JPH09242995A - Square heat transfer vessel filled with hydrogen storage alloy for storing hydrogen - Google Patents
Square heat transfer vessel filled with hydrogen storage alloy for storing hydrogenInfo
- Publication number
- JPH09242995A JPH09242995A JP8056098A JP5609896A JPH09242995A JP H09242995 A JPH09242995 A JP H09242995A JP 8056098 A JP8056098 A JP 8056098A JP 5609896 A JP5609896 A JP 5609896A JP H09242995 A JPH09242995 A JP H09242995A
- Authority
- JP
- Japan
- Prior art keywords
- container
- casing
- hydrogen storage
- heat transfer
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は水素貯蔵用水素吸蔵
合金充填角形伝熱容器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy filled prismatic heat transfer container for hydrogen storage.
【0002】[0002]
【従来の技術】近年、水素吸蔵合金の特性を利用した高
純度水素ガス精製装置あるいは熱回収装置(ヒートポン
プ)などが開発されている。これらの装置に用いられて
いる水素吸蔵合金を収納する容器のほとんどは円筒形状
容器で、例えば円筒状の容器内部に小径の伝熱管を配置
して、その伝熱管の外部に水素吸蔵合金を収納する方式
のものが提案されている(特開平6−42699号公
報)。これら従来の技術は水素精製またはヒートポンプ
などに利用するために伝熱特性すなわち反応速度を早く
することに主眼を置いたものである。2. Description of the Related Art In recent years, a high-purity hydrogen gas purifying device or a heat recovery device (heat pump) utilizing the characteristics of a hydrogen storage alloy has been developed. Most of the containers that store the hydrogen storage alloy used in these devices are cylindrical containers, for example, a small diameter heat transfer tube is placed inside a cylindrical container and the hydrogen storage alloy is stored outside the heat transfer tube. A method of doing so has been proposed (JP-A-6-42699). These conventional techniques focus on increasing the heat transfer characteristics, that is, the reaction rate, for use in hydrogen purification or heat pumps.
【0003】[0003]
【発明が解決しようとする課題】上記したように、従来
は水素精製またはヒートポンプなどに利用するために、
伝熱特性、すなわち反応速度を早くすることに主眼をお
いて開発がなされている。しかしながら、昨今では水素
ガスを燃料として利用する分野、例えば水素自動車用水
素貯蔵タンクあるいは固体高分子電解質膜を用いた発電
システム用水素貯蔵タンクなどの水素貯蔵容器の開発が
望まれている。これらの貯蔵設備は限られた空間にでき
るだけ大量の水素ガスを蓄える必要がある。このことは
単位容積中にいかに大量の水素吸蔵合金を収納できるか
ということであるが、さらに当然のことながら水素吸蔵
合金より、水素を放出供給するための何らかの伝熱手段
を必要とするものである。As described above, in order to utilize hydrogen purification or heat pump, etc., conventionally,
Development has been made with a focus on heat transfer characteristics, that is, to increase the reaction rate. However, in recent years, there has been a demand for the development of hydrogen storage containers such as hydrogen storage tanks for hydrogen automobiles or hydrogen storage tanks for power generation systems using a solid polymer electrolyte membrane in the field of utilizing hydrogen gas as a fuel. These storage facilities need to store as much hydrogen gas as possible in a limited space. This means how much hydrogen storage alloy can be stored in a unit volume, but naturally it requires some heat transfer means for releasing and supplying hydrogen from the hydrogen storage alloy. is there.
【0004】従来の水素吸蔵合金容器はほとんどが円筒
容器であることから、設置空間を投影体積率で考えると
水素吸蔵合金を収納しない無駄空間が多い。また、容器
においても伝熱性能を優先するがため、多数あるいは多
体積の熱媒流路を備えている。このことも水素吸蔵合金
の収納量の低下をまねいている。Since most conventional hydrogen storage alloy containers are cylindrical containers, considering the installation space in terms of the projected volume ratio, there are many waste spaces in which hydrogen storage alloy is not stored. In addition, since heat transfer performance is prioritized in the container as well, a large number or a large volume of heat medium passages are provided. This also leads to a decrease in the storage capacity of the hydrogen storage alloy.
【0005】本発明は上記技術水準に鑑み、従来の技術
の狙いとする点とは異なり、いかに多量の水素を貯蔵す
ることができるかという課題を解決した水素貯蔵用水素
吸蔵合金充填伝熱容器を提供しようとするものである。In view of the above-mentioned state of the art, the present invention is different from the object of the prior art and solves the problem of how much hydrogen can be stored. Is to provide.
【0006】[0006]
【課題を解決するための手段】本発明は(1)4つの角
部のうち少なくとも1つの角部を欠損させて平坦にした
本質的に角柱形筒状単位容器ケーシング内に、水素吸蔵
合金充填部を形成するように両端に端部ケーシングを配
置し、その一端の端部ケーシングには該ケーシングを貫
通する水素ガス流通チューブを設けた単位セル容器を、
水素ガス流通チューブが同一方向になるように多数縦横
に配列構築してなる大形角柱形筒状体を外部ケーシング
内に密着装填してなることを特徴とする水素貯蔵用水素
吸蔵合金充填角形伝熱容器、(2)本質的に角柱形筒状
単位容器ケーシングが4側辺のうち少なくとも1側辺に
断面において側辺に半円弧状で容器長手方向に連なる小
陥没部を形成してなるものであることを特徴とする上記
(1)の水素貯蔵用水素吸蔵合金充填角形伝熱容器、
(3)本質的に角柱形筒状単位容器ケーシングの材質が
クラッド鋼であることを特徴とする上記(1)または
(2)の水素貯蔵用水素吸蔵合金充填角形伝熱容器であ
る。According to the present invention, (1) a hydrogen storage alloy is filled in an essentially prismatic cylindrical unit container casing in which at least one of the four corners is cut to be flat. The end casings are arranged at both ends so as to form a section, and the end casing at one end thereof is provided with a unit cell container provided with a hydrogen gas flow tube penetrating the casing,
A hydrogen-storing alloy-filled rectangular transmission for hydrogen storage, characterized in that a large number of prismatic cylindrical bodies, which are constructed by arranging many hydrogen gas flow tubes in the same direction vertically and horizontally, are closely packed in an outer casing. Heat container, (2) An essentially prismatic cylindrical unit container casing having at least one side of four sides formed with a small recessed portion which is semi-circular in a cross section and continuous in the container longitudinal direction in a cross section. A hydrogen storage alloy-filled prismatic heat transfer container for hydrogen storage according to the above (1),
(3) The hydrogen storage alloy-filled rectangular heat transfer container for hydrogen storage according to the above (1) or (2), wherein the material of the prismatic cylindrical unit container casing is essentially clad steel.
【0007】(作用)本質的に角柱形筒状単位容器ケー
シング(4つの角部のうち少なくとも1つの角部を欠損
させて平坦にしたものあるいは4側辺のうち少なくとも
1側辺に断面において側辺に半円弧状で容器長手方向に
連なる小陥没部を形成してなるもの)に水素吸蔵合金を
収納して構成される単位セル容器を縦横に複数個集積し
てなる伝熱容器にしたことにより、円筒状の単位容器ケ
ーシングにより構成される単位セル容器よりも水素吸蔵
合金の収納量を向上させることができ、結果的に多量の
水素を貯蔵させることができる。(Operation) Essentially, a prismatic cylindrical unit container casing (at least one of the four corners is flattened by removing at least one of the four corners or at least one of the four sides has a side in a cross section). A heat transfer container in which a plurality of unit cell containers configured by accommodating a hydrogen storage alloy in a semi-circular shape with small depressions continuous in the longitudinal direction of the container are vertically and horizontally integrated Thereby, the storage amount of the hydrogen storage alloy can be improved as compared with the unit cell container configured by the cylindrical unit container casing, and as a result, a large amount of hydrogen can be stored.
【0008】また、単位セル容器を多数集積すると、隣
合う角柱形筒状単位容器ケーシング間には同ケーシング
に設けられた欠損させて平坦にした角部または半円弧状
の小陥没部によって角柱形筒状単位容器ケーシングの長
手方向に連通する小空間が形成される。この小空間を冷
・熱媒体の流路とすることにより角柱形筒状単位容器ケ
ーシングに伝熱フインの働きをもたらすことができる。In addition, when a large number of unit cell containers are stacked, the prismatic cylindrical unit container casings are provided with a prismatic shape between the adjoining casings due to the broken and flat corners or small semicircular recesses formed in the casings. A small space communicating with the longitudinal direction of the cylindrical unit container casing is formed. By using this small space as a flow path for the cooling / heating medium, the function of the heat transfer fin can be provided to the prismatic cylindrical unit container casing.
【0009】さらに、また角柱形筒状単位容器ケーシン
グ部材を下記表1に示すようなクラッド鋼とし、収納さ
れた水素吸蔵合金と接する面を熱伝導率の高い材料とす
ることによって冷・熱媒体よりの熱の授受を効率よく行
うことができる。In addition, the prismatic cylindrical unit container casing member is made of clad steel as shown in Table 1 below, and the surface in contact with the stored hydrogen storage alloy is made of a material having a high thermal conductivity, whereby the cooling / heating medium is cooled. More heat can be transferred and received efficiently.
【0010】[0010]
【表1】 [Table 1]
【0011】以上のように機能してなる伝熱容器の小空
間に、水素ガスを吸蔵させるときには冷媒を通じると、
水素ガスの吸蔵により発生する反応熱は先ず単位セル容
器に伝わり次いで単位セル容器を介して小空間を流れる
冷媒により冷却、排熱される。また水素吸蔵合金より水
素ガスを放出させるときには小空間に熱媒を通じると、
熱は単位セル容器に伝わり次いで内部に収納する水素吸
蔵合金に伝わり水素ガスを放出させる。When a hydrogen gas is occluded in the small space of the heat transfer container having the above functions, a refrigerant is passed through the space.
The reaction heat generated by the storage of hydrogen gas is first transferred to the unit cell container, and then cooled and discharged by the refrigerant flowing in the small space through the unit cell container. Also, when releasing hydrogen gas from the hydrogen storage alloy, if a heat medium is passed through a small space,
The heat is transferred to the unit cell container and then to the hydrogen storage alloy contained therein to release hydrogen gas.
【0012】[0012]
【実施例】以下、本発明の水素貯蔵用水素吸蔵合金充填
角形伝熱容器の具体例をあげ、本発明の効果を明らかに
する。EXAMPLES Hereinafter, the effects of the present invention will be clarified by giving specific examples of the hydrogen storage alloy-filled prismatic heat transfer container for hydrogen storage of the present invention.
【0013】(実施例1)図1は本発明の実施例1にお
ける伝熱容器の単位セル容器12の一例を示す。図1に
おいては、4つの角度のうち2つの角部を欠損させて平
坦にした欠損平坦角部2を有する角柱形筒状の単位容器
ケーシング1およびその内部に水素ガスを流通させる水
素流通チューブ3が配置される。この水素流通チューブ
3は水素ガスは通すが水素吸蔵合金は透過しないフィル
タ機能を有しており、例えば焼結金属あるいは樹脂ファ
イバ材からなるものである。水素吸蔵合金は単位容器ケ
ーシング1と水素流通チューブ3の間の水素吸蔵合金充
填部6(詳細は図3参照)に充填される。水素吸蔵合金
は例えばLaMmNi5 (ランタン・ミッシュメタル、
ニッケル)などであり、用途における、冷・熱媒温度条
件及び吸蔵・放出水素圧力条件により適宜選定される。(Embodiment 1) FIG. 1 shows an example of a unit cell container 12 of a heat transfer container in Embodiment 1 of the present invention. In FIG. 1, a prismatic tubular unit container casing 1 having a flattened flat corner portion 2 in which two corner portions out of four angles are flattened, and a hydrogen flow tube 3 through which hydrogen gas flows Are placed. The hydrogen flow tube 3 has a filter function that allows hydrogen gas to pass therethrough but does not allow hydrogen storage alloy to pass therethrough, and is made of, for example, a sintered metal or a resin fiber material. The hydrogen storage alloy is filled in the hydrogen storage alloy filling section 6 (see FIG. 3 for details) between the unit container casing 1 and the hydrogen flow tube 3. Hydrogen storage alloys are, for example, LaMmNi 5 (lanthanum misch metal,
Nickel), etc., and is appropriately selected depending on the cooling / heating medium temperature conditions and the absorbed / desorbed hydrogen pressure conditions in the application.
【0014】図2は前記単位セル容器12を集積してな
る伝熱容器の一例(斜視図)を示し、この例では単位セ
ル容器12を縦に3段、横に5段集積した例を示すがこ
れら集積数は用途に応じ適宜設定される。FIG. 2 shows an example (perspective view) of a heat transfer container in which the unit cell containers 12 are integrated. In this example, the unit cell containers 12 are integrated in three stages vertically and five stages horizontally. However, the number of these accumulations is appropriately set according to the application.
【0015】実施例1の態様は図1に示す単位セル容器
12の2ケ所の欠損平坦角部2を有する単位セル容器を
その隣合う容器12の欠損平坦角部2が合わされるよう
に大形角柱形筒状体を形成している場合を示す。すなわ
ち、単位セル容器A:7、単位セル容器B:8、単位セ
ル容器C:9および単位セル容器D:10は、同一形状
を有する単位セル容器であるが、各容器を各々90°毎
回転させて集積することにより、図2の如く欠損平坦角
部2により、各単位セル容器12の外部に、冷・熱媒流
路5とする空間が形成される。In the embodiment 1 of the present invention, the unit cell container having two missing flat corners 2 of the unit cell container 12 shown in FIG. 1 is formed in a large size so that the missing flat corners 2 of the adjoining containers 12 are joined together. The case where a prismatic cylindrical body is formed is shown. That is, the unit cell container A: 7, the unit cell container B: 8, the unit cell container C: 9, and the unit cell container D: 10 are unit cell containers having the same shape, but each container is rotated by 90 °. As a result, the defective flat corners 2 form a space serving as the cooling / heating medium flow path 5 outside each unit cell container 12, as shown in FIG.
【0016】実施例1のように、縦3段、横5段に集積
された単位セル容器12からなる大形角柱形筒状体の最
外面には例えばSUS316Lなどからなる、伝熱容器
外部ケーシング4が配置され、単位セル容器12を固定
するとともに、外周部冷・熱媒流路11を形成する。As in the first embodiment, the outer casing of the heat-transfer container is made of, for example, SUS316L on the outermost surface of the large prismatic cylindrical body composed of the unit cell containers 12 stacked in three rows vertically and five rows horizontally. 4 are arranged to fix the unit cell container 12 and form the outer peripheral cooling / heating medium passage 11.
【0017】図3は伝熱容器の組立断面図を示す。単位
セル容器12の内部に充填される水素吸蔵合金はその両
端の端部ケーシング18、18′により収納される。そ
の一端部には水素流通チューブ3が溶接等の手段により
密封され貫通し、更に外側の冷・熱媒室−水素室仕切板
19に達し、これをも溶接等の手段により密封され貫通
し取付けられる。FIG. 3 shows an assembled sectional view of the heat transfer container. The hydrogen storage alloy filled in the unit cell container 12 is housed by the end casings 18 and 18 'at both ends thereof. A hydrogen flow tube 3 is sealed and penetrated at one end thereof by means such as welding, and further reaches an outer cooling / heating medium chamber-hydrogen chamber partition plate 19, which is also sealed and penetrated by means such as welding and is attached. To be
【0018】水素流通チューブ3は水素吸蔵合金と接触
する部分については焼結金属あるいは高分子ファイバな
どによる多孔質となっているが、その他水素ガスの機密
を必要とする部分はステンレスなどの鋼管からなる部分
が接合されている。The hydrogen flow tube 3 has a porous portion made of sintered metal or polymer fiber, etc., at the portion in contact with the hydrogen storage alloy, but other portions requiring hydrogen gas confidentiality are made of a steel pipe such as stainless steel. Are joined together.
【0019】このように、水素吸蔵合金より単位容器ケ
ーシング1を経て冷・熱媒流路5の冷媒への伝熱、ある
いは冷・熱媒流路5の熱媒より単位容器ケーシング1を
経て水素吸蔵合金を加熱、昇温させる伝熱において、単
位容器ケーシング1は伝熱フィンの働きを有するもので
ある。したがって、単位容器ケーシング1が伝熱フィン
の働きをも兼ね備えることにより、よりコンパクトな伝
熱容器が形成されるものである。As described above, heat is transferred from the hydrogen storage alloy to the refrigerant in the cold / heat medium passage 5 through the unit container casing 1, or hydrogen is passed from the heat medium in the cold / heat medium passage 5 through the unit container casing 1. In heat transfer for heating and raising the temperature of the storage alloy, the unit container casing 1 functions as a heat transfer fin. Therefore, the unit container casing 1 also functions as a heat transfer fin, whereby a more compact heat transfer container is formed.
【0020】端部ケーシング18と冷・熱媒室−水素室
仕切板19の間には冷・熱媒室13が形成される。ここ
には各単位セル容器12間の欠損平坦部2で形成される
冷・熱媒流路5および外周部冷・熱媒流路11が接続さ
れており、冷・熱媒流入口14より流入する冷・熱媒は
冷・熱媒室13および冷・熱媒流路5および外周部冷・
熱媒流路11を流れる。他端においては同様に端部ケー
シング18′と伝熱容器外部ケーシング4とで冷・熱媒
室13′を形成する。この冷・熱媒室13′も冷・熱媒
流路5に接続されており、冷・熱媒流入口14より流入
した冷・熱媒は冷・熱媒流路5および外周部冷・熱媒流
路11を経て冷・熱媒室13′に達し、この冷・熱媒室
13′に連絡するように接続される冷・熱媒流出口15
より排出される。また、前記の冷・熱媒室−水素室仕切
板19と伝熱容器外部ケーシング4間には水素室16が
形成されている。この水素室16には連絡するように水
素ガス流入出口17が配置されている。A cold / heat medium chamber 13 is formed between the end casing 18 and the cold / heat medium chamber-hydrogen chamber partition plate 19. The cooling / heating medium flow path 5 and the outer peripheral cooling / heating medium flow path 11 formed by the flat portions 2 between the unit cell vessels 12 are connected to the cooling / heating medium flow inlet 14. The cold / heat medium to be cooled is the cold / heat medium chamber 13, the cold / heat medium flow path 5 and the outer peripheral portion
It flows through the heat medium passage 11. At the other end, the end casing 18 'and the outer casing 4 of the heat transfer container similarly form a cooling / heating medium chamber 13'. This cold / heat medium chamber 13 ′ is also connected to the cold / heat medium flow path 5, and the cold / heat medium flowing in from the cold / heat medium inlet 14 is cooled / heat medium flow path 5 and the outer periphery cold / heat. A cooling / heating medium outlet 15 is connected to the cooling / heating medium chamber 13 'through the medium flow path 11 so as to reach the cooling / heating medium chamber 13'.
Is more exhausted. A hydrogen chamber 16 is formed between the cooling / heating medium chamber-hydrogen chamber partition plate 19 and the heat transfer container outer casing 4. A hydrogen gas inlet / outlet 17 is arranged so as to communicate with the hydrogen chamber 16.
【0021】このように構成することによる作用は次の
とおりである。水素吸蔵合金に水素を吸蔵させるときに
は水素ガス流出入口17より水素ガスを所定の圧力で供
給、流入させる。水素ガスは水素室16を経て、更に水
素流通チューブ3内を流れ、水素流通チューブ3を構成
する多孔質部を介し、水素吸蔵合金充填部6に達し、水
素吸蔵合金に吸蔵させられる。このとき、冷・熱媒流入
口14より冷媒が供給され、冷・熱媒室13より各冷・
熱媒流路5および外周部冷・熱媒流路11に分散し、流
通して他方の冷・熱媒室13′に達し、冷・熱媒流出口
15より排出される。各冷・熱媒流路5および外周部冷
・熱媒流路11に冷媒を流すことにより水素が水素吸蔵
合金に吸蔵されるとき発生する反応熱は水素吸蔵合金お
よび単位容器ケーシング1を介して冷媒に達し、排出さ
れると共に、水素吸蔵合金は冷却され水素吸蔵反応が促
進される。The operation of this structure is as follows. When hydrogen is stored in the hydrogen storage alloy, hydrogen gas is supplied from the hydrogen gas outlet / inlet 17 at a predetermined pressure to flow therein. The hydrogen gas flows through the hydrogen chamber 16 and further into the hydrogen flow tube 3, reaches the hydrogen storage alloy filling section 6 through the porous portion forming the hydrogen flow tube 3, and is stored in the hydrogen storage alloy. At this time, the cooling medium is supplied from the cooling / heating medium inlet 14, and each cooling / cooling medium is supplied from the cooling / heating medium chamber 13.
It is dispersed in the heat medium flow path 5 and the outer peripheral cold / heat medium flow path 11, flows to reach the other cold / heat medium chamber 13 ′, and is discharged from the cold / heat medium outlet 15. Reaction heat generated when hydrogen is stored in the hydrogen storage alloy by flowing a refrigerant through each of the cooling / heating medium flow paths 5 and the outer peripheral cooling / heating medium flow path 11 is passed through the hydrogen storage alloy and the unit container casing 1. While reaching and discharging the refrigerant, the hydrogen storage alloy is cooled and the hydrogen storage reaction is promoted.
【0022】また、水素吸蔵合金より水素を放出させる
ときは、冷・熱媒流入口14より熱媒を供給する。熱媒
は、冷・熱媒室13より各冷・熱媒流路5および外周部
冷・熱媒流路11に分散して流通し、他方の冷・熱媒室
13′に達し、冷・熱媒流出口15より排出される。各
冷・熱媒流路5および外周部冷・熱媒流路11に熱媒を
流すことにより、熱媒より単位容器ケーシング1を介し
て水素吸蔵合金に熱が伝わり、水素吸蔵合金を加熱昇温
させて水素ガスを発生・放出させる。放出された水素ガ
スは水素流通チューブ3の多孔質部より水素流通チュー
ブ3内を流れて水素室16に達し、次に水素ガス流入出
口17より放出される。When releasing hydrogen from the hydrogen storage alloy, the heat medium is supplied from the cold / heat medium inflow port 14. The heat medium is distributed from the cold / heat medium chamber 13 to the respective cold / heat medium flow paths 5 and the outer peripheral cold / heat medium flow path 11, and reaches the other cold / heat medium room 13 ′ where It is discharged from the heat medium outlet 15. By flowing the heat medium through each of the cold / heat medium flow paths 5 and the outer peripheral cold / heat medium flow path 11, heat is transferred from the heat medium to the hydrogen storage alloy through the unit container casing 1, and the hydrogen storage alloy is heated and heated. It is heated to generate and release hydrogen gas. The released hydrogen gas flows from the porous portion of the hydrogen flow tube 3 into the hydrogen flow tube 3 to reach the hydrogen chamber 16, and is then discharged from the hydrogen gas inflow / outlet port 17.
【0023】なお、実施例1の伝熱容器の単位セル容器
12は図2に示すように、上下左右の単位セル容器12
の欠損平坦角部2が互に隣合うように配置したものを例
に採って説明したが、図2に示したように欠損平坦部2
を集合させるよりは図4(断面図)に示すように、欠損
平坦部2を集合させない方が冷・熱媒流路が全体に配置
するので好ましい。As shown in FIG. 2, the unit cell container 12 of the heat transfer container according to the first embodiment is arranged in the upper, lower, left and right unit cell containers 12.
Although the description has been given by taking as an example the case in which the defect flat corners 2 are arranged adjacent to each other, as shown in FIG.
As shown in FIG. 4 (cross-sectional view), it is preferable not to collect the flat defect portions 2 because the cooling / heating medium flow passages are arranged in their entirety.
【0024】(実施例2)図5は本発明の実施例2にお
ける伝熱容器の単位セル容器12の他の例を示す。図5
における符合は図1と同じ意味を有するので説明は省略
する。図5において、単位セル容器12の4つの角部が
全て欠損平坦角部2となっている角柱形筒状の単位容器
ケーシング1である以外は本質的に図1のものと同じで
ある。(Embodiment 2) FIG. 5 shows another example of the unit cell container 12 of the heat transfer container in Embodiment 2 of the present invention. FIG.
The symbols in have the same meanings as in FIG. In FIG. 5, the unit cell container 12 is essentially the same as that of FIG. 1 except that the unit cell container 12 is a prismatic cylindrical unit container casing 1 in which all four corners are flat flat corners 2.
【0025】図6は図5の単位セル容器12を集積して
なる伝熱容器の1例を示す。図6における符号は図2と
同じ意味を有するので説明は省略する。この例では単位
セル容器12を縦に3段、横に5段集積して大形角柱形
筒状体を形成した例を示すがこれら集積数は用途に応じ
適宜設定される。この実施例2のように、角部が4ケ所
とも欠損平坦角部2を有する単位セル容器12はこれを
集積するとき、その隣合う容器の欠損平坦角部2が合わ
され集積され、集積された欠損平坦角部2により単位セ
ル容器12の外部に冷・熱媒流路5とする空間が形成さ
れる。なお、縦3段、横5段の集積された単位セル容器
12の最外面には伝熱容器外部ケーシング4が配置さ
れ、単位セル容器12を固定するとともに外周部冷・熱
媒流路11を形成することは実施例1と同じである。以
下全体構造および作用は冷・熱媒との接触面積が大きく
なり、冷却・加熱効率が向上するほかは実施例1と同じ
であるので説明は省略する。FIG. 6 shows an example of a heat transfer container formed by accumulating the unit cell containers 12 of FIG. The reference numerals in FIG. 6 have the same meanings as in FIG. This example shows an example in which the unit cell containers 12 are vertically stacked in three stages and horizontally in five stages to form a large prismatic cylindrical body, but the number of these stacks is appropriately set according to the application. As in Example 2, the unit cell container 12 having four flat corners 2 at all four corners is stacked and stacked when the flat flat corners 2 of adjacent containers are stacked together. A space serving as the cooling / heating medium flow path 5 is formed outside the unit cell container 12 by the defective flat corner portion 2. A heat transfer container outer casing 4 is arranged on the outermost surface of the unit cell containers 12 in which three vertical units and five horizontal units are integrated. The unit cell container 12 is fixed and the outer peripheral cooling / heating medium flow passage 11 is formed. Forming is the same as in the first embodiment. The entire structure and operation are the same as those of the first embodiment except that the contact area with the cooling / heating medium is increased and the cooling / heating efficiency is improved.
【0026】(実施例3)図7は本発明の実施例3にお
ける伝熱容器の単位セル容器12の他の構造例を示す。
この実施例3では角柱形筒状単位容器ケーシング1の1
側辺に1ケ所の断面において半円弧状の容器長手方向に
連なる小陥没部2′を有する単位セル容器12である以
外は実施例1と構成は同じであり、したがって図7にお
ける小陥没部2′以外の符号は図1と同じ意味を有する
ので説明は省略する。(Embodiment 3) FIG. 7 shows another structural example of the unit cell container 12 of the heat transfer container in Embodiment 3 of the present invention.
In the third embodiment, one of the prismatic cylindrical unit container casings 1 is used.
The configuration is the same as that of the first embodiment except that the unit cell container 12 has a semi-arcuate small depression 2'that is continuous in the longitudinal direction of the container in a cross section at one side. Therefore, the small depression 2 in FIG. Reference numerals other than 'have the same meanings as in FIG.
【0027】図8は図7の単位セル容器12を集積して
なる伝熱容器の1例を示し、この例では単位セル容器1
2を縦に3段、横に5段集積して大形角柱形筒状体とし
た例を示すが、これら集積数は用途に応じ適宜設定され
る。符号は、図6と同じ意味を有するので説明は省略す
る。FIG. 8 shows an example of a heat transfer container in which the unit cell container 12 of FIG. 7 is integrated. In this example, the unit cell container 1
An example is shown in which 2 is vertically stacked in 3 stages and 5 in a horizontal direction to form a large prismatic cylindrical body, and the number of these is appropriately set according to the application. The reference numerals have the same meanings as in FIG.
【0028】この実施例3のように単位セル側面に1ケ
所の小陥没部2′を有する単位セル容器12は、これを
集積するときその単位セルの小陥没部2′とその隣合う
容器の側辺が合わされ集積される。1つの単位セル容器
12の小陥没部2′と隣合う単位セル容器12側面によ
り単位セル容器12外部に冷・熱媒流路5とする空間が
形成される。縦3段、横5段の集積された単位セル容器
12の最外面には伝熱容器外部ケーシング4が配置され
単位セル容器12を固定するとともに外周部冷・熱媒流
路11を形成する。この実施例の伝熱容器全体構造およ
び半円弧状の小陥没部2′の位置を側辺の中央部付近と
した場合の作用は実施例1と同じであるので説明は省略
する。The unit cell container 12 having one small depression 2'on the side surface of the unit cell as in the third embodiment has a small depression 2'of the unit cell and an adjacent container when accumulating them. The sides are aligned and stacked. A space serving as the cooling / heating medium flow path 5 is formed outside the unit cell container 12 by the side surface of the unit cell container 12 adjacent to the small depression 2 ′ of one unit cell container 12. An outer casing 4 of the heat transfer container is arranged on the outermost surface of the unit cell containers 12 in which the unit cell containers 12 are arranged in three rows vertically and five rows horizontally, and the unit cell vessels 12 are fixed and the outer peripheral cooling / heating medium passages 11 are formed. The whole structure of the heat transfer container of this embodiment and the operation when the position of the semi-arc shaped small depression 2'is near the center of the side are the same as those of the first embodiment, and therefore the description thereof is omitted.
【0029】単位容器ケーシング1内に水素吸蔵合金を
充填する場合、図9(a)に示すように水素吸蔵合金2
1が容器内に充分充填されて容器側辺に接触していれば
容器の全面から伝熱がはかれるので小陥没部2′は側辺
の中央付近に設けるのがよい。しかしながら、図9
(b)に示すように水素吸蔵合金21の圧密化等で上辺
部に空間22が生じる場合があり、その場合は冷・熱媒
通路は伝熱部の長さ(図9(b)のtに相当)の中間部
付近になるようにするのが好ましく、図7、8および図
9(b)に示すように小陥没部2′を側辺の中央部から
ずらせた位置に配置すると効果的である。なお、後述の
図10、11も同様の配置としている。When the unit container casing 1 is filled with a hydrogen storage alloy, as shown in FIG.
If 1 is sufficiently filled in the container and is in contact with the side of the container, heat is transferred from the entire surface of the container. Therefore, the small depression 2'is preferably provided near the center of the side. However, FIG.
As shown in (b), a space 22 may be formed in the upper side portion due to consolidation of the hydrogen storage alloy 21 or the like, and in that case, the cooling / heating medium passage has the length of the heat transfer portion (t in FIG. 9B). (Corresponding to the above), and it is effective to dispose the small depression 2 ′ at a position offset from the center of the side as shown in FIGS. 7, 8 and 9 (b). Is. Note that the same arrangement is used in FIGS. 10 and 11 described later.
【0030】(実施例4)図10は本発明の実施例4に
おける伝熱容器の単位セル容器12の他の構造例を示
す。図10における符号は図7と同じ意味を有するので
説明は省略する。図10における単位容器ケーシング1
はその2側面に2ケ所の小陥没部2′を有する角柱形筒
状の単位容器ケーシング1である以外は本質的に図7の
ものと同じである。(Embodiment 4) FIG. 10 shows another structural example of the unit cell container 12 of the heat transfer container in Embodiment 4 of the present invention. The reference numerals in FIG. 10 have the same meanings as in FIG. Unit container casing 1 in FIG.
Is essentially the same as that of FIG. 7 except that it is a prismatic cylindrical unit container casing 1 having two small depressions 2'on its two side surfaces.
【0031】図11は図10の単位セル容器12を集積
してなる伝熱容器の1例を示す。図11における符号は
図6と同じ意味を有するので説明は省略する。この例で
は単位セル容器12を縦に3段、横に5段集積した例を
示すが、これら集積数は用途に応じ適宜設定される。こ
の実施例4のように側面に2ケ所の小陥没部2′を有す
る単位セル容器12は、これを図10に示すようにその
隣合う容器の小陥没部2′が合わされ集積される。これ
により単位セル容器12外部に冷・熱媒流路5とする空
間が形成される。縦3段、横5段の集積された単位セル
容器12の最外面には伝熱容器外部ケーシング4が配置
され単位セル容器12を固定するとともに外周部冷・熱
媒流路11を形成する。以下全体構造および作用は冷・
熱媒との接触面積が大きくなり、冷却・加熱効率が向上
するほかは実施例3と同じであるので説明は省略する。FIG. 11 shows an example of a heat transfer container formed by accumulating the unit cell containers 12 of FIG. The reference numerals in FIG. 11 have the same meanings as in FIG. In this example, the unit cell containers 12 are vertically stacked in three stages and horizontally in five stages, but the number of these units is appropriately set according to the application. As shown in FIG. 10, the unit cell container 12 having the two small depressions 2'on its side surface as in the fourth embodiment is integrated with the adjacent small depressions 2'of the adjacent containers as shown in FIG. As a result, a space serving as the cooling / heating medium channel 5 is formed outside the unit cell container 12. An outer casing 4 of the heat transfer container is arranged on the outermost surface of the unit cell containers 12 in which the unit cell containers 12 are arranged in three rows vertically and five rows horizontally, and the unit cell vessels 12 are fixed and the outer peripheral cooling / heating medium passages 11 are formed. Below is the overall structure and operation
The description is omitted because it is the same as the third embodiment except that the contact area with the heating medium is increased and the cooling / heating efficiency is improved.
【0032】(実施例5)図12および図13は本発明
の実施例5における伝熱容器の単位セル容器12の他の
構造例を示す。図12、13における符号は図7と同じ
意味を表すので説明は省略する。図12、13における
単位容器ケーシング1はその3側面または4側面の全部
に3ケ所または4ケ所の小陥没部2′を有する角柱形筒
状の単位容器ケーシング1である以外は本質的に図7の
ものと同じである。(Fifth Embodiment) FIGS. 12 and 13 show another structural example of the unit cell container 12 of the heat transfer container in the fifth embodiment of the present invention. The reference numerals in FIGS. 12 and 13 have the same meanings as in FIG. The unit container casing 1 shown in FIGS. 12 and 13 is essentially the unit container casing 1 in the shape of a prismatic cylinder having three or four small depressions 2 ′ on all three or four side faces thereof, except that the unit container casing 1 shown in FIG. Is the same as
【0033】図14は図12または13の単位セル容器
12を集積してなる伝熱容器の1例を示す。図14にお
ける符号は図6と同じ意味を有するので説明は省略す
る。この例では単位セル容器12を縦に3段、横に5段
集積した例を示すが、これら集積数は用途に応じ適宜設
定される。本実施例のように側面に3ケ所または4ケ所
の小陥没部2′を有する単位セル容器12を図13に示
すように集積することにより単位セル容器1の外部に冷
・熱媒流路5とする空間が形成される。縦3段、横5段
の集積された単位セル容器12の最外面には伝熱容器外
部ケーシング4が配置され、単位セル容器12を固定す
るとともに、外周部冷・熱媒流路11を形成する。以下
全体構造および作用は冷・熱媒との接触面積が大きくな
り、冷却加熱効率が向上するほかは実施例3と同じであ
るので説明は省略する。FIG. 14 shows an example of a heat transfer container in which the unit cell containers 12 of FIG. 12 or 13 are integrated. Since the reference numerals in FIG. 14 have the same meanings as in FIG. 6, description thereof will be omitted. In this example, the unit cell containers 12 are vertically stacked in three stages and horizontally in five stages, but the number of these units is appropriately set according to the application. As shown in FIG. 13, unit cell containers 12 each having three or four small depressions 2 ′ on the side surface thereof are integrated as shown in FIG. A space is created. The heat transfer container outer casing 4 is arranged on the outermost surface of the unit cell container 12 in which the unit cell container 12 has three columns vertically and five columns horizontally, and fixes the unit cell container 12 and forms the outer peripheral cooling / heating medium passage 11. To do. The entire structure and operation are the same as those of the third embodiment except that the contact area with the cooling / heating medium is increased and the cooling and heating efficiency is improved.
【0034】(実施例6)図15は図13に示した単位
セル容器12を集積してなる伝熱容器の1例を示す。図
15における符号は図6と同じ意味を有するので説明は
省略する。この例では単位セル容器12を縦に3段、横
に5段集積した例を示すが、これら集積数は用途に応じ
適宜設定される。本実施例のように単位容器ケーシング
の4つの側面に4ケ所の小陥没部2′を有する単位セル
容器12は図15に示すようにその隣合う容器の側面小
陥没部2′が合わされ集積される。これにより単位セル
容器12の外部に冷・熱媒流路5とする空間が形成され
る。また集積された単位セル容器12の最外面には伝熱
容器外部ケーシング4が配置され、単位セル容器12を
固定するとともに外周部冷・熱媒流路11を形成する。
以下全体構造および作用は冷・熱媒との接触面積が大き
くなり、冷却、加熱効率が向上するほかは実施例3と同
じであるので説明は省略する。(Embodiment 6) FIG. 15 shows an example of a heat transfer container in which the unit cell containers 12 shown in FIG. 13 are integrated. The reference numerals in FIG. 15 have the same meanings as in FIG. In this example, the unit cell containers 12 are vertically stacked in three stages and horizontally in five stages, but the number of these units is appropriately set according to the application. As shown in FIG. 15, the unit cell container 12 having four small recesses 2'on four sides of the unit container casing as in this embodiment is assembled by stacking the adjacent small recesses 2'of adjacent containers as shown in FIG. It As a result, a space serving as the cooling / heating medium channel 5 is formed outside the unit cell container 12. Further, the heat transfer container outer casing 4 is arranged on the outermost surface of the unit cell container 12 thus integrated, and fixes the unit cell container 12 and forms the outer peripheral cooling / heating medium passage 11.
The entire structure and operation are the same as in Example 3 except that the contact area with the cooling / heating medium is increased and the cooling and heating efficiency is improved.
【0035】以上実施例1から実施例6に示したような
本発明の伝熱容器において、単位容器ケーシングの部材
は、冷・熱媒体及び水素吸蔵合金の性質に応じて任意に
選定すればよいが、容器強度の向上および伝熱性能向上
の点から前記表1に示したようなクラッド鋼を使用する
のが好ましい。単位容器ケーシングの材料としてクラッ
ド鋼を使用する場合は、図16にその1例を示すように
水素吸蔵合金と接するクラッド鋼内側部材20を熱伝導
率の高い材料として、クラッド鋼外側部材19を熱伝導
率の低い材料とすることにより、冷・熱媒体からの熱の
授受を効率的に行うことができる。なお、水または温水
を冷・熱媒体として単位容器ケーシング部材にSUS3
16Lを用いた場合と各種クラッド鋼を使用した場合の
フィン効率の差を調べた結果を表2に示す。In the heat transfer container of the present invention as shown in Embodiments 1 to 6 above, the member of the unit container casing may be arbitrarily selected according to the properties of the cooling / heating medium and the hydrogen storage alloy. However, it is preferable to use the clad steel as shown in Table 1 above from the viewpoint of improving the container strength and heat transfer performance. When clad steel is used as the material of the unit container casing, the clad steel inner member 20 that is in contact with the hydrogen storage alloy is made of a material with high thermal conductivity and the clad steel outer member 19 is heated as shown in FIG. By using a material having a low conductivity, it is possible to efficiently transfer heat from the cold / heat medium. The unit container casing member is made of SUS3 with water or hot water as a cooling / heating medium.
Table 2 shows the results of examining the difference in fin efficiency between the case of using 16 L and the case of using various clad steels.
【0036】[0036]
【表2】 表2から、単位容器ケーシング部材としてクラッド鋼を
使用すると、SUS316Lを1とした場合に比較して
1.43〜1.68倍のフィン効率の向上がはかれるこ
とがわかる。[Table 2] From Table 2, it is understood that when clad steel is used as the unit container casing member, the fin efficiency is improved 1.43 to 1.68 times as compared with the case where SUS316L is 1.
【0037】[0037]
【発明の効果】本発明の水素吸蔵合金用角型伝熱容器に
よれば容器形状が角型を有していることからより大量の
水素吸蔵合金が収納可能となり、また、単位セル容器を
集積して一組の伝熱容器を形成する方式を採用したこと
により、わざわざ冷・熱媒流路を設けることなく必然的
にその流路が確保される。また、水素吸蔵合金量収納量
も単位セル容器の組合せ数により任意かつ容易に設定さ
れる。また、伝熱性についても単位容器ケーシングに伝
熱フィンの働きを持たせたことにより伝熱容器がよりコ
ンパクトに形成される。According to the rectangular heat transfer container for hydrogen storage alloy of the present invention, since the container shape is rectangular, a larger amount of hydrogen storage alloy can be stored, and unit cell containers are integrated. By adopting the method of forming a set of heat transfer containers, the flow path is inevitably secured without providing the cooling / heating medium flow path. Further, the hydrogen storage alloy amount storage amount can be arbitrarily and easily set by the number of combinations of unit cell containers. Also, regarding the heat transfer property, the unit container casing is made to function as a heat transfer fin, so that the heat transfer container can be made more compact.
【0038】また、単位容器ケーシング部材にクラッド
鋼を用いることにより容器強度の向上が図られ、また部
材としての熱伝導率が高くなり伝熱フィンとしての効率
が向上し、したがって、合金の吸蔵または放出反応速度
が向上する。これにより単位容積当りの水素吸蔵合金収
納量が多く伝熱性能のすぐれた水素吸蔵合金用伝熱容器
となる。Further, by using clad steel for the unit container casing member, the strength of the container is improved, the thermal conductivity of the member is increased, and the efficiency of the heat transfer fin is improved. The release reaction rate is improved. As a result, the heat storage container for hydrogen storage alloy has a large amount of hydrogen storage alloy stored per unit volume and excellent heat transfer performance.
【図1】実施例1に係る単位セル容器の一部断面斜視
図。FIG. 1 is a partial cross-sectional perspective view of a unit cell container according to a first embodiment.
【図2】実施例1に係る伝熱容器の横断面斜視図。FIG. 2 is a cross-sectional perspective view of the heat transfer container according to the first embodiment.
【図3】実施例1に係る伝熱容器の縦断面図。FIG. 3 is a vertical sectional view of the heat transfer container according to the first embodiment.
【図4】実施例1に係る伝熱容器の変形例を示す縦断面
図。FIG. 4 is a vertical cross-sectional view showing a modified example of the heat transfer container according to the first embodiment.
【図5】実施例2に係る単位セル容器の一部断面斜視
図。FIG. 5 is a partial cross-sectional perspective view of a unit cell container according to the second embodiment.
【図6】実施例2に係る伝熱容器の横断面図。FIG. 6 is a cross-sectional view of the heat transfer container according to the second embodiment.
【図7】実施例3に係る単位セル容器の一部断面斜視
図。FIG. 7 is a partial cross-sectional perspective view of a unit cell container according to a third embodiment.
【図8】実施例3に係る伝熱容器の横断面図。FIG. 8 is a cross-sectional view of the heat transfer container according to the third embodiment.
【図9】単位容器ケーシングへの水素吸蔵合金の充填状
態の説明図。FIG. 9 is an explanatory diagram showing a state of filling a hydrogen storage alloy into a unit container casing.
【図10】実施例4に係る単位セル容器の一部断面斜視
図。FIG. 10 is a partial cross-sectional perspective view of the unit cell container according to the fourth embodiment.
【図11】実施例4に係る伝熱容器の横断面図。FIG. 11 is a cross-sectional view of the heat transfer container according to the fourth embodiment.
【図12】実施例5に係る単位セル容器の一部断面斜視
図。FIG. 12 is a partial cross-sectional perspective view of a unit cell container according to a fifth embodiment.
【図13】実施例5及び6に係る単位セル容器の一部断
面斜視図。FIG. 13 is a partial cross-sectional perspective view of a unit cell container according to Examples 5 and 6.
【図14】実施例5に係る伝熱容器の横断面図。FIG. 14 is a cross-sectional view of the heat transfer container according to the fifth embodiment.
【図15】実施例6に係る伝熱容器の横断面図。FIG. 15 is a cross-sectional view of the heat transfer container according to the sixth embodiment.
【図16】本発明に係る伝熱容器の他の態様を示す横断
面図。FIG. 16 is a cross-sectional view showing another aspect of the heat transfer container according to the present invention.
フロントページの続き (72)発明者 柏木 達司 広島県広島市中区小町4番33号 中国電力 株式会社内 (72)発明者 宮本 博 広島県三原市糸崎町5007番地 三菱重工業 株式会社三原製作所内 (72)発明者 出羽 昭夫 広島県三原市寿町一丁目1番地 三原菱重 エンジニアリング株式会社内Front page continuation (72) Inventor Tatsushi Kashiwagi 4-33 Komachi, Naka-ku, Hiroshima City, Hiroshima Prefecture Chugoku Electric Power Co., Inc. 72) Inventor Akio Dewa 1-1, Kotobuki-cho, Mihara-shi, Hiroshima Mihara Rishige Engineering Co., Ltd.
Claims (3)
を欠損させて平坦にした本質的に角柱形筒状単位容器ケ
ーシング内に、水素吸蔵合金充填部を形成するように両
端に端部ケーシングを配置し、その一端の端部ケーシン
グには該ケーシングを貫通する水素ガス流通チューブを
設けた単位セル容器を、水素ガス流通チューブが同一方
向になるように多数縦横に配列構築してなる大形角柱形
筒状体を外部ケーシング内に密着装填してなることを特
徴とする水素貯蔵用水素吸蔵合金充填角形伝熱容器。1. An essentially prismatic cylindrical unit container casing in which at least one of the four corners is cut and made flat so as to form a hydrogen storage alloy filled portion at both ends. A unit cell container having a casing arranged and a hydrogen gas flow tube penetrating the casing in an end casing at one end is arranged in a large number in a vertical and horizontal direction so that the hydrogen gas flow tubes are in the same direction. A prismatic heat transfer container filled with a hydrogen storage alloy for hydrogen storage, characterized in that a prismatic cylindrical body is closely packed in an outer casing.
が4側辺のうち少なくとも1側辺に断面において側辺に
半円弧状で容器長手方向に連なる小陥没部を形成してな
るものであることを特徴とする請求項1記載の水素貯蔵
用水素吸蔵合金充填角形伝熱容器。2. An essentially prismatic tubular unit container casing, wherein at least one of the four sides has a semi-circular arc-shaped cross-section in the cross-section and small depressions continuous in the longitudinal direction of the container. The hydrogen-storing alloy-filled prismatic heat transfer container for hydrogen storage according to claim 1, wherein
の材質がクラッド鋼であることを特徴とする請求項1ま
たは2に記載の水素貯蔵用水素吸蔵合金充填角形伝熱容
器。3. The hydrogen storage alloy-filled rectangular heat transfer container for hydrogen storage according to claim 1, wherein the material of the prismatic cylindrical unit container casing is essentially clad steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8056098A JPH09242995A (en) | 1996-03-13 | 1996-03-13 | Square heat transfer vessel filled with hydrogen storage alloy for storing hydrogen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8056098A JPH09242995A (en) | 1996-03-13 | 1996-03-13 | Square heat transfer vessel filled with hydrogen storage alloy for storing hydrogen |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09242995A true JPH09242995A (en) | 1997-09-16 |
Family
ID=13017643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8056098A Pending JPH09242995A (en) | 1996-03-13 | 1996-03-13 | Square heat transfer vessel filled with hydrogen storage alloy for storing hydrogen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09242995A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008045750A (en) * | 2002-12-09 | 2008-02-28 | Advanced Technology Materials Inc | Rectangular parallelepiped fluid storage and quantitative dispensing container |
WO2008140047A1 (en) * | 2007-05-10 | 2008-11-20 | Kabushiki Kaisha Toyota Jidoshokki | Hydrogen gas storing device |
JP2013511003A (en) * | 2009-11-13 | 2013-03-28 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Hydrogen storage tank with metal hydride |
US8858685B2 (en) | 2002-12-10 | 2014-10-14 | Advanced Technology Materials, Inc. | Gas storage and dispensing system with monolithic carbon adsorbent |
JP2015096745A (en) * | 2013-11-15 | 2015-05-21 | カヤバ工業株式会社 | Hydrogen storage device |
US9126139B2 (en) | 2012-05-29 | 2015-09-08 | Entegris, Inc. | Carbon adsorbent for hydrogen sulfide removal from gases containing same, and regeneration of adsorbent |
US9234628B2 (en) | 2011-01-19 | 2016-01-12 | Entegris, Inc. | PVDF pyrolyzate adsorbent and gas storage and dispensing system utilizing same |
WO2018092423A1 (en) * | 2016-11-21 | 2018-05-24 | ブラザー工業株式会社 | Hydrogen storage unit and fuel cell system |
CN116182072A (en) * | 2022-12-07 | 2023-05-30 | 陕西榆能集团能源化工研究院有限公司 | Hydrogen purification storage device |
-
1996
- 1996-03-13 JP JP8056098A patent/JPH09242995A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008045750A (en) * | 2002-12-09 | 2008-02-28 | Advanced Technology Materials Inc | Rectangular parallelepiped fluid storage and quantitative dispensing container |
US7972421B2 (en) | 2002-12-09 | 2011-07-05 | Advanced Technology Materials, Inc. | Rectangular parallelepiped fluid storage and dispensing vessel |
JP2012087930A (en) * | 2002-12-09 | 2012-05-10 | Advanced Technology Materials Inc | Rectangular parallelepiped fluid storage and dispensing vessel |
US9636626B2 (en) | 2002-12-09 | 2017-05-02 | Entegris, Inc. | Rectangular parallelepiped fluid storage and dispensing vessel |
US9062829B2 (en) | 2002-12-09 | 2015-06-23 | Entegris, Inc. | Rectangular parallelepiped fluid storage and dispensing vessel |
US8858685B2 (en) | 2002-12-10 | 2014-10-14 | Advanced Technology Materials, Inc. | Gas storage and dispensing system with monolithic carbon adsorbent |
US9518701B2 (en) | 2002-12-10 | 2016-12-13 | Entegris, Inc. | Gas storage and dispensing system with monolithic carbon adsorbent |
WO2008140047A1 (en) * | 2007-05-10 | 2008-11-20 | Kabushiki Kaisha Toyota Jidoshokki | Hydrogen gas storing device |
US9096433B2 (en) | 2009-11-13 | 2015-08-04 | Commissariat á l'énergie atomique et aux énergies alternatives | Hydrogen storage tank with metal hydrides |
JP2016118299A (en) * | 2009-11-13 | 2016-06-30 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Hydrogen storage tank having metal hydride |
JP2013511003A (en) * | 2009-11-13 | 2013-03-28 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Hydrogen storage tank with metal hydride |
US9234628B2 (en) | 2011-01-19 | 2016-01-12 | Entegris, Inc. | PVDF pyrolyzate adsorbent and gas storage and dispensing system utilizing same |
US9468901B2 (en) | 2011-01-19 | 2016-10-18 | Entegris, Inc. | PVDF pyrolyzate adsorbent and gas storage and dispensing system utilizing same |
US9126139B2 (en) | 2012-05-29 | 2015-09-08 | Entegris, Inc. | Carbon adsorbent for hydrogen sulfide removal from gases containing same, and regeneration of adsorbent |
JP2015096745A (en) * | 2013-11-15 | 2015-05-21 | カヤバ工業株式会社 | Hydrogen storage device |
WO2018092423A1 (en) * | 2016-11-21 | 2018-05-24 | ブラザー工業株式会社 | Hydrogen storage unit and fuel cell system |
JP2018085183A (en) * | 2016-11-21 | 2018-05-31 | ブラザー工業株式会社 | Hydrogen storage unit and fuel cell |
US11626601B2 (en) | 2016-11-21 | 2023-04-11 | Brother Kogyo Kabushiki Kaisha | Hydrogen storage unit and fuel cell system |
CN116182072A (en) * | 2022-12-07 | 2023-05-30 | 陕西榆能集团能源化工研究院有限公司 | Hydrogen purification storage device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8778063B2 (en) | Coiled and microchannel heat exchangers for metal hydride storage systems | |
US6709497B2 (en) | Honeycomb hydrogen storage structure | |
US7112239B2 (en) | Gas storage apparatus | |
US4457136A (en) | Metal hydride reactor | |
US7431756B2 (en) | Modular metal hydride hydrogen storage system | |
US8636836B2 (en) | Finned heat exchangers for metal hydride storage systems | |
US20030209149A1 (en) | Honeycomb hydrogen storage structure | |
JP5760000B2 (en) | Hydrogen storage tank with metal hydride | |
US5661986A (en) | Chemical reactor, refrigerating machine and container provided therewith and reagent cartridge therefor | |
US20050051294A1 (en) | Solid filling tank | |
US6708546B2 (en) | Honeycomb hydrogen storage structure with restrictive neck | |
JPH09242995A (en) | Square heat transfer vessel filled with hydrogen storage alloy for storing hydrogen | |
JP4574783B2 (en) | Hydrogen storage alloy tank | |
JPS6233269A (en) | Heat exchanger utilizing hydrogen storage alloy | |
ES2907065T3 (en) | Reactor for receiving a storage material and manufacturing method thereof | |
EP0061191A1 (en) | Metal hydride reactor | |
JPS5925956B2 (en) | metal hydride container | |
JPH0730878B2 (en) | Container for hydrogen storage alloy | |
JP3626371B2 (en) | Hydrogen supply device for fuel cell | |
JP2000146092A (en) | Occulsion type natural gas storage tank | |
JP3032998B2 (en) | Hydrogen storage alloy holding container | |
JP2001295997A (en) | Hydrogen storage device | |
JPH0253362B2 (en) | ||
JPH07280492A (en) | Heat exchanger using hydrogen absorbing alloy | |
JPH0228796B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050607 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051108 |