JP2000111193A - Hydrogen occlusion alloy heat exchanger - Google Patents

Hydrogen occlusion alloy heat exchanger

Info

Publication number
JP2000111193A
JP2000111193A JP10284563A JP28456398A JP2000111193A JP 2000111193 A JP2000111193 A JP 2000111193A JP 10284563 A JP10284563 A JP 10284563A JP 28456398 A JP28456398 A JP 28456398A JP 2000111193 A JP2000111193 A JP 2000111193A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
hydrogen
heat exchanger
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10284563A
Other languages
Japanese (ja)
Inventor
Seijiro Suda
精二郎 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUISO ENERGY KENKYUSHO KK
Original Assignee
SUISO ENERGY KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUISO ENERGY KENKYUSHO KK filed Critical SUISO ENERGY KENKYUSHO KK
Priority to JP10284563A priority Critical patent/JP2000111193A/en
Publication of JP2000111193A publication Critical patent/JP2000111193A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure high heat transfer performance while reducing the weight and size by laminating a plurality of corrugated plates orthogonally, obliquely or in parallel each other through flat plates thereby forming a section to be filled with a hydrogen occlusion alloy and a channel for heat exchanging medium. SOLUTION: A heat exchanging section comprises channels for heat exchanging medium 1, 1', 1", and sections to be filled with a hydrogen occlusion alloy 2, 2'. Corrugated plates 3, 3', 3" forming the channels for heat exchanging medium are arranged orthogonally to the corrugated plates 4, 4' forming the sections to be filled with a hydrogen occlusion alloy and they are laminated through flat plates 5, 5', 5", 5"'. The corrugated plates 3, 3" on the uppermost and lowermost stages form the channels 1, 1" for heat exchanging medium, respectively, by arranging flat plates 6, 6' oppositely to the side touching the flat plates 5, 5"'. Each corrugated plate and each flat plate are jointed integrally by welding, or the like. The arrow indicates the flowing direction of heat exchanging medium. According to the structure, high heat transfer performance can be ensured while reducing the weight and size and facilitating manufacture.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金を利
用するための効率的な熱交換器に関するものであり、特
にヒートポンプ、蓄熱、水素自動車、燃料電池など効率
的な熱交換を必要とする分野において使用するのに好適
なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an efficient heat exchanger for utilizing a hydrogen storage alloy, and particularly requires an efficient heat exchange such as a heat pump, heat storage, a hydrogen vehicle, and a fuel cell. It is suitable for use in the field.

【0002】[0002]

【従来の技術】水素吸蔵合金は、水素の貯蔵や輸送、ヒ
ートポンプ、蓄熱、水素の精製分離、炭化水素製造など
広い応用分野を有しており、その利用に必要な容器や熱
交換器についてこれまで多くの提案がなされてきた。
2. Description of the Related Art Hydrogen storage alloys have a wide range of applications such as storage and transport of hydrogen, heat pumps, heat storage, purification and separation of hydrogen, and production of hydrocarbons. Many suggestions have been made.

【0003】この中で熱交換器については、水素吸蔵合
金を円筒形の耐圧管に充填し、管の外側に冷却媒体や加
熱媒体を通す形式のものと、円筒形の管の外側に合金を
充填し管内に冷却媒体や加熱媒体を通す形式のものが知
られており、冷却媒体と加熱媒体とを一定時間ごとに切
り替えて水素の吸蔵と放出を行っている。
Among the heat exchangers, a hydrogen storage alloy is filled in a cylindrical pressure-resistant tube, and a cooling medium or a heating medium is passed through the outside of the tube. A type in which a cooling medium or a heating medium is filled and a cooling medium or a heating medium is passed through a pipe is known, and the storage medium is switched between the cooling medium and the heating medium at regular time intervals to store and release hydrogen.

【0004】ところで、管内充填型のものは、伝熱効率
の点に問題があるため、熱交換媒体の伝熱性能を向上さ
せる目的で管の外側に伝熱フィンやバッフルを付設した
り、管内の水素吸蔵合金充填層内に伝熱フィンを付設し
たり、あるいは金属スポンジや金属メッシュのような伝
熱促進部材を配置するなどの工夫が施されている。
[0004] Incidentally, since the tube-filled type has a problem in heat transfer efficiency, a heat transfer fin or a baffle is provided outside the tube to improve the heat transfer performance of the heat exchange medium, or the inside of the tube is not provided. A heat transfer fin is provided in the hydrogen storage alloy filling layer, or a heat transfer promoting member such as a metal sponge or a metal mesh is arranged.

【0005】他方、一般の円筒型水素吸蔵合金熱交換器
において、熱伝達をよくするには水素吸蔵合金層の厚み
を薄くする必要があるが、このようにすると管径が小さ
くなるため管1本当りの充填量が少なくなり、それを補
うために管数を増加しなければならず、必然的に重量が
大きくなるのを免れない。また、伝熱フィンを付設する
場合も、強度を確保するためにその厚みをある程度まで
厚くする必要があり、軽量化に限界を生じるし、金属ス
ポンジや金属メッシュのような伝熱促進部材を配置する
場合も、軽量かつ安価で伝熱性能のよい材料の入手が困
難な上に、これらの部材と管壁との密着性を高くするこ
とがむずかしく、実用上多くの問題がある。
[0005] On the other hand, in a general cylindrical hydrogen storage alloy heat exchanger, it is necessary to reduce the thickness of the hydrogen storage alloy layer in order to improve the heat transfer. The amount of filling per bottle is reduced, and the number of tubes must be increased to compensate for this, which inevitably increases the weight. Also, when attaching heat transfer fins, it is necessary to increase the thickness to a certain extent in order to secure strength, which limits the weight reduction, and arranges heat transfer promotion members such as metal sponge and metal mesh. In such a case, it is difficult to obtain a lightweight, inexpensive material having good heat transfer performance, and it is difficult to increase the adhesion between these members and the tube wall, and thus there are many practical problems.

【0006】さらに、水素の吸蔵や放出を交互に行わせ
るには、管外容器に冷却媒体又は加熱媒体を交互に切り
替えて供給しなければならないが、従来の円筒型熱交換
器では胴側を小さくすることが構造上困難なため、流速
が低下し、伝熱係数を大きくすることができない。これ
を改善するためにバッフルを設けることも試みられてい
るが、このようにするとバッフル自体にとられる顕熱が
大きくなり、熱効率の低下をきたす。
Further, in order to alternately store and release hydrogen, it is necessary to alternately supply a cooling medium or a heating medium to the outer vessel. However, in the conventional cylindrical heat exchanger, the body side is changed. Since it is structurally difficult to reduce the flow rate, the flow velocity decreases and the heat transfer coefficient cannot be increased. Attempts have been made to provide a baffle to improve this, but in this case, the sensible heat taken by the baffle itself increases, resulting in a decrease in thermal efficiency.

【0007】さらに、この円筒型熱交換器では胴側の滞
留容積が大きいため、冷却媒体と加熱媒体の切り替え又
は交換に長時間を要し、冷却媒体と加熱媒体の混合によ
る顕熱損失が大きいという欠点もあった。これらの理由
により、円筒型熱交換器は、その構造上、伝熱性能を向
上させるには軽量化を犠牲にしなければならず、その利
用範囲が制限されるのを免れなかった。
Further, since the cylindrical heat exchanger has a large residence volume on the shell side, it takes a long time to switch or exchange the cooling medium and the heating medium, and a large sensible heat loss is caused by mixing the cooling medium and the heating medium. There was also a disadvantage. For these reasons, in order to improve the heat transfer performance, the cylindrical heat exchanger had to sacrifice weight reduction, and the use range of the heat exchanger was inevitably limited.

【0008】[0008]

【発明が解決しようとする課題】本発明は、従来の円筒
型水素吸蔵合金熱交換器のもつ欠点を克服し、高い伝熱
性能を示すとともに軽量小型化が可能な構造をもつ熱交
換器を提供することを目的としてなされたものである。
SUMMARY OF THE INVENTION The present invention overcomes the drawbacks of the conventional cylindrical hydrogen storage alloy heat exchanger and provides a heat exchanger having a high heat transfer performance and a structure capable of reducing the size and weight. It was made for the purpose of providing.

【0009】[0009]

【課題を解決するための手段】本発明者らは、水素吸蔵
合金を利用するための熱交換器について種々研究を重ね
た結果、波形板と平板とからなるユニットを隣接ユニッ
トの波形板が相互に直交するか、斜交するか又は平行に
なる状態で重ね合わせた構造とし、同一波形方向のユニ
ットに水素吸蔵合金を充填し、それと直交、斜交又は平
行する方向のユニットを媒体通路に構成することによ
り、伝熱効率を向上させるとともに、軽量化しうること
を見出し、この知見に基づいて本発明をなすに至った。
Means for Solving the Problems The present inventors have conducted various studies on a heat exchanger for utilizing a hydrogen storage alloy. A structure in which hydrogen storage alloy is filled in units having the same waveform direction, and a unit in a direction perpendicular, oblique or parallel to the medium passage is formed. As a result, it has been found that the heat transfer efficiency can be improved and the weight can be reduced, and the present invention has been made based on this finding.

【0010】すなわち、本発明は、複数の波形板を隣接
波形板が相互に直交、斜交又は平行するように、平板を
介して重ね合わせることにより形成された、水素吸蔵合
金充填部及びそれに隣接し直交、斜交又は平行する熱交
換媒体流路と、水素吸蔵合金充填部にそれぞれフィルタ
ー板を介して連結する水素ガス導入口及び排出口と、熱
交換媒体流路に連結する熱交換媒体導入口及び排出口
と、前記水素吸蔵合金充填部に充填された水素吸蔵合金
とから構成されたことを特徴とする水素吸蔵合金熱交換
器を提供するものである。
That is, the present invention relates to a hydrogen storage alloy filled portion formed by laminating a plurality of corrugated plates via a flat plate such that adjacent corrugated plates are orthogonal, oblique or parallel to each other, and a portion adjacent to the hydrogen storage alloy filled portion. And an orthogonal, oblique or parallel heat exchange medium flow path, a hydrogen gas inlet and an exhaust port connected to the hydrogen storage alloy filling portion via a filter plate, respectively, and a heat exchange medium introduction connected to the heat exchange medium flow path An object of the present invention is to provide a hydrogen storage alloy heat exchanger, comprising: a port, a discharge port, and a hydrogen storage alloy filled in the hydrogen storage alloy filling section.

【0011】[0011]

【発明の実施の形態】次に、添付図面に従って、本発明
熱交換器の好適な実施態様を説明する。図1は、本発明
熱交換器の直交型要部を説明するための斜視図であっ
て、熱交換部分は、熱交換媒体流路1,1′,1″と、
水素吸蔵合金充填部2,2′とから構成されている。熱
交換媒体流路を形成する波形板3,3′,3″と水素吸
蔵合金充填部を形成する波形板4,4′とは、相互に直
交するように配置され、平板5,5′,5″,5″′を
介して重ね合わされており、最上段及び最下段の波形板
3,3″は、平板5及び5″′と接している反対側に、
平板6,6′が配置されることによって熱交換媒体流路
1,1″がそれぞれ形成されている。各波形板と各平板
とは、溶着等により一体的に接合されている。なお、図
中の矢印は、熱交換媒体の流れ方向を示したものであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a preferred embodiment of the heat exchanger of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a perspective view for explaining a main part of an orthogonal type of a heat exchanger of the present invention, wherein a heat exchange part includes heat exchange medium flow paths 1, 1 ', and 1 ".
And a hydrogen storage alloy filling section 2, 2 '. The corrugated plates 3, 3 ', 3 "forming the heat exchange medium flow path and the corrugated plates 4, 4' forming the hydrogen storage alloy filling portion are arranged so as to be orthogonal to each other, and the flat plates 5, 5 ', 5 ", 5"", and the uppermost and lowermost corrugated plates 3, 3" are placed on opposite sides of the flat plates 5 and 5 "".
The heat exchange medium channels 1, 1 "are respectively formed by disposing the flat plates 6, 6 '. Each corrugated plate and each flat plate are integrally joined by welding or the like. Arrows in the middle indicate the flow direction of the heat exchange medium.

【0012】また、図2は、図1の熱交換部を組み込ん
だ本発明熱交換器の1例を示す斜視図であって、この例
においては、4個の熱交換媒体流路と3個の水素吸蔵合
金充填部を有しており、熱交換媒体流路両末端には、そ
れぞれ熱交換媒体導入口7と熱交換媒体排出口8(図示
せず)を付設した側板9,9′が配設され、水素吸蔵合
金充填部両末端にはそれぞれフィルター板10,10′
を介して、水素導入口11(図示せず)、水素排出口1
2を付設した側板13,13′が配設されている。
FIG. 2 is a perspective view showing an example of the heat exchanger of the present invention in which the heat exchange section of FIG. 1 is incorporated. In this example, four heat exchange medium channels and three Side plates 9 and 9 ′ provided with a heat exchange medium inlet 7 and a heat exchange medium outlet 8 (not shown) at both ends of the heat exchange medium flow path, respectively. Filter plates 10 and 10 'are provided at both ends of the hydrogen storage alloy filling portion, respectively.
Through a hydrogen inlet 11 (not shown) and a hydrogen outlet 1
2 are provided with side plates 13, 13 '.

【0013】本発明熱交換体の材質としては、強度及び
耐食性を重視する場合には、ステンレス鋼が、また軽量
化を重視する場合には、アルミニウム又はアルミニウム
合金が好ましいが、所望により他の材質を用いることも
できる。また、本発明熱交換器における水素吸蔵合金充
填部と熱交換媒体流路の数には、特に制限はなく、使用
目的に応じ適宜増減することができる。次に、前記の水
素吸蔵合金充填部両末端に当接するフィルター板9,
9′は、水素吸蔵合金粉末の飛散を抑制しうるものであ
ればよく、特に制限はないが綿状フィルターが好適であ
る。
The material of the heat exchanger of the present invention is preferably stainless steel when strength and corrosion resistance are important, and aluminum or aluminum alloy when weight saving is important. Can also be used. Further, the numbers of the hydrogen storage alloy filling portion and the heat exchange medium flow path in the heat exchanger of the present invention are not particularly limited, and can be appropriately increased or decreased according to the purpose of use. Next, the filter plates 9, which are in contact with both ends of the hydrogen storage alloy filling section,
9 'may be any as long as it can suppress scattering of the hydrogen storage alloy powder, and is not particularly limited, but a cotton filter is suitable.

【0014】本発明熱交換器においては、水素吸蔵合金
充填部2,2′…に、水素吸蔵合金が充填されている
が、この水素吸蔵合金の種類、形状、粒度などについて
は、特に制限はなく、使用目的に応じ適宜選択して用い
ることができる。しかしながら、初期活性化時の耐圧構
造の簡素化と、長期間にわたって安定して使用しうると
いう点でフッ化処理したものを用いるのが有利である。
本発明装置により熱交換するには、水素吸蔵合金充填部
に水素ガスを通し、水素吸収により発生する熱を、隣接
熱交換媒体流路を通る媒体により吸収させて、回収す
る。次いで、水素吸蔵合金が水素を吸蔵し終ったなら
ば、隣接熱交換媒体流路に加熱媒体を通し、水素吸蔵合
金を加熱して水素を発生させ、これを回収する。このよ
うな動作を繰り返すことにより、目的に応じ媒体の冷
却,加熱又は水素の吸着,脱着を行うことができる。な
お、水素吸蔵合金充填部と熱交換媒体流路とを平行に設
けた場合には、水素ガス流と熱交換媒体とが向流するよ
うに動作させるのが有利である。
In the heat exchanger of the present invention, the hydrogen storage alloy filling portions 2, 2 ',... Are filled with the hydrogen storage alloy. The type, shape, grain size, etc. of the hydrogen storage alloy are not particularly limited. Instead, they can be appropriately selected and used according to the purpose of use. However, it is advantageous to use a fluorinated one in terms of simplification of the pressure resistance structure at the time of initial activation and stable use over a long period of time.
In order to exchange heat with the apparatus of the present invention, hydrogen gas is passed through the hydrogen storage alloy filling portion, and heat generated by hydrogen absorption is absorbed and recovered by the medium passing through the adjacent heat exchange medium flow path. Next, when the hydrogen storage alloy has finished storing hydrogen, a heating medium is passed through the adjacent heat exchange medium flow path to heat the hydrogen storage alloy to generate hydrogen, which is recovered. By repeating such an operation, cooling and heating of the medium or adsorption and desorption of hydrogen can be performed according to the purpose. When the hydrogen storage alloy filling section and the heat exchange medium flow path are provided in parallel, it is advantageous to operate the hydrogen gas flow and the heat exchange medium in countercurrent.

【0015】本発明熱交換器においては、各水素吸蔵合
金充填部にそれぞれ特性の異なる水素吸蔵合金を充填
し、かつその隣接した熱交換媒体流路に異なる温度の熱
交換媒体を通すことによってヒートポンプのような2種
類以上の金属水素化物間を水素が移動するシステムで配
管による複雑な連結を省くことができる。また、水素吸
蔵合金側の圧力変動を計測し、水素圧に追従して熱交換
媒体側の圧力を水素圧と同じになるように強制的に制御
すれば、平板に負加される圧力を軽減しうるので、平板
の厚さを薄くし軽量化することができるという利点もあ
る。
In the heat exchanger of the present invention, each of the hydrogen storage alloy filling portions is filled with a hydrogen storage alloy having a different characteristic, and a heat exchange medium having a different temperature is passed through a heat exchange medium flow path adjacent to the heat storage medium. In such a system in which hydrogen moves between two or more types of metal hydrides, complicated connection by piping can be omitted. Also, by measuring the pressure fluctuation on the hydrogen storage alloy side and forcibly controlling the pressure on the heat exchange medium side to be the same as the hydrogen pressure following the hydrogen pressure, the pressure applied to the flat plate can be reduced. Therefore, there is an advantage that the thickness of the flat plate can be reduced to reduce the weight.

【0016】[0016]

【実施例】次に実施例により本発明をさらに詳細に説明
する。
Next, the present invention will be described in more detail by way of examples.

【0017】実施例 図2に示す構造の水素吸蔵合金熱交換器において、水素
吸蔵合金側の高さ30mm、肉厚0.5mm、ピッチ5
mm、熱交換媒体側の高さ5mm、肉厚0.5mm、ピ
ッチ5mmの波形板を用い、最外部に熱交換媒体通路を
もち、その内側に水素吸蔵合金充填部を設け、水素吸蔵
合金充填部の間にさらに熱交換媒体通路を設けた5段積
層構造を形成した。このものの材質は全てアルミニウム
製であり、外部寸法高さは90mm、幅150mm、長
さ200mmであった。設計条件は、耐圧10気圧、常
用温度100℃以下とし、合金充填部にランタン−ニッ
ケル−アルミニウム系のフッ化処理した水素吸蔵合金を
7kg充填して、以下の実験を行った。25℃の冷却水
を流しながら7気圧の水素を加圧し、初期活性化を行っ
た結果、水素導入後1分間で水素とフッ化処理した水素
吸蔵合金の反応が開始し、10分で完全に吸蔵が完了し
た。その後、80℃の温水を流して水素を放出し、25
℃の冷却水を流して水素の吸蔵を行った結果を表1及び
表2に示す。
EXAMPLE In the hydrogen storage alloy heat exchanger having the structure shown in FIG. 2, the height of the hydrogen storage alloy side was 30 mm, the wall thickness was 0.5 mm, and the pitch was 5 mm.
mm, a height of 5 mm on the heat exchange medium side, a thickness of 0.5 mm, a pitch of 5 mm, a corrugated plate having a heat exchange medium passage on the outermost side, and a hydrogen storage alloy filling portion provided inside the heat exchange medium passage. A five-stage laminated structure in which a heat exchange medium passage was further provided between the portions was formed. The material was all made of aluminum, the external dimensions were 90 mm in height, 150 mm in width, and 200 mm in length. The design conditions were a pressure resistance of 10 atm, a normal temperature of 100 ° C. or less, and a lanthanum-nickel-aluminum-based fluorinated hydrogen storage alloy of 7 kg was charged into the alloy filling portion, and the following experiment was performed. As a result of initial activation by pressurizing hydrogen at 7 atm while flowing cooling water at 25 ° C, the reaction between hydrogen and the fluorinated hydrogen storage alloy started 1 minute after the introduction of hydrogen, and completely completed in 10 minutes. The occlusion was completed. After that, hot water of 80 ° C. is flowed to release hydrogen, and 25
Tables 1 and 2 show the results of occlusion of hydrogen by flowing cooling water at ° C.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】本発明の熱交換器は、高い伝熱性能を示
すとともに軽量小型化が可能であり、しかも容易に製作
しうるという利点がある。また、ヒートポンプのように
異種の水素吸蔵合金間を水素が移動する装置に用いる場
合、充填部に特性の異なる水素吸蔵合金を充填すること
によって吸熱部と発熱部を一体化して、構造を簡略化し
うる利点もある。
The heat exchanger of the present invention has the advantages that it exhibits high heat transfer performance, can be reduced in weight and size, and can be easily manufactured. In addition, when used in a device that transfers hydrogen between different types of hydrogen storage alloys, such as a heat pump, the heat absorption part and the heat generation part are integrated by filling the filling part with hydrogen storage alloys with different characteristics, simplifying the structure. There are also advantages.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明熱交換器の要部の斜視図。FIG. 1 is a perspective view of a main part of a heat exchanger of the present invention.

【図2】 本発明熱交換器の1例の斜視図。FIG. 2 is a perspective view of an example of the heat exchanger of the present invention.

【符号の説明】[Explanation of symbols]

1,1′,1″ 熱交換媒体流路 2,2′ 水素吸蔵合金充填部 3,3′,3″,4,4′ 波形板 5,5′,5″,5″′,6,6″ 平板 7 熱交換媒体導入口 8 熱交換媒体排出口 9,9′,13,13′ 側板 10,10′ フィルター板 11 水素導入口 12 水素排出口 1, 1 ', 1 "heat exchange medium flow path 2, 2' hydrogen storage alloy filling part 3, 3 ', 3", 4, 4' corrugated plate 5, 5 ', 5 ", 5"', 6, 6 ″ Flat plate 7 Heat exchange medium inlet 8 Heat exchange medium outlet 9, 9 ′, 13, 13 ′ Side plate 10, 10 ′ Filter plate 11 Hydrogen inlet 12 Hydrogen outlet

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数の波形板を隣接波形板が相互に直
交、斜交又は平行するように、平板を介して重ね合わせ
ることにより形成された、水素吸蔵合金充填部及びそれ
に隣接し直交、斜交又は平行する熱交換媒体流路と、水
素吸蔵合金充填部にそれぞれフィルター板を介して連結
する水素ガス導入口及び排出口と、熱交換媒体流路に連
結する熱交換媒体導入口及び排出口と、前記水素吸蔵合
金充填部に充填された水素吸蔵合金とから構成されたこ
とを特徴とする水素吸蔵合金熱交換器。
1. A hydrogen-absorbing alloy-filled portion formed by laminating a plurality of corrugated plates via a flat plate such that adjacent corrugated plates are perpendicular to each other, obliquely or parallel to each other, and a plurality of corrugated plates adjacent to the hydrogen-absorbing alloy. Crossed or parallel heat exchange medium channels, hydrogen gas inlets and outlets connected to the hydrogen storage alloy filling section through filter plates, respectively, and heat exchange medium inlets and outlets connected to the heat exchange medium channels. And a hydrogen storage alloy filled in the hydrogen storage alloy filling section.
【請求項2】 水素吸蔵合金充填部を形成する波形板に
開孔部を設けた請求項1記載の水素吸蔵合金熱交換器。
2. The hydrogen storage alloy heat exchanger according to claim 1, wherein an opening is provided in the corrugated plate forming the hydrogen storage alloy filling portion.
【請求項3】 複数の水素吸蔵合金充填部にそれぞれ異
なった水素吸蔵合金が充填された請求項1又は2記載の
水素吸蔵合金熱交換器。
3. The hydrogen storage alloy heat exchanger according to claim 1, wherein a plurality of different hydrogen storage alloy filling portions are filled with different hydrogen storage alloys.
【請求項4】 水素吸蔵合金がフッ化処理した水素吸蔵
合金である請求項1、2又は3記載の水素吸蔵合金熱交
換器。
4. The hydrogen storage alloy heat exchanger according to claim 1, wherein the hydrogen storage alloy is a fluorinated hydrogen storage alloy.
JP10284563A 1998-10-06 1998-10-06 Hydrogen occlusion alloy heat exchanger Pending JP2000111193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10284563A JP2000111193A (en) 1998-10-06 1998-10-06 Hydrogen occlusion alloy heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10284563A JP2000111193A (en) 1998-10-06 1998-10-06 Hydrogen occlusion alloy heat exchanger

Publications (1)

Publication Number Publication Date
JP2000111193A true JP2000111193A (en) 2000-04-18

Family

ID=17680090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10284563A Pending JP2000111193A (en) 1998-10-06 1998-10-06 Hydrogen occlusion alloy heat exchanger

Country Status (1)

Country Link
JP (1) JP2000111193A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036216A1 (en) * 2001-10-25 2003-05-01 Showa Denko K.K. Heat exchanger, method for fluorination of the heat exchanger or component members thereof, and method of manufacturing the heat exchanger
US7115159B2 (en) 2002-11-15 2006-10-03 Kabushiki Kaisha Toyota Jidoshokki Solid filling tank
US7326281B2 (en) 2004-02-27 2008-02-05 Kabushiki Kaisha Toyota Jidoshokki Hydrogen storage tank
JP2016148287A (en) * 2015-02-12 2016-08-18 日野自動車株式会社 Warm-up promoting device for internal combustion engine
JPWO2020080303A1 (en) * 2018-10-15 2020-04-23
US10780409B2 (en) 2017-12-04 2020-09-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Solid-gas reaction substance-filled reactor and method for manufacturing the same
CN111707018A (en) * 2020-04-24 2020-09-25 广东立佳实业有限公司 Quick temperature change box based on metal hydride

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036216A1 (en) * 2001-10-25 2003-05-01 Showa Denko K.K. Heat exchanger, method for fluorination of the heat exchanger or component members thereof, and method of manufacturing the heat exchanger
US7115159B2 (en) 2002-11-15 2006-10-03 Kabushiki Kaisha Toyota Jidoshokki Solid filling tank
US7326281B2 (en) 2004-02-27 2008-02-05 Kabushiki Kaisha Toyota Jidoshokki Hydrogen storage tank
JP2016148287A (en) * 2015-02-12 2016-08-18 日野自動車株式会社 Warm-up promoting device for internal combustion engine
US10780409B2 (en) 2017-12-04 2020-09-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Solid-gas reaction substance-filled reactor and method for manufacturing the same
JPWO2020080303A1 (en) * 2018-10-15 2020-04-23
WO2020080303A1 (en) * 2018-10-15 2020-04-23 日産自動車株式会社 Heat-generating material, and heat-generating system and heat supply method in which same is used
CN112867776A (en) * 2018-10-15 2021-05-28 日产自动车株式会社 Heat-generating material, heat-generating system using the same, and heat supply method
CN112867776B (en) * 2018-10-15 2022-04-26 日产自动车株式会社 Heat-generating material, heat-generating system using the same, and heat supply method
JP7093977B2 (en) 2018-10-15 2022-07-01 日産自動車株式会社 Heat generation material, heat generation system using it, and heat supply method
CN111707018A (en) * 2020-04-24 2020-09-25 广东立佳实业有限公司 Quick temperature change box based on metal hydride

Similar Documents

Publication Publication Date Title
JP5758811B2 (en) Heat exchanger
JP4220762B2 (en) Solid filling tank
US8636836B2 (en) Finned heat exchangers for metal hydride storage systems
WO2010091178A1 (en) Coiled and microchannel heat exchangers for metal hydride storage systems
JP2010502931A (en) Heat exchanger
JP2000111193A (en) Hydrogen occlusion alloy heat exchanger
KR101839756B1 (en) hydrogen storage alloy with heat conducting mesh unit and hydrogen storage system of using the hydrogen storage alloy
JP2001248795A (en) Hydrogen absorbing alloy tank
JPH09242995A (en) Square heat transfer vessel filled with hydrogen storage alloy for storing hydrogen
US20100294474A1 (en) Heat exchanger tube
JPS6334487A (en) Hydrogenated metal heat exchanger
JP3046975B2 (en) Hydrogen storage container
CN112595148A (en) S-shaped tube bundle cross-flow type tube-shell heat exchanger based on foam metal
CN220727904U (en) Solid-state hydrogen storage device
CN209263714U (en) A kind of high hot-fluid heat exchanger
JPS61202091A (en) Utilizing device for metallic hydrogen compound
JPH0730878B2 (en) Container for hydrogen storage alloy
JPH0253362B2 (en)
JPH0224763B2 (en)
JP4378815B2 (en) Hydrogen storage core
CN116906806A (en) Solid-state hydrogen storage device
JPS60101398A (en) Hydrogen occluding container
JPH0429198Y2 (en)
JPS61246594A (en) Regenerator utilizing metallic hydride
CN117028837A (en) Solid-state hydrogen storage device of magnesium-based metal hydride