10を混合攪拌する。水素貯蔵体30及び蓄熱部材10は、その場で混合・攪拌される。十分に水素の吸蔵機能を発揮する温度に維持しておく。加熱部から、容器内壁に近い蓄熱部材及び水素貯蔵体に伝熱される。蓄熱部材に伝えられた熱は、これに接触または近接する水素貯蔵体に更に伝熱する。そして、攪拌・流動化により均一に且つ速やかに容器内全体の水素貯蔵体30に伝えられることとなる。ヘリカル翼、パドル翼、マリンプロペラ翼等の攪拌翼を選定することで、図示する矢印等の方向に容器内循環をさせることも特に好ましい。蓄熱体の蓄熱作用については、既述したとおりである。次いで、流通管に連結されるコンプレッサ(図示せず)により、水素ガスを水素流通管から水素貯蔵容器100内部へ圧送し、水素貯蔵体30に吸蔵させる。一方、水素ガスを水素貯蔵容器100から放出する場合には、まず加熱部60を水素放出の所定温度に制御し、蓄熱部材10を介して水素貯蔵体30を加熱し、十分に水素の放出機能を発揮する温度に維持する。こうして、水素貯蔵体から水素ガスが放出され、ガス流通管51へ水素ガスが送られる。 Next, the operation of the hydrogen storage container 100 of FIG. 1 will be described. The hydrogen storage body 30 and the heat storage member 10 are filled in the filling container 20 so as to be flowable, and there is a void in the upper part of the container. When storing hydrogen gas in the hydrogen storage container 100, the heating unit 60 provided outside is controlled to a predetermined storage temperature, and the hydrogen storage body 30 and the heat storage member 10 are stirred by the stirring blade 41 while rotating the stirring shaft 42. Are mixed and stirred. The hydrogen storage body 30 and the heat storage member 10 are mixed and stirred on the spot. Maintain the temperature sufficiently to exhibit the hydrogen storage function. Heat is transferred from the heating section to the heat storage member and the hydrogen storage body close to the inner wall of the container. The heat transferred to the heat storage member further transfers to the hydrogen storage body in contact with or close to the heat storage member. And it will be transmitted to the hydrogen storage body 30 of the whole container uniformly and rapidly by stirring and fluidization. By selecting a stirring blade such as a helical blade, a paddle blade, or a marine propeller blade, it is particularly preferable to circulate in the container in the direction of the arrow shown in the figure. The heat storage action of the heat storage body is as described above. Next, hydrogen gas is pumped into the hydrogen storage container 100 from the hydrogen circulation pipe by a compressor (not shown) connected to the circulation pipe, and is stored in the hydrogen storage body 30. On the other hand, in the case of releasing hydrogen gas from the hydrogen storage container 100, first, the heating unit 60 is controlled to a predetermined temperature for releasing hydrogen, and the hydrogen storage body 30 is heated via the heat storage member 10 to sufficiently release hydrogen. Maintain the temperature at which Thus, the hydrogen gas is released from the hydrogen storage body, and the hydrogen gas is sent to the gas flow pipe 51.

図2には、竪置タイプの水素貯蔵容器の斜視図を示す。本発明に係る水素貯蔵容器の別の実施形態となる。本タイプでは、回転軸40をほぼ垂直に立てて、容器内上部に空隙を設けた充填をおこない、水素貯蔵体30及び蓄熱部材10を混合しながら、上方へ引き上げるような流動化をおこない、充填容器20の壁に沿った水素貯蔵体30及び蓄熱部材10の流下をおこなうとより効率的な循環と熱交換を実現できる。 FIG. 2 is a perspective view of a stationary hydrogen storage container. It becomes another embodiment of the hydrogen storage container which concerns on this invention. In this type, the rotary shaft 40 is set up almost vertically, and filling is performed by providing a gap in the upper part of the container, and fluidization is performed such that the hydrogen storage body 30 and the heat storage member 10 are pulled upward while mixing. When the hydrogen storage body 30 and the heat storage member 10 flow along the wall of the container 20, more efficient circulation and heat exchange can be realized.

更に、水素貯蔵容器を水素エンジン又は燃料電池を用いた自動車等の移動体に搭載した場合には、前述の通り、温度制御可能な前記加熱部により所定温度で、前記流動化部を駆動させながら、水素を吸蔵し、更に、所定温度で、前記水素出入部から水素を放出する水素吸放出装置であり、流動部の駆動に、移動体からの駆動エネルギーを用いる。例えば図6に示すように、自動車の車輪軸からの回転力を一部取り出し、流動部の攪拌軸を駆動することができる。こうして、前記水素燃焼エネルギー又は、水素と酸素との電極での化学反応による電気エネルギーを用いることを特徴とする水素吸放出装置を実現することができる。このように、水素貯蔵容器を搭載する移動体は、燃料電池自動車に限られず水素エンジン自動車であってもよく、移動体には、自動車、バイク等の車両、船および飛行機も含まれる。 Further, when the hydrogen storage container is mounted on a moving body such as an automobile using a hydrogen engine or a fuel cell, as described above, while the fluidizing unit is driven at a predetermined temperature by the heating unit capable of temperature control. A hydrogen storage / release device that stores hydrogen and further releases hydrogen from the hydrogen inlet / outlet portion at a predetermined temperature, and uses driving energy from a moving body to drive the fluidized portion. For example, as shown in FIG. 6, a part of the rotational force from the wheel shaft of the automobile can be taken out to drive the stirring shaft of the fluidized part. Thus, it is possible to realize a hydrogen absorption / release device characterized by using the hydrogen combustion energy or the electric energy generated by a chemical reaction at the electrode of hydrogen and oxygen. Thus, the mobile body on which the hydrogen storage container is mounted is not limited to a fuel cell vehicle, and may be a hydrogen engine vehicle. The mobile body includes vehicles such as automobiles and motorcycles, ships, and airplanes.

なお、水素貯蔵容器100を燃料電池自動車などに搭載される水素供給装置、定置式燃料電池用のバッファータンクや水素ステーションの貯蔵容器システムにも利用することができ、今後期待される水素エネルギー社会における水素貯蔵装置全般に、応用することができる。 The hydrogen storage container 100 can also be used in hydrogen supply devices mounted on fuel cell vehicles, buffer tanks for stationary fuel cells, and storage container systems for hydrogen stations. It can be applied to all hydrogen storage devices.

本発明に係る水素貯蔵容器の実施形態を示す断面図である。It is sectional drawing which shows embodiment of the hydrogen storage container which concerns on this invention. 本発明に係る水素貯蔵容器の別の実施形態を示す斜視図である。It is a perspective view which shows another embodiment of the hydrogen storage container which concerns on this invention. 3種の蓄熱媒体の模式図。The schematic diagram of 3 types of thermal storage media. コア−シェルカプセル型蓄熱媒体の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of a core-shell capsule type | formula thermal storage medium. 薬剤カプセル型蓄熱媒体の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of a medicine capsule type heat storage medium. 本発明に係る水素吸放出装置の実施形態を示す模式図である。It is a schematic diagram which shows embodiment of the hydrogen absorption / release apparatus which concerns on this invention.

符号の説明Explanation of symbols

100,110;水素貯蔵容器
120;水素吸放出装置
200;移動体
210;駆動部
220;燃料電池
10;蓄熱媒体
20;充填容器
21;容器蓋
30;水素貯蔵体
40;攪拌軸
41;攪拌翼
50;フィルター
51;水素流通管
60;加熱部
70;軸受部(メカニカルシール)
100, 110; hydrogen storage container
120; Hydrogen absorption and desorption equipment
200; mobile
210; Drive unit
220; Fuel cell
10; Thermal storage medium
20; Filling container
21; Container lid
30; Hydrogen storage
40; stirring shaft
41; stirring blade
50; filter
51; Hydrogen distribution pipe
60; heating unit
70; Bearing (mechanical seal)

Claims (2)

水素貯蔵体を流動可能に充填した水素貯蔵容器であって、
更に、複数の蓄熱媒体を充填し、
前記水素貯蔵体及び前記蓄熱媒体を混合攪拌流動化する攪拌翼と攪拌軸を含む流動化部と、
前記水素貯蔵体及び前記蓄熱媒体を加熱する加熱部と、
外部と通気可能に装着された水素出入部と、
を備えることを特徴とする水素貯蔵容器。
A hydrogen storage container filled with a flowable hydrogen storage body,
Furthermore, it is filled with a plurality of heat storage media,
A fluidizing section including a stirring blade and a stirring shaft for mixing and fluidizing the hydrogen storage body and the heat storage medium;
A heating unit for heating the hydrogen storage body and the heat storage medium;
A hydrogen inlet / outlet part that is externally ventilated,
A hydrogen storage container comprising:
温度制御可能な前記加熱部により所定温度で、前記流動化部を駆動させながら、水素を吸蔵し、更に、所定温度で、前記水素出入部から水素を放出する水素吸放出装置であり、流動部化の駆動に、前記放出水素の燃焼エネルギーや化学反応エネルギーを用いることを特徴とする水素吸放出装置。 A hydrogen absorption / desorption device that occludes hydrogen while driving the fluidizing unit at a predetermined temperature by the heating unit capable of temperature control, and further releases hydrogen from the hydrogen inlet / outlet unit at a predetermined temperature. A hydrogen absorption / release apparatus characterized by using combustion energy or chemical reaction energy of the released hydrogen to drive the conversion.
JP2006147724A 2006-05-29 2006-05-29 Hydrogen storage vessel and hydrogen absorption and desorption device Pending JP2007315546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006147724A JP2007315546A (en) 2006-05-29 2006-05-29 Hydrogen storage vessel and hydrogen absorption and desorption device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006147724A JP2007315546A (en) 2006-05-29 2006-05-29 Hydrogen storage vessel and hydrogen absorption and desorption device

Publications (1)

Publication Number Publication Date
JP2007315546A true JP2007315546A (en) 2007-12-06

Family

ID=38849585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147724A Pending JP2007315546A (en) 2006-05-29 2006-05-29 Hydrogen storage vessel and hydrogen absorption and desorption device

Country Status (1)

Country Link
JP (1) JP2007315546A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009016475B4 (en) * 2008-04-01 2012-02-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Hydrogen delivery system and method of providing hydrogen
JP2013505405A (en) * 2009-09-17 2013-02-14 マクフィー エナジー Tanks for storing and removing hydrogen and / or heat
CN104100834A (en) * 2013-04-03 2014-10-15 北京浩运金能科技有限公司 Metal hydride hydrogen-storage device for fast hydrogen absorption and desorption
TWI507354B (en) * 2009-12-10 2015-11-11 Ind Tech Res Inst The methods for generating steady hydrogen flow from solid hydrogen fuel and using the same
CN109519694A (en) * 2017-09-20 2019-03-26 神华集团有限责任公司 The method of hydrogen-storing device and hydrogen filling

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009016475B4 (en) * 2008-04-01 2012-02-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Hydrogen delivery system and method of providing hydrogen
JP2013505405A (en) * 2009-09-17 2013-02-14 マクフィー エナジー Tanks for storing and removing hydrogen and / or heat
TWI507354B (en) * 2009-12-10 2015-11-11 Ind Tech Res Inst The methods for generating steady hydrogen flow from solid hydrogen fuel and using the same
CN104100834A (en) * 2013-04-03 2014-10-15 北京浩运金能科技有限公司 Metal hydride hydrogen-storage device for fast hydrogen absorption and desorption
CN109519694A (en) * 2017-09-20 2019-03-26 神华集团有限责任公司 The method of hydrogen-storing device and hydrogen filling

Similar Documents

Publication Publication Date Title
Nguyen et al. Review of metal hydride hydrogen storage thermal management for use in the fuel cell systems
US7712605B2 (en) Gas storage container with gas absorbing or adsorbing material
JP4914918B2 (en) Hydrogen reservoir and method for filling hydrogen reservoir
US7124790B2 (en) System and method for storing and discharging hydrogen
US7225860B2 (en) Compact heat battery
EP0015106B1 (en) Absorption-desorption system
JP2004108570A (en) Hydrogen storage container
JP2009144901A (en) Hydrogen storage system for fuel cell powered vehicle
JP5840591B2 (en) Hydrogen storage / release device
JP2007315546A (en) Hydrogen storage vessel and hydrogen absorption and desorption device
KR20120104182A (en) Tank for storing and withdrawing hydrogen and/or heat
CA2775255A1 (en) Heat transfer system utilizing thermal energy storage materials
CA2406655A1 (en) Tank for the reversible storage of hydrogen
JP2007327534A (en) Hydrogen storage container and hydrogen occlusion/release device
WO2021014134A2 (en) Hydrogen storage device
US20220349527A1 (en) Hydrogen storage device
JP2009092148A (en) Hydrogen storage device and method for filling hydrogen storage material
WO2021014135A2 (en) Hydrogen storage device
GB2582607A (en) Power supply
JP5061529B2 (en) High pressure hydrogen storage container
KR20170104254A (en) Hydrogen storage device
JP4953194B2 (en) Hydrogen storage tank
KR20210074895A (en) System for strong solid state hydrogen
JP2002295798A (en) Hydrogen transport vessel
JP2008151281A (en) Gas storage container