JPH0429198Y2 - - Google Patents

Info

Publication number
JPH0429198Y2
JPH0429198Y2 JP1985076337U JP7633785U JPH0429198Y2 JP H0429198 Y2 JPH0429198 Y2 JP H0429198Y2 JP 1985076337 U JP1985076337 U JP 1985076337U JP 7633785 U JP7633785 U JP 7633785U JP H0429198 Y2 JPH0429198 Y2 JP H0429198Y2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
hydrogen
container
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985076337U
Other languages
Japanese (ja)
Other versions
JPS61193300U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985076337U priority Critical patent/JPH0429198Y2/ja
Publication of JPS61193300U publication Critical patent/JPS61193300U/ja
Application granted granted Critical
Publication of JPH0429198Y2 publication Critical patent/JPH0429198Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は水素吸蔵合金の貯蔵容器に関する。[Detailed explanation of the idea] (Industrial application field) The present invention relates to a storage container for hydrogen storage alloy.

(従来の技術) 最近、水素ガスの吸蔵・放出が容易にできる水
素吸蔵合金(例えばLaNi5,MnNi5,CaNo5等)
が開発され、この水素ガスの挙動特性を利用して
水素貯蔵タンク、ヒートポンプ、水素ガス精製等
多方面に利用されつつある。
(Prior art) Recently, hydrogen storage alloys that can easily store and release hydrogen gas (e.g. LaNi 5 , MnNi 5 , CaNo 5 etc.) have been developed.
has been developed, and by taking advantage of the behavioral characteristics of hydrogen gas, it is being used in a variety of fields such as hydrogen storage tanks, heat pumps, and hydrogen gas purification.

しかし、水素吸蔵合金は金属間化合物である場
合が多く、それ自体でも熱伝導度が小さい(λM
≒1.1Kcal/m・hr・°K)。さらに水素化物化す
ることによりいつそう熱伝導度が低下する(λMH
≒0.5〜1.0Kcal/m・hr・°K)。こり熱伝導度
は鉄(λ=64)やステンレス(λ=13)にくらべ
てもはるかに小さく、ガラスの物性に近いもの
で、水素ガスを吸蔵・放出の際の反応の最たる抵
抗となつている。このため、容器構造としては、
伝熱を促進させ反応をすみやかに行わせるような
工夫がなされている。その一、二例を第2図に示
す。
However, hydrogen storage alloys are often intermetallic compounds, which themselves have low thermal conductivity (λ M
≒1.1Kcal/m・hr・°K). Furthermore, the thermal conductivity decreases as a result of hydride formation (λ MH
≒0.5-1.0Kcal/m・hr・°K). Its thermal conductivity is much lower than that of iron (λ = 64) and stainless steel (λ = 13), and its physical properties are close to those of glass, and it is the most important resistance for reactions when absorbing and desorbing hydrogen gas. There is. For this reason, the container structure is
Efforts have been made to promote heat transfer and speed up the reaction. One or two examples are shown in Figure 2.

第2図aはチユーブ容器内にフインを取付けた
もので、bは発泡メタルないしは金属粉末とコン
プレツクス化したもの、cは水素吸蔵合金内に熱
媒管を配置したものである。第2図において、1
は加熱・冷却媒体、2はチユーブ、3はフイン、
4は水素吸蔵合金、5は中空フイルター、6はコ
ンプレツクス材(発泡メタル、金属粉末)、7は
断熱材、8は内部媒体チユーブである。
Fig. 2a shows a case in which fins are installed in a tube container, b shows a structure made into a complex with foamed metal or metal powder, and figure 2c shows a case in which a heat medium tube is arranged in a hydrogen storage alloy. In Figure 2, 1
is a heating/cooling medium, 2 is a tube, 3 is a fin,
4 is a hydrogen storage alloy, 5 is a hollow filter, 6 is a complex material (metal foam, metal powder), 7 is a heat insulating material, and 8 is an internal medium tube.

aについては伝熱促進のためには水素吸蔵合金
4層内に多数のフイン3をもうけなければなら
ず、さらにフイン3の長さが新たに抵抗となる、
一方、bについてもコンプレツクス材6化するこ
とにより、全体の容器重量が増すわりには顕著に
は伝熱が促進されない。cは内部構造が複雑であ
り、かつ水素吸蔵合金層内が不均一に反応しやす
い。
Regarding a, in order to promote heat transfer, a large number of fins 3 must be provided within the four layers of hydrogen storage alloy, and the length of the fins 3 becomes a new resistance.
On the other hand, by using complex material 6 for b, heat transfer is not significantly promoted although the weight of the entire container increases. c has a complicated internal structure and tends to react unevenly within the hydrogen storage alloy layer.

以上の欠点をカバーし、さらに伝熱を促進する
容器構造が必要となつた。また、aの内部フイン
3では構造が複雑となるうえに、bでは例えば水
素ガス精製の際には金属粉末等のコンプレツクス
材質6に不純物ガスが吸着し、電離過程に時間を
要する欠点もある。
There is now a need for a container structure that overcomes the above drawbacks and further promotes heat transfer. In addition, the structure of the internal fins 3 in a is complicated, and in b, impurity gases are adsorbed to the complex material 6 such as metal powder when purifying hydrogen gas, and the ionization process takes time. .

(考案が解決しようとする問題点) 本考案は、従来の水素吸蔵合金貯蔵容器の欠点
を解消し、水素吸蔵合金の伝熱抵抗を極力カバー
し、かつ簡単で、不純物ガスの吸着面積を小さく
した水素吸蔵合金貯蔵容器を提供しようとするも
のである。
(Problems to be solved by the invention) This invention solves the drawbacks of conventional hydrogen storage alloy storage containers, covers the heat transfer resistance of hydrogen storage alloy as much as possible, is simple, and reduces the adsorption area of impurity gas. The present invention aims to provide a hydrogen-absorbing alloy storage container.

(問題点を解決するための手段) 本考案は水素吸蔵合金を利用した水素ガスの吸
放出容器において、該容器を同心の多重管構造と
し、各管相互の間隙に加熱・冷却用の媒体の流通
区域と水素吸蔵合金の充填区域とを交互に配置
し、かつ水素吸蔵合金充填層厚さを3〜13mmとし
たことを特徴とする水素吸蔵合金貯蔵容器であ
る。
(Means for Solving the Problems) The present invention provides a hydrogen gas absorbing and releasing container using a hydrogen storage alloy, which has a concentric multi-tube structure, and a heating/cooling medium is provided between each tube. This hydrogen storage alloy storage container is characterized in that circulation areas and hydrogen storage alloy filling areas are arranged alternately, and the hydrogen storage alloy filling layer has a thickness of 3 to 13 mm.

すなわち、本考案容器は、不純物ガスの吸着脱
離をスムーズにするために内部フインやコンプレ
ツクスを無くし、この無くすることによつて水素
吸蔵合金の伝熱抵抗は増加すると考えられるが、
この増加度は水素吸蔵合金厚さを適切に選定する
ことによつて解消され、一層の効果を得ることが
できる。また、この合金層は、多重管で形成さ
れ、加熱・冷却媒体と合金が交互に充填されてい
るため内外面から加熱冷却を受け、反応速度が早
くなる上に反応の局部ムラも小さくなる特徴を有
している。
In other words, the container of the present invention eliminates internal fins and complexes in order to smooth the adsorption and desorption of impurity gases, and it is thought that this elimination increases the heat transfer resistance of the hydrogen storage alloy.
This increase can be eliminated by appropriately selecting the thickness of the hydrogen storage alloy, and further effects can be obtained. In addition, this alloy layer is formed of multiple tubes and is alternately filled with heating/cooling medium and alloy, so it is heated and cooled from the inside and outside, which speeds up the reaction and reduces local unevenness in the reaction. have.

本考案容器は、水素吸蔵合金を利用した水素ガ
ス貯蔵、ヒートポンプ、水素ガス精製等の水素ガ
ス吸放出用の容器として有利に適用することがで
きる。
The container of the present invention can be advantageously applied as a container for absorbing and releasing hydrogen gas in hydrogen gas storage, heat pumps, hydrogen gas purification, etc. using hydrogen storage alloys.

以下、本考案吸蔵合金貯蔵容器の一実施例様を
第1図に示す。aは半径方向断面図、bは軸方向
断面図である。
An embodiment of the storage alloy storage container of the present invention is shown in FIG. 1 below. A is a radial sectional view, and b is an axial sectional view.

(構成) 第1図a,bに示すように水素吸蔵合金4は同
心の多重管(図は5重管)を構成する各チユーブ
2の間隙の間に加熱、冷却媒体1(以降熱媒と称
す)と交互にセツトされており、そのチユーブ間
隙(合金充填用に供する)は3〜13mmに設定され
ている。また、こゝでは熱媒の流路の連絡を直列
つなぎにしているが、これは熱媒と水素吸蔵合金
の解離温度の差が大きい時に有効で、温度差が小
さい時には熱媒の流路の連絡を並列にしても良
い。
(Structure) As shown in Fig. 1a and b, the hydrogen storage alloy 4 is heated and cooled between the gaps between the tubes 2 constituting the concentric multiple tubes (quintuple tubes in the figure). The tube gaps (used for alloy filling) are set at 3 to 13 mm. Also, here the heat medium flow paths are connected in series, which is effective when the difference in dissociation temperature between the heat medium and the hydrogen storage alloy is large, and when the temperature difference is small, the heat medium flow paths are connected in series. Communication may be done in parallel.

なお第1図中、第2図と同符号は第2図に関し
て説明したのと同一のものを示し、9は仕切板、
10は媒体流路連絡線である。なお、水素吸蔵合
金は水素の吸蔵・放出に際し、膨張・収縮を繰り
返すので、合金充填空間つまり同心多重チユーブ
の合金充填用間隙に半径方向に仕切り板9(ポー
ラスメタルや金属板)を円周まわるに複数枚配設
し容器への影響を無くすことが好ましい。また、
水素ガスの出口側には、フイルター(空隙寸法
10μm以下:図示省略)を設け合金の微粉化によ
り管路への流出を防ぐことも好ましい態様であ
る。
In FIG. 1, the same reference numerals as in FIG. 2 indicate the same parts as explained in connection with FIG. 2, and 9 indicates a partition plate;
10 is a medium flow path connecting line. In addition, since the hydrogen storage alloy repeatedly expands and contracts when absorbing and desorbing hydrogen, a partition plate 9 (porous metal or metal plate) is placed around the circumference of the alloy filling space, that is, the alloy filling gap of the concentric multiple tubes in the radial direction. It is preferable to arrange a plurality of sheets in order to eliminate the influence on the container. Also,
On the hydrogen gas outlet side, there is a filter (with a
It is also a preferable embodiment to prevent the alloy from flowing into the pipe by providing a thickness of 10 μm or less (not shown) and pulverizing the alloy.

(作用) 熱媒1を合金層充填チユーブ間隙に接するチユ
ーブ間隙に通すことによつて合金層4の熱媒1に
よる熱伝達が効果的に行われ、適切な合金層を選
択するとにより、不純物ガスの分離容易にし、水
素ガスの吸放出スピードをアツプさせている。
(Function) By passing the heat medium 1 through the tube gap in contact with the tube gap filled with the alloy layer, heat transfer by the heat medium 1 to the alloy layer 4 is performed effectively, and by selecting an appropriate alloy layer, impurity gas is removed. This makes it easier to separate hydrogen gas and increases the speed of absorption and release of hydrogen gas.

(効果) 本考案により水素ガス吸放出速度がアツプで
き、かつ不純物ガスの分離がスムーズに行えた。
(Effects) With the present invention, the rate of hydrogen gas absorption and release could be increased, and impurity gas could be separated smoothly.

第3図に従来方との水素吸放出速度の比較を示
した。
Figure 3 shows a comparison of the hydrogen absorption and desorption rates with the conventional method.

第3図の水素吸放出条件は、吸蔵30℃、
10atm、放出80℃、6atmである。第3図中、A
は従来の単一充填法、Bは従来のコンプレツク法
(10φ)、Cは本考案(水素吸蔵合金層厚5mm)を
示し、実線は吸蔵、点線は放出を示す。このよう
に従来法(ここではコンプレツクス法と単一充填
法を示す)に比し水素の吸放出速度がアツプして
おり、本考案の有効性が確認できた。
The hydrogen absorption and desorption conditions in Figure 3 are: occlusion at 30℃;
10atm, emission 80℃, 6atm. In Figure 3, A
B shows the conventional single filling method, B shows the conventional complex method (10φ), C shows the present invention (hydrogen storage alloy layer thickness 5 mm), solid lines show occlusion, and dotted lines show release. As described above, the hydrogen absorption and desorption rate was higher than that of conventional methods (the complex method and single filling method are shown here), and the effectiveness of the present invention was confirmed.

合金層の厚さについての結果を第4図に示し
た。本考案による合金層の厚さは、13mmを超える
と、吸放出率90%で比較し、コンプレツクス法よ
り長時間側に移行し、3mm未満であると作業性も
劣りかつ合金粉末を小さくしない限り充填率が低
下するし、また加熱冷却条件変更以上の効果より
小さいので水素吸蔵合金の充填層の厚さは3〜13
mmの範囲が望ましい。
The results regarding the thickness of the alloy layer are shown in FIG. If the thickness of the alloy layer according to the present invention exceeds 13 mm, the absorption and release rate will be 90%, and the time will be longer than that of the complex method, and if it is less than 3 mm, the workability will be poor and the alloy powder will not be made smaller. As long as the filling rate decreases, and the effect is smaller than that of changing the heating and cooling conditions, the thickness of the filled layer of the hydrogen storage alloy should be 3 to 13.
Preferably in the mm range.

第5図に不純物ガス特にN2の分離状況につい
ての結果を示した。コンプレツクス法ではN2
減少がゆるやかなのに対し本考案では減少が急で
ある。
Figure 5 shows the results regarding the separation of impurity gases, especially N2 . In the complex method, N 2 decreases slowly, but in the present invention, the decrease is rapid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案水素吸蔵合金貯蔵容器の一実施
態様を示し、aはその半径方向断面図、bは軸方
向断面図である。第2図a,b,cは従来容器の
半径方向の断面図、第3図〜第5図は本考案水素
吸蔵合金貯蔵容器の効果を示す図表である。 図において、1は加熱・冷却媒体、2はチユー
ブ、3はフイン、4は水素吸蔵合金、5は中空フ
イルター、6はコンプレツクス材、7は断熱材、
8は内部媒体チユーブ、9は仕切板、10は媒体
流路連絡線である。
FIG. 1 shows an embodiment of the hydrogen storage alloy storage container of the present invention, in which a is a radial sectional view and b is an axial sectional view. FIGS. 2a, b, and c are radial cross-sectional views of the conventional container, and FIGS. 3 to 5 are charts showing the effects of the hydrogen storage alloy storage container of the present invention. In the figure, 1 is a heating/cooling medium, 2 is a tube, 3 is a fin, 4 is a hydrogen storage alloy, 5 is a hollow filter, 6 is a complex material, 7 is a heat insulating material,
8 is an internal medium tube, 9 is a partition plate, and 10 is a medium flow path communication line.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 水素吸蔵合金を利用した水素ガスの吸放出容器
において、該容器を同心の多重管構造とし、各管
相互の間隙に加熱・冷却用の媒体の流通区域と水
素吸蔵合金の充填区域とを交互に配置し、かつ水
素吸蔵合金充填層厚さを3〜13mmとしたことを特
徴とする水素吸蔵合金貯蔵容器。
In a hydrogen gas absorbing and releasing container using a hydrogen storage alloy, the container has a concentric multi-tube structure, and a heating/cooling medium circulation area and a hydrogen storage alloy filling area are arranged alternately in the gaps between each tube. A hydrogen storage alloy storage container characterized in that the hydrogen storage alloy filling layer has a thickness of 3 to 13 mm.
JP1985076337U 1985-05-24 1985-05-24 Expired JPH0429198Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985076337U JPH0429198Y2 (en) 1985-05-24 1985-05-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985076337U JPH0429198Y2 (en) 1985-05-24 1985-05-24

Publications (2)

Publication Number Publication Date
JPS61193300U JPS61193300U (en) 1986-12-01
JPH0429198Y2 true JPH0429198Y2 (en) 1992-07-15

Family

ID=30618382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985076337U Expired JPH0429198Y2 (en) 1985-05-24 1985-05-24

Country Status (1)

Country Link
JP (1) JPH0429198Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123811A (en) * 1974-07-31 1976-02-26 Hitachi Chemical Co Ltd SUISOKY UZOTANKU

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123811A (en) * 1974-07-31 1976-02-26 Hitachi Chemical Co Ltd SUISOKY UZOTANKU

Also Published As

Publication number Publication date
JPS61193300U (en) 1986-12-01

Similar Documents

Publication Publication Date Title
US4928496A (en) Hydrogen heat pump
US4599867A (en) Hydrogen storage cell
JPS61133116A (en) Gas purification apparatus
US5122338A (en) Hydrogen heat pump alloy combination
JP3440250B2 (en) Heat exchange metal tube and adsorption heat pump
JPH0429198Y2 (en)
JPS62288495A (en) Heat exchanger
CN109859868B (en) Hot trap system for purifying high-temperature lithium loop
JPS6176887A (en) Vessel for accommodating metallic hydrides
JP2000111193A (en) Hydrogen occlusion alloy heat exchanger
JP2525152B2 (en) Metal hydride heat exchanger
JP3046975B2 (en) Hydrogen storage container
JPS5848480Y2 (en) Hydrogen storage device using metal hydride
JPS59120710A (en) Exhaust gas purifying heat exchanger
JPH0261401B2 (en)
JPH0412377Y2 (en)
JPS61202091A (en) Utilizing device for metallic hydrogen compound
JPS60101398A (en) Hydrogen occluding container
JPH0121279Y2 (en)
JPH0159202B2 (en)
JP2656094B2 (en) Hydrogen storage alloy tank and cooling method thereof
JPH0730878B2 (en) Container for hydrogen storage alloy
JPH0253362B2 (en)
JPH07280492A (en) Heat exchanger using hydrogen absorbing alloy
JPH0372001B2 (en)