JPH0650499A - Hydrogen storage alloy holding container - Google Patents

Hydrogen storage alloy holding container

Info

Publication number
JPH0650499A
JPH0650499A JP4206868A JP20686892A JPH0650499A JP H0650499 A JPH0650499 A JP H0650499A JP 4206868 A JP4206868 A JP 4206868A JP 20686892 A JP20686892 A JP 20686892A JP H0650499 A JPH0650499 A JP H0650499A
Authority
JP
Japan
Prior art keywords
hydrogen
storage alloy
hydrogen storage
heat medium
holding container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4206868A
Other languages
Japanese (ja)
Other versions
JP3032998B2 (en
Inventor
Taichi Saito
太一 齋藤
Takero Sato
健朗 佐藤
Hiroshi Iida
洋 飯田
Kenichi Suwa
健一 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4206868A priority Critical patent/JP3032998B2/en
Publication of JPH0650499A publication Critical patent/JPH0650499A/en
Application granted granted Critical
Publication of JP3032998B2 publication Critical patent/JP3032998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PURPOSE:To store a hydrogen storage alloy holding container in a heat medium pipe line through which heat medium for cooling or heating the holding container flows, along the pipe line by constituting the holding container from a thin teflon pipe in which hydrogen storage alloy is held, so as to obtain an excellent deformability. CONSTITUTION:A hydrogen storage alloy holding container 1 which is laid along a heat medium pipe line 4 through which heat medium for heating or cooling flows, is formed of a thin teflon pipe, and contains therein hydrogen storage alloy 2, and is connected thereto with a hydrogen introducing and discharging pipe connected therein with a filter 3 and a hydrogen introducing and discharging valve 6. Heat medium such as engine cooling water having entered the heat medium pipe line 4 through a heat medium inlet valve 10 heats or cools the container 1, and is then discharged through the heat medium outlet valve 11. At this time, hydrogen is emitted from the heated hydrogen storage alloy, and is then is fed into a hydrogen engine through the hydrogen introducing and discharging valve 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵用金属材料か
ら水素を高密度、安全かつ迅速に吸蔵−放出し得る水素
吸蔵合金貯蔵器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy storage device capable of storing and releasing hydrogen from a hydrogen storage metal material at high density, safely and quickly.

【0002】[0002]

【従来の技術】近年、水素をある種の金属あるいは合金
に吸蔵させて金属水素化物という形で貯蔵、輸送した
り、水素の分離、精製に利用したり、ヒートポンプ、熱
の貯蔵などに利用する方法が提案されている。金属水素
化物をつくる合金のうち−20℃〜300℃において水
素を吸蔵放出できる合金として、LaNi5 、CaNi
5、Mg2 Ni、FeTiなどが代表的なものである。
これらの合金は特に水素吸蔵合金と呼ばれる。水素吸蔵
合金は、水素の吸蔵放出を迅速に行わせるため、表面積
を増やすため通常粉末状で用いられる。
2. Description of the Related Art In recent years, hydrogen has been stored in certain metals or alloys and stored and transported in the form of metal hydrides, used for hydrogen separation and purification, and used for heat pumps and heat storage. A method has been proposed. Among the alloys that form metal hydrides, LaNi 5 , CaNi are alloys that can store and release hydrogen at -20 ° C to 300 ° C.
5 , Mg 2 Ni, FeTi, etc. are typical.
These alloys are especially called hydrogen storage alloys. The hydrogen storage alloy is usually used in the form of powder to increase the surface area in order to rapidly store and release hydrogen.

【0003】水素吸蔵合金を用いたシステムで重要なポ
イントは、水素の吸蔵−放出速度を増大させることであ
り、水素の吸蔵−放出速度を増大させるためには、水素
の吸蔵においては合金充填層内における反応熱を効率よ
く水素吸蔵合金充填容器の外部に取り除き、また水素を
放出する際には外部から合金充填層内へ反応熱に相当す
る熱を効率よく供給しなければならない。このため水素
吸蔵合金を保持する容器は図6に示すように水素吸蔵合
金保持容器41中に容器内熱媒配管44を設け、その中
に熱媒を流し、水素吸蔵合金42の発熱反応もしくは吸
熱反応に際して熱を除去するかもしくは供給して水素化
反応または脱水素化反応を促進し、フィルター43を通
して水素の迅速な吸蔵−放出を行っている。また、図7
に示すように、水素吸蔵合金保持容器51の外側の容器
外熱媒配管54に熱媒を流し、水素吸蔵合金52の発熱
ないしは吸熱反応に際して、熱の除去もしくは供給を行
って水素化反応または脱水素化反応を促進し、フィルタ
ー53を通して水素の迅速な吸蔵−放出を行っている。
An important point in a system using a hydrogen storage alloy is to increase the hydrogen storage-release rate. In order to increase the hydrogen storage-release rate, an alloy packed bed is used for storing hydrogen. The heat of reaction inside the container must be efficiently removed to the outside of the hydrogen storage alloy filling container, and when hydrogen is released, heat corresponding to the reaction heat must be supplied efficiently from the outside into the alloy packed bed. Therefore, as for the container for holding the hydrogen storage alloy, as shown in FIG. 6, an in-container heat medium pipe 44 is provided in the hydrogen storage alloy holding container 41, and the heat medium is flown therein to generate an exothermic reaction or heat absorption of the hydrogen storage alloy 42. During the reaction, heat is removed or supplied to promote the hydrogenation reaction or dehydrogenation reaction, and the hydrogen is rapidly absorbed and released through the filter 43. Also, FIG.
As shown in FIG. 5, a heat medium is flown into the external heat medium pipe 54 outside the hydrogen storage alloy holding container 51, and when the hydrogen storage alloy 52 generates heat or undergoes an endothermic reaction, heat is removed or supplied to carry out the hydrogenation reaction or dehydration. The oxidization reaction is promoted, and hydrogen is rapidly absorbed and released through the filter 53.

【0004】水素吸蔵合金は、水素の吸蔵時に金属粉末
の体積が15〜30%程度膨張するため、水素の吸蔵−
放出に伴い合金の膨張−収縮が起こると共に、合金の微
粉化も進行するため、容器下部において微粉末が厚密化
しやすく、容器に非常に大きい応力がかかることが指摘
されている。以上のことより、水素吸蔵合金を充填する
容器に対する水素吸蔵合金の熱伝導率改善、微粉化防
止、合金の膨張収縮時の容器に対する応力の緩和を目的
に、これまで種々の提案がなされてきた。
In the hydrogen storage alloy, the volume of the metal powder expands by about 15 to 30% when storing hydrogen, so that
It has been pointed out that expansion and contraction of the alloy occur along with the release, and the pulverization of the alloy also progresses, so that the fine powder easily thickens in the lower part of the container and a very large stress is applied to the container. From the above, various proposals have been made so far for the purpose of improving the thermal conductivity of the hydrogen storage alloy with respect to the container filled with the hydrogen storage alloy, preventing pulverization, and relaxing the stress on the container during expansion and contraction of the alloy. .

【0005】合金充填層の熱伝導改善の方法として、
(1)容器内に多数のフィン付き熱媒管を縦横に配置し
て、合金粉末との接触面積を増大させるという容器構造
を改善する方法、(2)Alなどの高熱伝導性の発泡金
属の空隙に水素吸蔵合金粉末を充填し、加圧、焼成して
ペレット化する方法(特開昭55−126199号公
報)、水素吸蔵合金粉末にCu、Alなどの金属粉末を
添加、混合し、圧縮体あるいは焼結体とする方法(特開
昭55−90401号公報)、また同様に、水素吸蔵合
金粉末にCu、Ni、Alなどの金属粉末を添加、混合
し、活性化処理をして水素を合金中に吸蔵させた状態で
CO、SO2 などで合金表面を不活性化(被毒作用)
し、その後プレス成形、焼結する方法(特開昭56−1
09802号公報)、容器である伝熱体と水素吸蔵合金
粉末とを一体に加圧成形した方法(特開昭62−196
500号公報)など、粉末の圧縮成形体による合金粉末
充填層の熱伝導率の改善による方法、(3)合金粉末を
外部より容器を貫通するシャフトを用いて攪拌し、流動
化させることにより伝熱を良好にする方法(特開昭60
−60400号公報)などがある。
As a method for improving the thermal conductivity of the alloy packed bed,
(1) A method of improving the container structure in which a large number of heat transfer tubes with fins are arranged vertically and horizontally in the container to increase the contact area with the alloy powder, (2) of a foam metal with high thermal conductivity such as Al. A method in which voids are filled with hydrogen-absorbing alloy powder, and pressurized and fired to form pellets (JP-A-55-126199), metal powders such as Cu and Al are added to the hydrogen-absorbing alloy powder, mixed, and compressed. Body or sintered body (Japanese Patent Application Laid-Open No. 55-90401), and similarly, metal powders such as Cu, Ni, and Al are added to and mixed with the hydrogen-absorbing alloy powder, and activated for hydrogen treatment. Deactivates the alloy surface with CO, SO 2 etc. while occluding the alloy in the alloy (poisoning effect)
And then press-molding and sintering (JP-A-56-1).
No. 09802), a method of integrally press-molding a heat transfer body, which is a container, and a hydrogen storage alloy powder (JP-A-62-196).
No. 500), etc., by improving the thermal conductivity of an alloy powder packed layer by a powder compression molding, (3) transferring the alloy powder by agitating it from the outside using a shaft penetrating the container and fluidizing it. Method for improving heat (Japanese Patent Laid-Open No. Sho 60)
-60400).

【0006】合金の微粉化防止を行う方法としては、前
記(2)の方法による成形体にする方法、合金に第三成
分を加えて微粉化しにくい合金をつくる方法や急冷によ
るアモルファス水素吸蔵合金をつくる方法等の冶金学的
な改善が提案されている。合金の膨張収縮時の容器に対
する応力を緩和する方法としては、水素ガスは透過する
が、水素吸蔵合金は透過しない弾性を有する多孔体を容
器中に設置する方法(特開昭57−94198号公報)
や、前記(3)の合金を流動化させる方法等が提案され
ている。
As a method for preventing pulverization of the alloy, a method of forming a compact by the method of (2), a method of adding a third component to the alloy to form an alloy which is difficult to pulverize, or an amorphous hydrogen storage alloy by quenching is used. Metallurgical improvements such as the method of making are proposed. As a method for relieving the stress on the container when the alloy expands and contracts, a method is provided in which a porous body having elasticity that allows hydrogen gas to permeate but does not allow hydrogen storage alloy to permeate is installed in the container (JP-A-57-94198). )
Alternatively, a method of fluidizing the alloy of (3) above has been proposed.

【0007】水素吸蔵合金を保持する容器は、容器壁を
透過しやすい水素を封入するものであること、水素圧が
通常8 〜30kg/cm2 の圧力下で行われること、
合金の反応熱を迅速に除去または加える必要があること
から容器は金属で製作されている。
The container holding the hydrogen-absorbing alloy must contain hydrogen that easily permeates the container wall, and the hydrogen pressure is usually 8 To be carried out under a pressure of ~ 30 kg / cm 2 .
The container is made of metal because the heat of reaction of the alloy needs to be quickly removed or added.

【0008】[0008]

【発明が解決しようとする課題】水素吸蔵合金を保持す
る容器は金属製であり剛性があることより、複雑な形状
の容器を製作する場合には、合金充填層の熱伝導率と膨
張収縮時の応力緩和の観点から内部構造に制約があると
共に、製作コストが高くなるという問題がある。本発明
は、形状可変性を有するとともに、合金の反応熱を迅速
に除去または加えることが可能な水素吸蔵合金保持容器
を提供するものである。
Since the container holding the hydrogen storage alloy is made of metal and has rigidity, when manufacturing a container having a complicated shape, the thermal conductivity of the alloy packed bed and the expansion / shrinkage From the viewpoint of stress relaxation, there is a problem that the internal structure is restricted and the manufacturing cost is increased. The present invention provides a hydrogen storage alloy holding container which has shape changeability and can rapidly remove or add reaction heat of an alloy.

【0009】[0009]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記のとおりである。 (1) テフロン細管により構成され、内部に水素吸蔵
合金を保有し、フィルターを介して密閉可能な水素導入
導出口弁を備え、加熱または冷却用の熱媒が流れる熱媒
配管中に沿うように設置されていることを特徴とする水
素吸蔵合金保持容器。
The subject matter of the present invention is as follows. (1) It is composed of a Teflon thin tube, has a hydrogen storage alloy inside, and is equipped with a hydrogen inlet / outlet valve that can be sealed through a filter so that it runs along a heat medium pipe through which a heat medium for heating or cooling flows. A hydrogen storage alloy holding container, which is installed.

【0010】(2) 水素吸蔵合金を充填したテフロン
細管を複数本用い、前記テフロン細管の端を集合した共
通部分を設け、前記共通部分にフィルターを介して水素
ガスの導入及び導出のための開口を備えていることを特
徴とする水素吸蔵合金保持容器。 (3) テフロン細管を構成するテフロンが、水素の透
過を遮断する膜をテフロン膜が両側から挟んだ複合構造
であることを特徴とする前項1または2記載の水素吸蔵
合金保持容器。
(2) A plurality of Teflon capillaries filled with a hydrogen storage alloy are used, a common part is provided where the ends of the Teflon capillaries are gathered, and an opening for introducing and discharging hydrogen gas is provided in the common part through a filter. A storage container for hydrogen storage alloy, comprising: (3) The hydrogen storage alloy holding container according to the above 1 or 2, wherein the Teflon constituting the Teflon thin tube has a composite structure in which a Teflon membrane sandwiches a membrane that blocks hydrogen permeation from both sides.

【0011】[0011]

【作用】水素吸蔵合金を充填する管の最小厚さは、使用
水素圧力と管の内径の積に比例し、管を構成する材料の
許容引張応力に反比例する。このため、管の内径を小さ
くすることで耐圧性を向上させることができると共に、
管の最小厚さを小さくすることができ、容器外壁からの
熱の流入、流出を迅速に行うことができる。またテフロ
ンを用いることにより200℃程度の高温まで使用する
ことができると共に、高分子材料であることから形状可
変性もあり、合金の膨張収縮による応力の集中も緩和す
ることができる。テフロン膜は水素の透過量が少ない膜
であるが、図5に示すように、テフロン膜51と水素の
透過量が微少である膜52を層状に張り合わせ、このテ
フロン複合膜53を管に用いることにより、水素の透過
を抑えることができる。水素の透過量が微少である膜と
しては、ポリ塩化ビニリデン膜、ポリビニルアルコール
膜等を用いることができる。水素の透過量が微少である
膜にテフロン膜を複合させることによって、膜強度、耐
食性を増加することが可能であるから、幅広い分野で本
発明の水素吸蔵合金保持容器を用いることができる。
The minimum thickness of the tube filled with the hydrogen storage alloy is proportional to the product of the hydrogen pressure used and the inner diameter of the tube, and is inversely proportional to the allowable tensile stress of the material forming the tube. Therefore, the pressure resistance can be improved by reducing the inner diameter of the pipe, and
The minimum thickness of the tube can be reduced, and heat can flow in and out from the outer wall of the container quickly. Further, by using Teflon, it is possible to use it up to a high temperature of about 200 ° C., and since it is a polymer material, the shape can be changed, and the concentration of stress due to the expansion and contraction of the alloy can be relieved. The Teflon film is a film having a small amount of hydrogen permeation, but as shown in FIG. 5, a Teflon film 51 and a film 52 having a small amount of hydrogen permeation are laminated in layers, and this Teflon composite film 53 is used as a tube. Thereby, the permeation of hydrogen can be suppressed. A polyvinylidene chloride film, a polyvinyl alcohol film, or the like can be used as the film having a small amount of hydrogen permeation. By combining a Teflon membrane with a membrane having a small amount of hydrogen permeation, it is possible to increase membrane strength and corrosion resistance, so that the hydrogen storage alloy holding container of the present invention can be used in a wide variety of fields.

【0012】[0012]

【実施例】以下、本発明の実施例について詳細に説明す
る。 実施例1 図1は本発明による水素吸蔵合金保持容器1の縦断面を
模式的に示し、図2は本発明による水素吸蔵合金保持容
器1の横断面を模式的に示す。水素吸蔵合金保持容器1
は、テフロン細管7により構成され、内部に水素吸蔵合
金2を保有し、フィルター3を介して密閉可能な水素導
入導出弁6を備え、加熱または冷却用の熱媒が流れる熱
媒配管4中に沿うように設置されている。熱媒は、熱媒
入り口弁10を通って、熱媒配管4に入り、ここで水素
吸蔵合金保持容器1を加熱または冷却し、熱媒出口弁1
1より排出される。例えば水素エンジンで加熱されたエ
ンジン冷却水(約80℃)は、熱媒入り口弁10を通っ
て、熱媒配管4に入る。
EXAMPLES Examples of the present invention will be described in detail below. Example 1 FIG. 1 schematically shows a vertical cross section of a hydrogen storage alloy holding container 1 according to the present invention, and FIG. 2 schematically shows a horizontal cross section of a hydrogen storage alloy holding container 1 according to the present invention. Hydrogen storage alloy holding container 1
Is composed of a Teflon thin tube 7, has a hydrogen storage alloy 2 inside, and is provided with a hydrogen introduction / extraction valve 6 that can be sealed via a filter 3, and in a heat medium pipe 4 through which a heat medium for heating or cooling flows. It is installed along. The heat medium passes through the heat medium inlet valve 10 and enters the heat medium pipe 4, where the hydrogen storage alloy holding container 1 is heated or cooled, and the heat medium outlet valve 1
Emitted from 1. For example, engine cooling water (about 80 ° C.) heated by a hydrogen engine passes through the heat medium inlet valve 10 and enters the heat medium pipe 4.

【0013】外径10mm、内径8mm、長さ500m
mのテフロン細管7を用いて水素吸蔵合金保持容器1を
制作し、図1の様に配置した後、テフロン細管中に、水
素吸蔵合金2としてLaNi5 を80g充填し、活性化
操作(水素10kg/cm2加圧−真空排気を繰り返
し、水素吸蔵合金中に十分に水素を吸蔵させる操作)を
行った後、水素吸蔵吸蔵合金保持容器1に水素を水素圧
9.5kg/cm2 で十分に吸蔵させた。熱媒(本実施
例では水素エンジンで加熱された冷却水)により水素吸
蔵合金保持容器1を加熱し、水素の放出を行った結果、
LaNi5 の最大水素吸蔵量の90%まで5分以内に放
出させることができた。この水素ガスをフィルター3を
通して水素導入導出弁6より取り出し水素エンジンに利
用する。熱媒配管4を出た熱媒(冷却水)は熱媒出口弁
11を通り、図に示されないラジエターを通って再び水
素エンジンの冷却用熱媒(冷却水)として使用される。
このように、テフロン細管を用いた水素吸蔵合金保持容
器を用いることにより、限られたスペースを有効に用い
ることができると共に、水素を水素吸蔵合金より迅速に
放出できる。
Outer diameter 10 mm, inner diameter 8 mm, length 500 m
The hydrogen storage alloy holding container 1 was manufactured using the Teflon thin tube 7 of m and arranged as shown in FIG. 1. Then, 80 g of LaNi 5 as the hydrogen storage alloy 2 was filled in the Teflon thin tube, and the activation operation (hydrogen 10 kg / Cm 2 Pressurization-vacuum evacuation is repeated until hydrogen is sufficiently absorbed in the hydrogen storage alloy), and then hydrogen is sufficiently stored in the hydrogen storage and storage alloy holding container 1 at a hydrogen pressure of 9.5 kg / cm 2. I let it occlude. As a result of heating the hydrogen storage alloy holding container 1 with a heating medium (cooling water heated by a hydrogen engine in this embodiment) to release hydrogen,
It was possible to release up to 90% of the maximum hydrogen storage amount of LaNi 5 within 5 minutes. This hydrogen gas is taken out from the hydrogen introduction / extraction valve 6 through the filter 3 and used for the hydrogen engine. The heat medium (cooling water) exiting the heat medium pipe 4 passes through the heat medium outlet valve 11, passes through a radiator (not shown), and is used again as a heat medium (cooling water) for cooling the hydrogen engine.
As described above, by using the hydrogen storage alloy holding container using the Teflon thin tube, it is possible to effectively use the limited space and release hydrogen more quickly than the hydrogen storage alloy.

【0014】実施例2 図3は本発明による別の水素吸蔵合金保持容器21の縦
断面を模式的に示し、図4は本発明による別の水素吸蔵
合金保持容器21の横断面を模式的に示す。水素吸蔵合
金保持容器21は水素吸蔵合金22を充填した7本のテ
フロン細管27からなり、テフロン細管27の端部には
集合した共通部分25を設け、前記共通部分にフィルタ
ー23を介して水素ガスの導入及び導出のための開口2
6を備えている。この水素吸蔵合金保持容器21は、加
熱または冷却用の熱媒が流れる熱媒配管24中に設置さ
れている。熱媒は、熱媒入り口弁30を通って、熱媒配
管24に入り、ここで水素吸蔵合金保持容器21を加熱
または冷却し、熱媒出口弁31より排出される。
Embodiment 2 FIG. 3 schematically shows a vertical cross section of another hydrogen storage alloy holding container 21 according to the present invention, and FIG. 4 schematically shows a horizontal cross section of another hydrogen storage alloy holding container 21 according to the present invention. Show. The hydrogen storage alloy holding container 21 is composed of seven Teflon thin tubes 27 filled with hydrogen storage alloy 22, a common portion 25 is provided at the end of the Teflon thin tube 27, and a hydrogen gas is passed through the filter 23 at the common portion. 2 for introducing and deriving
6 is provided. The hydrogen storage alloy holding container 21 is installed in a heat medium pipe 24 through which a heat medium for heating or cooling flows. The heat medium passes through the heat medium inlet valve 30 and enters the heat medium pipe 24, where the hydrogen storage alloy holding container 21 is heated or cooled, and is discharged from the heat medium outlet valve 31.

【0015】外径10mm、内径8mm、長さ500m
mのテフロン細管27を7本用いて水素吸蔵合金保持容
器21を制作し、図3の様に配置した後、テフロン細管
中に、水素吸蔵合金22としてLaNi5 を560g
(1本あたり80g)充填し、活性化操作を行った後、
水素吸蔵合金保持容器21に水素を水素圧9.5kg/
cm2 で十分に吸蔵させた。実施例1と同様に水素エン
ジンの冷却水を用いて水素吸蔵合金保持容器21を加熱
したところ、水素は水素吸蔵合金22中から放出し、共
通部分25にて個々のテフロン細管の放出圧が均圧化す
るとともに迅速に水素を放出させることができ、LaN
5 の最大水素吸蔵量の90%まで5分以内に放出でき
た。このように、水素吸蔵合金を充填したテフロン細管
を複数本用い、テフロン細管の端を集合した共通部分を
設けることにより、多量の水素吸蔵合金を用いても、個
々のテフロン細管が独立しているため、熱伝導効率がよ
く、形状可変性があるために水素の吸蔵放出を迅速に行
うことができると共に、限られたスペースを有効に用い
ることができる。
Outer diameter 10 mm, inner diameter 8 mm, length 500 m
A hydrogen storage alloy holding container 21 was produced using seven Teflon thin tubes 27 of m and arranged as shown in FIG. 3. Then, 560 g of LaNi 5 as hydrogen storage alloy 22 was placed in the Teflon thin tube.
After filling (80 g per one) and activating,
Hydrogen is stored in the hydrogen storage alloy holding container 21 at a hydrogen pressure of 9.5 kg /
Sufficient occlusion was performed at cm 2 . When the hydrogen storage alloy holding container 21 was heated by using the cooling water of the hydrogen engine in the same manner as in Example 1, hydrogen was released from the hydrogen storage alloy 22 and the release pressure of each Teflon thin tube was made uniform at the common portion 25. The pressure can be increased and hydrogen can be rapidly released.
Up to 90% of the maximum hydrogen storage amount of i 5 could be released within 5 minutes. As described above, by using a plurality of Teflon thin tubes filled with hydrogen storage alloy and providing a common portion where the ends of the Teflon thin tubes are gathered, each Teflon thin tube is independent even if a large amount of hydrogen storage alloy is used. Therefore, the heat conduction efficiency is good and the shape is variable, so that hydrogen can be absorbed and released rapidly, and the limited space can be effectively used.

【0016】実施例3 テフロン細管を構成するテフロンが、図5に示すよう
に、テフロン膜51と水素の透過量が微少である膜52
を層状に張り合わせたテフロン複合膜53であり、これ
を管に用いた。水素の透過量が微少である膜として、ポ
リ塩化ビニリデン膜を用いた。水素吸蔵合金保持容器の
構成は図1と同様であり、実施例1と同様な水素吸蔵及
び水素放出操作を行った。その結果、水素をLaNi5
の最大水素吸蔵量の90%まで5分以内に迅速に放出で
きると共に、テフロン複合膜の透過量は7×10-9cm
3 −H2 /(cm2 −複合膜・min・cmHg)とな
り、テフロン膜を用いた場合の1/100以下となっ
た。このようにテフロン複合膜53を管に用いることに
より、限られたスペースを有効に用いることができると
共に、水素を水素吸蔵合金より迅速に放出できるだけで
なく、テフロン膜の耐熱性、耐食性を利用しながら、内
部の膜により水素の透過を抑えることができる。
Example 3 As shown in FIG. 5, the Teflon constituting the Teflon thin tube is a Teflon film 51 and a film 52 having a small hydrogen permeation amount.
Is a Teflon composite film 53 that is laminated in layers, and this is used for a tube. A polyvinylidene chloride film was used as a film having a small amount of hydrogen permeation. The configuration of the hydrogen storage alloy holding container was the same as that in FIG. 1, and the same hydrogen storage and hydrogen release operations as in Example 1 were performed. As a result, hydrogen was replaced with LaNi 5
The maximum hydrogen storage capacity of 90% can be rapidly released within 5 minutes, and the permeation rate of the Teflon composite membrane is 7 × 10 -9 cm.
It was 3- H 2 / (cm 2 -composite film · min · cmHg), which was 1/100 or less of that when the Teflon film was used. By using the Teflon composite film 53 for the tube in this way, it is possible to effectively use the limited space and not only to release hydrogen more quickly than the hydrogen storage alloy, but also to utilize the heat resistance and corrosion resistance of the Teflon film. However, hydrogen can be suppressed by the internal film.

【0017】[0017]

【発明の効果】本発明に従って、テフロン細管を用いる
ことで、水素の漏れが極めて少なく、水素を迅速に吸
蔵、放出できることに加え、形状可変性により限られた
スペースを有効に用いることができるので、水素吸蔵合
金貯蔵装置、水素精製装置、アクチュエーターなどのシ
ステムへの適用による本発明の産業上の有用性は極めて
顕著である。
EFFECTS OF THE INVENTION According to the present invention, by using a Teflon thin tube, leakage of hydrogen is extremely small, hydrogen can be quickly absorbed and released, and a limited space can be effectively used due to the shape variability. Industrial applicability of the present invention by application to systems such as hydrogen storage alloy storage devices, hydrogen purification devices, and actuators is extremely remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による水素吸蔵合金保持容器の縦断面を
模式的に示した図である。
FIG. 1 is a diagram schematically showing a vertical cross section of a hydrogen storage alloy holding container according to the present invention.

【図2】本発明による水素吸蔵合金保持容器の横断面を
模式的に示した図である。
FIG. 2 is a diagram schematically showing a cross section of a hydrogen storage alloy holding container according to the present invention.

【図3】本発明による別の水素吸蔵合金保持容器の縦断
面を模式的に示した図である。
FIG. 3 is a diagram schematically showing a vertical cross section of another hydrogen storage alloy holding container according to the present invention.

【図4】本発明による別の水素吸蔵合金保持容器の横断
面を模式的に示した図である。
FIG. 4 is a diagram schematically showing a cross section of another hydrogen storage alloy holding container according to the present invention.

【図5】テフロン複合膜の断面を模式的に示した図であ
る。
FIG. 5 is a view schematically showing a cross section of a Teflon composite film.

【図6】熱媒管を容器中に設けた水素吸蔵合金を保持す
る容器の断面図である。
FIG. 6 is a cross-sectional view of a container holding a hydrogen storage alloy in which a heat medium pipe is provided in the container.

【図7】熱媒管を容器の外部に設けた水素吸蔵合金を保
持する容器の断面図である。
FIG. 7 is a cross-sectional view of a container holding a hydrogen storage alloy in which a heat transfer medium pipe is provided outside the container.

【符号の説明】[Explanation of symbols]

1,21,41,51 水素吸蔵合金保持容器 2,22,42,52 水素吸蔵合金 3,23,43,53 フィルター 4,24 熱媒配管 44 容器内熱媒配管 54 容器外熱媒配管 25 共通部分 6,26 水素導入導出口弁 7,27 テフロン細管 10,30 熱媒入り口弁 11,31 熱媒出口弁 51 テフロン膜 52 水素の透過量が微少である膜 53 テフロン複合膜 1,21,41,51 Hydrogen storage alloy holding container 2,22,42,52 Hydrogen storage alloy 3,23,43,53 Filter 4,24 Heat medium pipe 44 Heat medium pipe inside container 54 Heat medium pipe outside container 25 Common Portion 6,26 Hydrogen inlet / outlet valve 7,27 Teflon thin tube 10,30 Heat medium inlet valve 11,31 Heat medium outlet valve 51 Teflon membrane 52 Membrane with a small amount of hydrogen permeation 53 Teflon composite membrane

───────────────────────────────────────────────────── フロントページの続き (72)発明者 諏訪 健一 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenichi Suwa 20-1 Shintomi, Futtsu City, Chiba Shin Nippon Steel Co., Ltd. Technology Development Division

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 テフロン細管により構成され、内部に水
素吸蔵合金を保有し、フィルターを介して密閉可能な水
素導入導出口弁を備え、加熱または冷却用の熱媒が流れ
る熱媒配管中に沿うように設置されていることを特徴と
する水素吸蔵合金保持容器。
1. A Teflon thin tube is provided, which has a hydrogen storage alloy inside and is equipped with a hydrogen inlet / outlet valve that can be sealed via a filter, and runs along a heat medium pipe through which a heat medium for heating or cooling flows. A hydrogen storage alloy holding container characterized by being installed as described above.
【請求項2】 水素吸蔵合金を充填したテフロン細管を
複数本用い、前記テフロン細管の端を集合した共通部分
を設け、前記共通部分にフィルターを介して水素ガスの
導入及び導出のための開口を備えていることを特徴とす
る水素吸蔵合金保持容器。
2. A plurality of Teflon thin tubes filled with a hydrogen-absorbing alloy are used, a common portion where the ends of the Teflon thin tubes are collected is provided, and an opening for introducing and discharging hydrogen gas is provided in the common portion through a filter. A storage container for hydrogen storage alloy characterized by being provided.
【請求項3】 テフロン細管を構成するテフロンが、水
素の透過を遮断する膜をテフロン膜が両側から挟んだ複
合構造であることを特徴とする請求項1または請求項2
記載の水素吸蔵合金保持容器。
3. The Teflon constituting the Teflon thin tube has a composite structure in which a Teflon membrane sandwiches a membrane that blocks hydrogen permeation from both sides.
The hydrogen storage alloy holding container described.
JP4206868A 1992-08-03 1992-08-03 Hydrogen storage alloy holding container Expired - Fee Related JP3032998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4206868A JP3032998B2 (en) 1992-08-03 1992-08-03 Hydrogen storage alloy holding container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4206868A JP3032998B2 (en) 1992-08-03 1992-08-03 Hydrogen storage alloy holding container

Publications (2)

Publication Number Publication Date
JPH0650499A true JPH0650499A (en) 1994-02-22
JP3032998B2 JP3032998B2 (en) 2000-04-17

Family

ID=16530373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4206868A Expired - Fee Related JP3032998B2 (en) 1992-08-03 1992-08-03 Hydrogen storage alloy holding container

Country Status (1)

Country Link
JP (1) JP3032998B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160201A (en) * 1997-08-04 1999-03-02 Sanritsuku:Kk Storage container for hydrogen storage alloy
CN102401233A (en) * 2011-10-20 2012-04-04 林德工程(杭州)有限公司 Hydrogen storing tank based on metal hydrogen storage principle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160201A (en) * 1997-08-04 1999-03-02 Sanritsuku:Kk Storage container for hydrogen storage alloy
CN102401233A (en) * 2011-10-20 2012-04-04 林德工程(杭州)有限公司 Hydrogen storing tank based on metal hydrogen storage principle

Also Published As

Publication number Publication date
JP3032998B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
JPS61134593A (en) Heat exchange device using hydrogen occlusion alloy
US4396114A (en) Flexible means for storing and recovering hydrogen
JPH0527563B2 (en)
JPH0650499A (en) Hydrogen storage alloy holding container
JP2004205197A (en) Hydrogen storage alloy, hydrogen storage alloy unit, and heat pump and hydrogen compressor using hydrogen storage alloy
JPS6052360B2 (en) hydrogen storage device
US7318520B2 (en) Flexible and semi-permeable means of hydrogen delivery in storage and recovery systems
JPH09242995A (en) Square heat transfer vessel filled with hydrogen storage alloy for storing hydrogen
JP4098043B2 (en) Method for producing hydrogen storage alloy storage container
JPH0524843B2 (en)
JPH07280492A (en) Heat exchanger using hydrogen absorbing alloy
JPS6131355B2 (en)
JPS6366761B2 (en)
JPH07269795A (en) Hydrogen storage alloy holding container
JPS6126719Y2 (en)
JPS6145440Y2 (en)
JPS6044698A (en) Hydrogen storing container
JPS6044699A (en) Hydrogen storing container
JPH0253362B2 (en)
JP3640476B2 (en) Reaction vessel for solid gas reaction powder
JPH0120978Y2 (en)
JPS58184399A (en) Occlusion and discharge of hydrogen gas
JPH0730878B2 (en) Container for hydrogen storage alloy
JPH01294501A (en) Hydrogen gas purifier and method for purification
JPH07149501A (en) Vessel holding hydrogen-occluding alloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991221

LAPS Cancellation because of no payment of annual fees