JPS6126719Y2 - - Google Patents

Info

Publication number
JPS6126719Y2
JPS6126719Y2 JP1982157398U JP15739882U JPS6126719Y2 JP S6126719 Y2 JPS6126719 Y2 JP S6126719Y2 JP 1982157398 U JP1982157398 U JP 1982157398U JP 15739882 U JP15739882 U JP 15739882U JP S6126719 Y2 JPS6126719 Y2 JP S6126719Y2
Authority
JP
Japan
Prior art keywords
hydrogen
container
metal
powder
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982157398U
Other languages
Japanese (ja)
Other versions
JPS5962400U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15739882U priority Critical patent/JPS5962400U/en
Publication of JPS5962400U publication Critical patent/JPS5962400U/en
Application granted granted Critical
Publication of JPS6126719Y2 publication Critical patent/JPS6126719Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

【考案の詳細な説明】 本考案は水素吸蔵体充填用圧力容器に関する。[Detailed explanation of the idea] The present invention relates to a pressure vessel for filling a hydrogen absorber.

最近水素を容易に吸蔵する材料例えばTi、
V、Ti、Fe、Mg2Ni、LaNi5のような金属粉末を
利用した水素貯蔵、輸送、廃熱回収、コンプレツ
サー、高純度水素精製、動力変換、あるいは燃料
電池などへの実用研究が盛んに試みられている。
Recently, materials that easily absorb hydrogen, such as Ti,
Practical research on hydrogen storage, transportation, waste heat recovery, compressors, high-purity hydrogen purification, power conversion, and fuel cells using metal powders such as V, Ti, Fe, Mg 2 Ni, and LaNi 5 is active. is being attempted.

ところで、金属粉末に水素を吸蔵させる際に
は、多量の熱を発生し、この熱を速やかに除去し
ないと局部的な発熱によつて水素の均一な吸蔵が
行なわれてないばかりか、吸蔵により生成した金
属水素化物の解離による水素の放出が起り、円滑
な吸蔵反応は著しく阻害される。そして、この水
素吸蔵時の発熱を除去するために、従来は金網や
多孔質の金属からなる管等の容器内に水素吸蔵用
の金属粉末を収容し、この金網や多孔質金属から
なる容器を介して吸蔵用金属と水素ガスとを接触
させ、容器周囲に冷却媒体を流して発生熱を除去
する手段、あるいは水素吸蔵用の金属粉末の中に
金属小片、ステンレスウールなどを充填し、熱伝
導率の改善を試みる手段がとられていた。しかし
ながら、金属水素化物は超微細粉(5μ以下)で
熱の不良導体であり、又、水素の比熱が小さく熱
伝導率も小さいために発生熱の伝導速度が遅く、
発生熱の効果的な除去が困難であつた。更に悪い
ことには、金属粉末あるいは金属水素化物は比重
が極めて小さいので水素の流れにより粉末移動を
生じ、又、金属粉末は水素ガスを吸蔵する際に膨
脹して緻密になるので容器壁部に局部的に非常に
大きな応力がかかる危険があり、又これにより水
素ガスがますます浸透しにくく、かつ発生熱がよ
り蓄積されて不均一な反応が起り易くなる欠点が
あつた。
By the way, when hydrogen is absorbed into metal powder, a large amount of heat is generated, and if this heat is not quickly removed, hydrogen will not be absorbed uniformly due to localized heat generation, and the absorption will cause Hydrogen is released due to dissociation of the generated metal hydride, and the smooth storage reaction is significantly inhibited. In order to eliminate the heat generated during hydrogen absorption, metal powder for hydrogen storage is conventionally housed in a container such as a wire mesh or porous metal tube; A method for removing the generated heat by bringing the storage metal into contact with hydrogen gas through a container and flowing a cooling medium around the container, or by filling small pieces of metal, stainless steel, etc. into the metal powder for hydrogen storage Steps were taken to try to improve the rate. However, metal hydrides are ultrafine powders (less than 5μ) and are poor conductors of heat, and the specific heat of hydrogen is small and the thermal conductivity is low, so the conduction rate of generated heat is slow.
It was difficult to effectively remove the generated heat. To make matters worse, the metal powder or metal hydride has an extremely low specific gravity, so the flow of hydrogen causes the powder to move, and when the metal powder absorbs hydrogen gas, it expands and becomes dense, causing it to stick to the container wall. There is a risk that a very large stress will be applied locally, and this has the disadvantage that it becomes increasingly difficult for hydrogen gas to penetrate, and that the generated heat is more likely to accumulate, making it more likely that non-uniform reactions will occur.

このような欠点から従来の金属水素化物粉末の
充填密度は安全上約50%以下にとられなければな
らなかつた。
Due to these drawbacks, the packing density of conventional metal hydride powders had to be kept at about 50% or less for safety reasons.

ところで、上記従来の容器内における仕切板、
パイプ、金網、金属小片、金属製繊維などの使用
目的は超微粉末である水素吸蔵体の飛散移動の防
止および熱伝導性の改善にあつたが、従来のステ
ンレス、鉄製のものは粉末移動を完全に防止する
ことは不可能であり、このため粉末移動を極力小
さくする必要から、導入水素ガスの流量および圧
力を制限した方法により実施していた。しかしな
がらそれにしても、水素吸収および分解反応を多
数回繰返し行なうと、容器の底部あるいは粉末移
動により、塊状化した部分で発生する内部応力に
より容器内に設置する仕切板、金属小片、金属製
繊維、パイプは変形が使用回数とともに進行し、
仕切板は粉末飛散防止機能を失い、パイプ、金網
は圧縮応力のためつぶれ、水素の均一なる供給、
排出機能を失い、同様に金属小片、金属製繊維
は、変形により団塊化が進行し、水素吸蔵体との
接触面積が小さくなり、あるいは内部で水素吸蔵
体と共に移動させられ、不均一な位置に存在する
ため、熱伝導改良のための役割を失う結果とな
る。したがつて、容器内に設置あるいは充填する
物体は、安全面から必要以上の機械的強度をもつ
た肉厚の材料で作製されてきた。このため、容器
および設置物の全体の重量が大きくなるばかり
か、容器の顕熱量が大きくなり過ぎて金属水素化
物を利用した機器の運転効率を著しく小さくして
いた。
By the way, the partition plate in the above-mentioned conventional container,
The purpose of using pipes, wire mesh, metal pieces, metal fibers, etc. was to prevent the scattering and movement of the hydrogen storage material, which is an ultrafine powder, and to improve thermal conductivity, but it was impossible to completely prevent the powder movement with conventional stainless steel or iron products, so the flow rate and pressure of the introduced hydrogen gas were restricted in order to minimize the powder movement. However, even with this, when hydrogen absorption and decomposition reactions are repeated many times, the partition plate, metal pieces, metal fibers, and pipes installed in the container are deformed with the number of uses due to internal stress generated at the bottom of the container or in the part that has become agglomerated due to the powder movement,
The partition plate loses its function of preventing powder from scattering, and the pipes and wire mesh collapse due to compression stress, resulting in a uniform supply of hydrogen.
The hydrogen absorbing material loses its ability to discharge, and similarly, the metal pieces and metal fibers become agglomerated due to deformation, reducing the contact area with the hydrogen absorbing material, or are moved inside the container together with the hydrogen absorbing material, resulting in an uneven location, which results in the loss of their role in improving heat conduction. Therefore, for safety reasons, objects placed or filled in the container have been made of thick materials with mechanical strength greater than necessary. This not only increases the overall weight of the container and the objects placed therein, but also increases the sensible heat of the container, significantly reducing the operating efficiency of the equipment that uses metal hydrides.

本考案は、この点を改善すべくなされたもの
で、水素の供給並びに排出口を備え、内部を細か
い空間に区切つた水素吸蔵体を収納してなる。容
器において、空間を区切る仕切板を50〜350℃で
形状回復する形状記憶合金によつて形成してなる
ことを特徴とする水素吸蔵体充填用圧力容器を要
旨とする。又、上記仕切板の外その支持棒、水素
の供給、排出のためのフイルター、パイプ、水素
吸蔵体の熱伝導率改善のために充填する金属小
片、金属製繊維を形状記憶合金によつて形成して
もよい。
The present invention has been developed to improve this point, and consists of a hydrogen storage body that is equipped with hydrogen supply and discharge ports and whose interior is divided into small spaces. The object of the present invention is to provide a pressure vessel for filling a hydrogen storage material, in which a partition plate for partitioning a space is formed of a shape memory alloy that recovers its shape at 50 to 350°C. In addition, the supporting rods on the outside of the partition plate, filters and pipes for supplying and discharging hydrogen, metal pieces and metal fibers to be filled to improve the thermal conductivity of the hydrogen storage body are made of shape memory alloy. You may.

すなわち、水素吸蔵体が水素を吸蔵する水素化
反応は、発熱反応であり、この場合に、容器内の
充填粉末の温度が導入水素ガス圧に相当した金属
水素化物の平衡温度を保持するように継続して生
じている。同時に容器内で粉末の移動および水素
化反応に伴なう粉末の膨脹が生じ、従来の方法で
は充填物の変形あるいは圧縮などがこの時期に生
じていた。そこで、本考案では容器内に設置する
金属部材である仕切板を形状記憶合金とすること
によつて、水素化反応時の粉末の膨張期間中に形
状回復するための機能を持たせ、変形あるいは圧
縮に対抗し得る強い抵抗力を示す。例えば容器の
許容限界で最大の導入水素ガス圧に相当する平衡
温度が80℃であり、通常運転時の金属水素化物温
度が60℃の場合、容器内の設置物としてパイプ形
状であるものは、まず高温でパイプ形状を記憶す
るための熱処理を施す。この場合、形状回復温度
は材料の組成で決定されるので、組成は水素化物
の平衡温度である60℃と同値かあるいは若干低い
温度において、形状回復機能を有するものを選定
すれば水素化反応時に水素吸蔵体の膨脹による応
力発生に対して形状記憶合金で作製された金属部
材が高温で記憶させられた元の形状に回復しよう
とする強い反発力が生じるため粉末膨脹による変
形を極力防止できる。また形状記憶合金で作製さ
れた金属部材が変形を受けた場合でも、水素吸蔵
合金を脱水素することで膨脹が解放され膨脹によ
り発生した応力が除去するのでこの状態で容器全
体もしくは形状記憶合金で作製される金属部材を
加熱すれば容易に元の形状に回復する。
In other words, the hydrogenation reaction in which the hydrogen absorber absorbs hydrogen is an exothermic reaction, and in this case, the temperature of the packed powder in the container is maintained at the equilibrium temperature of the metal hydride corresponding to the introduced hydrogen gas pressure. It continues to occur. At the same time, powder movement and expansion of the powder occur in the container as a result of the hydrogenation reaction, and in conventional methods, deformation or compression of the packed material would occur during this period. Therefore, in the present invention, the partition plate, which is a metal member installed in the container, is made of a shape memory alloy, so that it has the function of recovering its shape during the expansion period of the powder during the hydrogenation reaction. Shows strong resistance to compression. For example, if the equilibrium temperature corresponding to the maximum introduced hydrogen gas pressure at the allowable limit of the container is 80°C, and the metal hydride temperature during normal operation is 60°C, the pipe-shaped items installed inside the container are: First, heat treatment is performed at high temperature to memorize the shape of the pipe. In this case, the shape recovery temperature is determined by the composition of the material, so if you select a material that has a shape recovery function at a temperature that is the same as or slightly lower than the equilibrium temperature of hydrides, 60°C, it is possible to In response to the stress generated by the expansion of the hydrogen storage material, a strong repulsive force is generated in which the metal member made of the shape memory alloy tries to recover the original shape memorized at high temperature, so deformation due to powder expansion can be prevented as much as possible. Furthermore, even if a metal member made of a shape memory alloy undergoes deformation, dehydrogenating the hydrogen storage alloy releases the expansion and removes the stress generated by the expansion. If the manufactured metal member is heated, it will easily recover to its original shape.

このような条件から作製されたものは、従来の
ものと比べて肉厚が薄く、かつ重量的にも低減化
されるため、容器全体の軽量化が計れる。また熱
伝導性は同等であるが、使用する材料の重量を低
減させることで、容器の顕熱を小さく押えること
が可能となり、金属水素化物を有効利用すること
ができる。なお、形状回復機能は、水素化反応時
の平衡温度に対応した温度の50〜350℃の範囲で
発揮せしめるようにする。
The container manufactured under these conditions is thinner and lighter than the conventional container, which allows the container to be lighter overall. Although the thermal conductivity is the same, the weight of the material used is reduced, making it possible to reduce the sensible heat of the container and to make effective use of the metal hydride. The shape recovery function is achieved within the temperature range of 50 to 350°C, which corresponds to the equilibrium temperature during the hydrogenation reaction.

以下図面に基づいて本考案の実施例を説明す
る。
Embodiments of the present invention will be described below based on the drawings.

実施例 1 第1図は一部省略断面図で、第2図は第1図の
X−X断面図である。圧力容器1には両端に接合
用フランジ2が溶接されており、外側フランジ3
とボルト4にて結合される。外側フランジ3には
外部からの水素の導入並びに排出口5を経てバル
ブ6が設置されており、さらにバルブが設置され
る面の反対面には金網あるいは焼結材のフイルタ
ー7が溶接される。容器内部にはNi−Al、Cu−
Al−Ni、Cu−l−Zn、Cu−Sn、Cu−Zn合金か
ら選択された形状記憶合金製の粉末移動を防止す
る仕切板8および仕切板8を固定するための支持
棒9がある。仕切板8および支持棒9は溶接され
ている。水素吸蔵体10は容器内部の空間に充填
され、フイルター7を通じて水素ガスの供給およ
び排出を行なう。
Embodiment 1 FIG. 1 is a partially omitted sectional view, and FIG. 2 is a sectional view taken along line XX in FIG. 1. A joining flange 2 is welded to both ends of the pressure vessel 1, and an outer flange 3 is welded to both ends of the pressure vessel 1.
and are connected with bolts 4. A valve 6 is installed on the outer flange 3 through an introduction and exhaust port 5 for hydrogen from the outside, and a filter 7 made of wire mesh or sintered material is welded to the opposite side to the side where the valve is installed. Inside the container, Ni-Al, Cu-
There is a partition plate 8 made of a shape memory alloy selected from Al-Ni, Cu-l-Zn, Cu-Sn, and Cu-Zn alloys to prevent powder movement, and a support rod 9 for fixing the partition plate 8. The partition plate 8 and the support rod 9 are welded. The hydrogen storage body 10 is filled in the space inside the container, and supplies and discharges hydrogen gas through the filter 7.

実施例 2 第3図は一部省略断面図で、第4図は第3図の
X−X断面図である。圧力容器1には接合用フラ
ンジ2が溶接されており、外側フランジ3には外
部からの水素の供給および排出口5およびバルブ
6が設置されており、ボルト4で結合される。容
器1の内部には水素ガスの供給および排出用の金
網あるいは焼結材のフイルター7が中心に設置さ
れている。さらに形状記憶合金製の粉末移動防止
および伝熱性改善のための仕切板8がスパイラル
状に設置されており、空間には水素吸蔵体10が
充填されている。
Embodiment 2 FIG. 3 is a partially omitted sectional view, and FIG. 4 is a sectional view taken along line XX in FIG. A joining flange 2 is welded to the pressure vessel 1, and an external hydrogen supply/discharge port 5 and a valve 6 are installed on the outer flange 3, and are connected with bolts 4. Inside the container 1, a filter 7 made of wire mesh or sintered material is centrally installed for supplying and discharging hydrogen gas. Further, a partition plate 8 made of a shape memory alloy for preventing powder movement and improving heat conductivity is installed in a spiral shape, and the space is filled with a hydrogen absorber 10.

実施例 3 第5図は容器1の内部に容器の軸方向に沿つて
仕切板のインナーフイン11およびフイルタ−7
が設置されている断面図を示す。容器1の空間に
は金属水素化物10が充填されている。インナー
フイン11は粉末移動防止および伝熱性改善を目
的としたもので、形状記憶合金から作られてい
る。
Embodiment 3 FIG. 5 shows an inner fin 11 of a partition plate and a filter 7 inside a container 1 along the axial direction of the container.
A cross-sectional view of the installation is shown. The space of the container 1 is filled with metal hydride 10 . The inner fin 11 is intended to prevent powder migration and improve heat conductivity, and is made of a shape memory alloy.

本考案においては、上記のように水素化反応に
よる変形あるいは圧縮力に対する強い抵抗力を示
すことから、粉末充填方法の簡単化および容器の
安全性を向上し、実用機器として大きな効果を奏
する。
As described above, the present invention exhibits strong resistance to deformation or compressive force due to hydrogenation reaction, so it simplifies the powder filling method and improves the safety of the container, making it highly effective as a practical device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一実施例の一部省略断面図、第2図は
同X−X断面図、第3図は他の実施例の一部省略
断面図、第4図は同X−X断面図、第5図はさら
に他の実施例の断面図をそれぞれ示す。 1……容器、2,3……フランジ、4……ボル
ト、5……水素の供給並びに排出口、6……バル
ブ、7……フイルター、8……仕切板、9……支
持棒、10……水素吸蔵体、11……インナーフ
イン。
FIG. 1 is a partially omitted sectional view of one embodiment, FIG. 2 is a XX sectional view of the same, FIG. 3 is a partially omitted sectional view of another embodiment, and FIG. 4 is a XX sectional view of the same. , and FIG. 5 show cross-sectional views of still other embodiments. 1... Container, 2, 3... Flange, 4... Bolt, 5... Hydrogen supply and discharge port, 6... Valve, 7... Filter, 8... Partition plate, 9... Support rod, 10 ...Hydrogen absorber, 11...Inner fin.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 水素の供給並びに排出口を備え、内部を細かい
空間に区切つた水素吸蔵体を収納してなる容器に
おいて、空間を区切る仕切板を50〜350℃で形状
回復する形状記憶合金によつて形成してなること
を特徴とする水素吸蔵体充填用圧力容器。
In a container containing a hydrogen storage body, which is equipped with a hydrogen supply and discharge port and whose interior is divided into small spaces, the partition plates that separate the spaces are made of a shape memory alloy that recovers its shape at 50 to 350 degrees Celsius. A pressure vessel for filling a hydrogen absorber, characterized in that:
JP15739882U 1982-10-20 1982-10-20 Pressure vessel for filling hydrogen absorber Granted JPS5962400U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15739882U JPS5962400U (en) 1982-10-20 1982-10-20 Pressure vessel for filling hydrogen absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15739882U JPS5962400U (en) 1982-10-20 1982-10-20 Pressure vessel for filling hydrogen absorber

Publications (2)

Publication Number Publication Date
JPS5962400U JPS5962400U (en) 1984-04-24
JPS6126719Y2 true JPS6126719Y2 (en) 1986-08-09

Family

ID=30347026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15739882U Granted JPS5962400U (en) 1982-10-20 1982-10-20 Pressure vessel for filling hydrogen absorber

Country Status (1)

Country Link
JP (1) JPS5962400U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11911945B2 (en) 2020-07-20 2024-02-27 Sodick Co., Ltd. Injection molding machine and injection molding method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4484987B2 (en) * 1999-09-17 2010-06-16 株式会社日本製鋼所 Gas adsorption / desorption reaction vessel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156301A (en) * 1981-03-23 1982-09-27 Sekisui Chem Co Ltd Apparatus for containing metallic hydride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156301A (en) * 1981-03-23 1982-09-27 Sekisui Chem Co Ltd Apparatus for containing metallic hydride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11911945B2 (en) 2020-07-20 2024-02-27 Sodick Co., Ltd. Injection molding machine and injection molding method

Also Published As

Publication number Publication date
JPS5962400U (en) 1984-04-24

Similar Documents

Publication Publication Date Title
US6709497B2 (en) Honeycomb hydrogen storage structure
US4187092A (en) Method and apparatus for providing increased thermal conductivity and heat capacity to a pressure vessel containing a hydride-forming metal material
US7431756B2 (en) Modular metal hydride hydrogen storage system
Dhaou et al. Experimental study of a metal hydride vessel based on a finned spiral heat exchanger
AU2010318039B2 (en) Hydrogen storage tank having metal hydrides
CA1193820A (en) Method for preparing improved porous metal-hydride compacts and apparatus therefor
US20030209149A1 (en) Honeycomb hydrogen storage structure
Suda et al. Effective thermal conductivity of metal hydride beds
US20060081483A1 (en) Hydrogen storage container and mixture therein
US6708546B2 (en) Honeycomb hydrogen storage structure with restrictive neck
US4396114A (en) Flexible means for storing and recovering hydrogen
JPS6362254B2 (en)
JP2004108570A (en) Hydrogen storage container
JPS6126719Y2 (en)
US4756163A (en) Containers for storing and/or transporting fluids
JPH0218281B2 (en)
JPS5848480Y2 (en) Hydrogen storage device using metal hydride
JPS6145440Y2 (en)
JPS5890A (en) Structure of heat exchanger utilizing metal hydride
JP2503472B2 (en) Hydrogen storage metal container
CN219493819U (en) Porous graphite grid temperature regulation and control metal hydrogen storage device
JPS6246481B2 (en)
JPS6129881B2 (en)
JPH0261401B2 (en)
JPH0120978Y2 (en)