JPH0218281B2 - - Google Patents

Info

Publication number
JPH0218281B2
JPH0218281B2 JP59138197A JP13819784A JPH0218281B2 JP H0218281 B2 JPH0218281 B2 JP H0218281B2 JP 59138197 A JP59138197 A JP 59138197A JP 13819784 A JP13819784 A JP 13819784A JP H0218281 B2 JPH0218281 B2 JP H0218281B2
Authority
JP
Japan
Prior art keywords
heat
hydrogen
storage container
hydrogen storage
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59138197A
Other languages
Japanese (ja)
Other versions
JPS6046901A (en
Inventor
Nobuyuki Yanagihara
Koji Gamo
Yoshio Moriwaki
Tsutomu Iwaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59138197A priority Critical patent/JPS6046901A/en
Publication of JPS6046901A publication Critical patent/JPS6046901A/en
Publication of JPH0218281B2 publication Critical patent/JPH0218281B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、熱貯蔵容器と水素貯蔵容器とが熱交
換可能に連結されている水素ガスの貯蔵装置から
水素ガスを放出する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for releasing hydrogen gas from a hydrogen gas storage device in which a heat storage container and a hydrogen storage container are connected for heat exchange.

従来例の構成とその問題点 従来、水素を貯蔵する方法として高圧タンクや
保冷タンクを用いる方法があるが、前者は高重量
のため輸送において、また後者は超低温液体を取
扱うために安全性においてそれぞれ問題がある。
これらの問題点を解決するものとして水素を固形
化する方法、すなわち金属水素化物として貯蔵す
る方法が提案されている。
Conventional structure and problems Conventionally, there are methods for storing hydrogen using high-pressure tanks and cold storage tanks, but the former has problems in transportation due to its high weight, and the latter has safety concerns because it handles ultra-low temperature liquids. There's a problem.
A method of solidifying hydrogen, that is, storing it as a metal hydride, has been proposed to solve these problems.

現在開発されている代表的な金属水素化物を形
成する合金としては、LaNi5、MmNi5
TiMn1.5、TiFe、TiCo、Mg2Ni、Mg2Cuなどが
ある。
Typical metal hydride forming alloys currently being developed include LaNi 5 , MmNi 5 ,
Examples include TiMn 1.5 , TiFe, TiCo, Mg 2 Ni, Mg 2 Cu, etc.

この水素吸蔵合金(金属水素化物)を用いた水
素ガスの貯蔵方法において、水素を吸蔵する時は
発熱反応であり、水素を放出する時は吸熱反応で
ある。したがつて、水素を放出させる時は、外部
熱源を用いて直接的または間接的に加熱する方法
が採られていた。一方、外部熱源を使用しない場
合は、水素放出時合金温度が低下し、周囲温度と
十分熱交換できないために流量の低下が起こり、
利用できる有効水素量が減少し、さらに全貯蔵水
素を利用するためには長時間を要するなどの欠点
を持つている。外部熱源を使うことは省エネルギ
ーの立場より少ない方が望まれているが、全く使
用しない場合は上記の様な欠点を有することにな
る。
In this method of storing hydrogen gas using a hydrogen storage alloy (metal hydride), an exothermic reaction occurs when hydrogen is stored, and an endothermic reaction occurs when hydrogen is released. Therefore, when releasing hydrogen, a method of heating directly or indirectly using an external heat source has been adopted. On the other hand, when an external heat source is not used, the alloy temperature decreases when hydrogen is released, and the flow rate decreases due to insufficient heat exchange with the ambient temperature.
This method has disadvantages such as a reduction in the amount of available hydrogen and a long time required to utilize all stored hydrogen. Although it is desirable to use less external heat source from the standpoint of energy conservation, if it is not used at all, the above-mentioned drawbacks will occur.

発明の目的 本発明は、上記の様な点を解消し、効率的に貯
蔵水素を放出する方法を提供するものである。
OBJECTS OF THE INVENTION The present invention solves the above-mentioned problems and provides a method for efficiently releasing stored hydrogen.

発明の構成 本発明は、水素吸蔵合金の性質である水素吸蔵
時の発熱量に着目し、この熱量を一度熱貯蔵容器
内に蓄積し、この蓄積した熱量と、外部補助熱源
による熱量を併用して、水素の放出に利用するも
のである。
Structure of the Invention The present invention focuses on the amount of heat generated during hydrogen storage, which is a property of hydrogen storage alloys, and stores this amount of heat once in a heat storage container, and uses this accumulated amount of heat in combination with the amount of heat from an external auxiliary heat source. It is used to release hydrogen.

すなわち、本発明は、水素貯蔵容器に内蔵した
水素吸蔵合金と熱交換可能に連結された熱媒体を
含み水素貯蔵容器とは独立した熱貯蔵容器および
上記熱媒体を加熱する補助熱源を備えた装置にお
いて、水素吸蔵時の熱量と補助熱源による熱量と
を併用して水素の放出を行わせることを特徴とす
る。
That is, the present invention provides a device that includes a heat storage container that is independent of the hydrogen storage container and includes a heat transfer medium that is connected to a hydrogen storage alloy built in the hydrogen storage container so as to be able to exchange heat, and an auxiliary heat source that heats the heat transfer medium. The method is characterized in that the amount of heat during hydrogen storage and the amount of heat from the auxiliary heat source are used together to release hydrogen.

実施例の説明 第1図において、1は水素吸蔵合金2を内蔵し
た水素貯蔵容器で、その両端開口部には開閉栓
3,3′がパツキング4,4′を介して固定され、
水素供給管5と水素取出管6が連結されている。
管5にはバルブ7を、また管6にはバルブ8を
各々備えている。水素貯蔵容器1内には合金粒子
の流出を防止するためのフイルター9,9′が設
けてあり、合金2と接するように熱交換器10が
配設されている。この熱交換器10は、熱貯蔵容
器11の熱交換器12とポンプ13を介して連通
管14で連結されている。熱貯蔵容器11内には
熱媒体15が入れてある。16はその熱媒体注入
用の栓である。17は熱媒体15を加熱するため
の電気ヒータ、18はその電源である。熱貯蔵容
器11はその周囲が断熱材で被覆され、蓄熱でき
るようになつている。熱媒体としては、水、エチ
レングリコールまたはこれらの混合物などがよ
い。
DESCRIPTION OF THE EMBODIMENTS In FIG. 1, reference numeral 1 denotes a hydrogen storage container containing a hydrogen storage alloy 2, and stoppers 3, 3' are fixed to openings at both ends of the container via packings 4, 4'.
A hydrogen supply pipe 5 and a hydrogen extraction pipe 6 are connected.
The pipe 5 is provided with a valve 7, and the pipe 6 is provided with a valve 8. Filters 9 and 9' are provided in the hydrogen storage container 1 to prevent alloy particles from flowing out, and a heat exchanger 10 is provided in contact with the alloy 2. This heat exchanger 10 is connected to a heat exchanger 12 of a heat storage container 11 via a pump 13 and a communication pipe 14 . A heat medium 15 is placed in the heat storage container 11. 16 is a plug for injecting the heat medium. 17 is an electric heater for heating the heat medium 15, and 18 is its power source. The periphery of the heat storage container 11 is covered with a heat insulating material so that it can store heat. As the heat medium, water, ethylene glycol, or a mixture thereof may be used.

第2図の装置は、第1図の電気ヒータ17の代
わりに加熱源として太陽熱、ガスの燃焼熱、廃熱
などを利用したものである。すなわち、これらの
熱源19を利用して熱貯蔵槽20内の熱媒体21
を直接又は間接的に加熱し、この熱量を熱貯蔵容
器11へ移動させるようにしたもので、槽20内
の熱交換器22と容器11内の熱交換器23とを
ポンプ24を有する管25で連結したものであ
る。なお外部熱源19を用いて、直接熱媒体15
を加熱するようにしてもよい。
The device shown in FIG. 2 uses solar heat, gas combustion heat, waste heat, or the like as a heating source instead of the electric heater 17 shown in FIG. 1. That is, the heat medium 21 in the heat storage tank 20 is heated using these heat sources 19.
The heat exchanger 22 in the tank 20 and the heat exchanger 23 in the container 11 are connected by a pipe 25 with a pump 24. It is connected by . Note that the external heat source 19 is used to directly heat the heat medium 15.
may be heated.

第3図は、水素貯蔵容器26を直接熱貯蔵容器
27中に入れ、熱媒体28を通して熱交換する構
成のものである。水素貯蔵容器の内部には水素吸
蔵合金29、フイルター30を備え、開口部には
開閉栓31がパツキング32を介して固定され、
水素バルブ33を介して管34が連結されてい
る。熱媒体28は直接水素貯蔵容器と接触し、電
気ヒータ35で加熱された熱、または水素貯蔵時
の熱が熱媒体28に蓄積される構成となつてい
る。
FIG. 3 shows a configuration in which a hydrogen storage container 26 is placed directly into a heat storage container 27 and heat is exchanged through a heat medium 28. The inside of the hydrogen storage container is equipped with a hydrogen storage alloy 29 and a filter 30, and a shutoff plug 31 is fixed to the opening via a packing 32.
A pipe 34 is connected via a hydrogen valve 33. The heat medium 28 is in direct contact with the hydrogen storage container, and the heat heated by the electric heater 35 or the heat during hydrogen storage is stored in the heat medium 28.

つぎに、第1図の装置の操作方法を説明する。
まず、開口部より粒状にした水素吸蔵合金を容器
1内へ入れ、開閉栓3,3′で連結管5,6を固
定し、一方のバルブ8を閉じ他方のバルブ7を開
け、バルブ7側より真空ポンプなどで、管5,6
および容器1内の空気を除去した後、水素ガスを
供給する。水素ガスはフイルター9を通つて水素
吸蔵合金2に吸蔵される。この時発生する熱は、
熱交換器10を通して管14内の熱媒体をポンプ
13で循環させることにより熱貯蔵容器11内に
蓄積させる。水素吸蔵が完了すると、バルブ7を
閉じてバルブ8を開き、必要流量に調節しながら
吸蔵した水素を取り出す。同時に、電源18をオ
ンとし、熱貯蔵容器11内の電気ヒータ17で熱
媒体15を加熱する。先に蓄えた熱と外部熱源よ
り得られた熱を、再度、熱媒体をポンプ13で循
環させて水素吸蔵合金を加熱して水素の放出に利
用する。
Next, a method of operating the apparatus shown in FIG. 1 will be explained.
First, granular hydrogen storage alloy is put into the container 1 through the opening, the connecting pipes 5 and 6 are fixed with the stopcocks 3 and 3', one valve 8 is closed, the other valve 7 is opened, and the valve 7 side is Using a vacuum pump, etc., remove tubes 5 and 6.
After removing the air in the container 1, hydrogen gas is supplied. Hydrogen gas passes through the filter 9 and is stored in the hydrogen storage alloy 2. The heat generated at this time is
The heat medium in the tubes 14 is circulated by the pump 13 through the heat exchanger 10 and stored in the heat storage container 11 . When hydrogen storage is completed, valve 7 is closed and valve 8 is opened, and the stored hydrogen is taken out while adjusting the flow rate to the required level. At the same time, the power supply 18 is turned on and the heat medium 15 is heated by the electric heater 17 inside the heat storage container 11. The previously stored heat and the heat obtained from the external heat source are used to circulate the heat medium again using the pump 13 to heat the hydrogen storage alloy and release hydrogen.

第2図の装置は、第1図と熱源が異なるだけで
その他の操作はすべて同じである。外部熱源でま
ず貯蔵槽20の熱媒体21を加熱しておき、この
熱を熱交換器22と23を介して熱交換し、容器
14内の熱媒体15を加熱する。
The apparatus shown in FIG. 2 differs from that shown in FIG. 1 only in the heat source, but all other operations are the same. The heat medium 21 in the storage tank 20 is first heated by an external heat source, and this heat is exchanged via the heat exchangers 22 and 23 to heat the heat medium 15 in the container 14.

第3図の装置は、熱貯蔵容器27の中に水素貯
蔵容器を入れ、水素吸蔵熱を蓄積し、電気ヒータ
で直接熱媒体をも加熱し、その両方の熱でもつて
水素の放出を行う。
In the device shown in FIG. 3, a hydrogen storage container is placed in a heat storage container 27, hydrogen storage heat is accumulated, and an electric heater is used to directly heat a heat medium, and hydrogen is released using both of the heats.

つぎに、上記のような構成の装置を用いた水素
放出効果を実施例にもとづいて説明する。
Next, the hydrogen release effect using the apparatus configured as described above will be explained based on examples.

実施例 1 水素吸蔵合金としてTiMn1.5を用いた。すなわ
ち、市販のチタン(純度99.5%以上)とマンガン
(純度99.5%以上)とをTiMn1.5の組成となるよう
に秤量し、アーク溶解炉で加熱溶解した後、10〜
50メツシユ程度の粒径に粉砕したものを用いた。
Example 1 TiMn 1.5 was used as a hydrogen storage alloy. That is, commercially available titanium (purity of 99.5% or more) and manganese (purity of 99.5% or more) are weighed to have a composition of TiMn 1.5 , heated and melted in an arc melting furnace, and then heated and melted in an arc melting furnace.
The powder was ground to a particle size of about 50 mesh.

この合金粒子13Kgを直径100mm、長さ500mm、内
容積約4のアルミニウム製円筒形容器に入れて
水素貯蔵容器とした。TiMn1.5合金に貯蔵した水
素を有効に利用できる量は単位重量当り180c.c.
(常温)であるから、全合金による有効水素量は
約2.4m3となる。なお合金の水素吸蔵による膨張
を考慮して水素吸蔵容器内部の空間部分の比率を
約50%とした。
13 kg of these alloy particles were placed in an aluminum cylindrical container having a diameter of 100 mm, a length of 500 mm, and an internal volume of about 4 mm to form a hydrogen storage container. The amount of hydrogen stored in TiMn 1.5 alloy that can be effectively utilized is 180 c.c. per unit weight.
(at room temperature), the effective amount of hydrogen in the entire alloy is approximately 2.4 m 3 . In addition, considering the expansion of the alloy due to hydrogen absorption, the ratio of the space inside the hydrogen storage container was set to approximately 50%.

このような容器を熱貯蔵容器を介して、鋼又は
銅製の蛇状管を有する熱交換器などで連結した。
ポンプで熱媒体を循環させ、水素吸蔵時に発生す
る熱量を熱貯蔵容器内の熱媒体に熱交換して蓄積
した。熱媒体としては水を用い、3〜5/分の
流量で循環させた。熱貯蔵容器内の熱媒体を加熱
する手段として電気ヒータを採用した。熱貯蔵容
器内の熱媒体が30〜80℃程度の温度となるよう
に、レギユレータなどを用いて、供給電力を調整
する。この例では約30〜40℃程度になる様に調節
し、熱媒体の量として約7.5の水を用いた。
Such containers were connected via a heat storage container with a heat exchanger having a serpentine tube made of steel or copper.
A pump circulated the heat medium, and the amount of heat generated during hydrogen storage was exchanged with the heat medium in the heat storage container and stored. Water was used as a heat medium and was circulated at a flow rate of 3 to 5 minutes. An electric heater was used as a means to heat the heat medium in the heat storage container. Adjust the power supply using a regulator or the like so that the heat medium in the heat storage container has a temperature of about 30 to 80°C. In this example, the temperature was adjusted to about 30 to 40°C, and about 7.5 parts of water was used as the heat medium.

実施例 2 第2図の構成で、熱源19としてガスの燃焼熱
を用いた。熱貯蔵容器11内の熱媒体の温度は約
30〜40℃程度になるように調節した。その他の条
件はすべて実施例1と同じである。
Example 2 In the configuration shown in FIG. 2, combustion heat of gas was used as the heat source 19. The temperature of the heat medium in the heat storage container 11 is approximately
The temperature was adjusted to about 30-40°C. All other conditions are the same as in Example 1.

実施例 3 第3図の構成で、熱媒体28の温度が約30〜40
℃となるように調整した。なお熱貯蔵容器の周囲
は断熱層で被覆した。水素貯蔵容器は実施例1と
同じ条件とした。
Example 3 With the configuration shown in FIG. 3, the temperature of the heat medium 28 is about 30 to 40
The temperature was adjusted to ℃. The heat storage container was surrounded by a heat insulating layer. The conditions for the hydrogen storage container were the same as in Example 1.

従来例としては、熱貯蔵容器を別に設けること
なく、水素吸蔵時の熱はそのまま自然放出し、水
素放出時も何ら加熱する手段を用いない場合とし
た。
In the conventional example, no separate heat storage container was provided, the heat during hydrogen storage was released naturally, and no heating means was used during hydrogen release.

上記の実施例および従来例において、水素貯蔵
容器内の合金に約2時間程で2.4m3の水素を吸蔵
させた後、水素放出流量を約15/分として放出
させたときの全貯蔵水素量に対する有効水素量の
比率を比較した。その結果、従来例では約45%、
実施例1〜3ではその2倍の約80〜90%であつ
た。
In the above embodiment and conventional example, the total amount of hydrogen stored when the alloy in the hydrogen storage container stores 2.4 m 3 of hydrogen in about 2 hours and then releases it at a hydrogen release flow rate of about 15/min. The ratio of effective hydrogen amount to hydrogen was compared. As a result, in the conventional example, approximately 45%,
In Examples 1 to 3, it was about 80 to 90%, which is twice that.

また、水素放出流量を下げて、水素放出圧力を
上昇させると、再度水素の放出が可能となる。流
量を約2〜5/分まで下げたときの全水素量を
放出させるのに要する時間は、従来例で約10時間
以上であるのに対して、実施例では約5時間で、
従来例の1/2であつた。従来例では、水素放出と
同時に水素放出圧力の低下が大きく、約30分程度
でその圧力も1/2程度となる。これは、周囲温度
との熱交換が十分でないため、水素貯蔵容器内の
合金温度が下がるためである。したがつて、約1
時間程度で水素の放出ができなくなる。このため
水素の利用効率が著しく低くなる。これに対し
て、実施例の様に、水素吸蔵時の熱と外部熱源の
熱とを併用する事により、水素の放出温度の下が
り方が少なく、水素の利用効率を向上させること
ができた。一方、水素吸蔵時の熱のみを使用し、
補助熱源を使用しない場合は約70%程度の水素放
出効率であり、補助熱源の働きにより、水素放出
効率を向上させることができる。
Further, by lowering the hydrogen release flow rate and increasing the hydrogen release pressure, hydrogen can be released again. The time required to release the entire amount of hydrogen when the flow rate is lowered to about 2 to 5/min is about 10 hours or more in the conventional example, while it is about 5 hours in the example.
It was 1/2 that of the conventional example. In the conventional example, the hydrogen release pressure drops significantly at the same time as hydrogen is released, and the pressure decreases to about 1/2 in about 30 minutes. This is because the alloy temperature inside the hydrogen storage container decreases due to insufficient heat exchange with the ambient temperature. Therefore, about 1
Hydrogen will no longer be released after about a few hours. For this reason, the hydrogen utilization efficiency becomes significantly low. On the other hand, as in the example, by using both the heat during hydrogen storage and the heat from an external heat source, the hydrogen release temperature decreased less and hydrogen utilization efficiency could be improved. On the other hand, only the heat generated during hydrogen absorption is used,
When the auxiliary heat source is not used, the hydrogen release efficiency is approximately 70%, and the action of the auxiliary heat source can improve the hydrogen release efficiency.

水素吸蔵時には水素貯蔵容器内の水素吸蔵合金
が発熱するので、水素吸蔵圧力が上昇し、水素吸
蔵効率が悪くなるので、水素貯蔵容器の周囲外壁
からの熱放出と熱媒体による冷却とによつて、水
素貯蔵容器の内部の温度を下げ、水素の貯蔵能力
を向上させている。
During hydrogen storage, the hydrogen storage alloy inside the hydrogen storage container generates heat, which increases the hydrogen storage pressure and reduces hydrogen storage efficiency. , lowering the temperature inside the hydrogen storage container and improving the hydrogen storage capacity.

一方、水素放出時には、水素吸蔵時に熱貯蔵容
器内の熱媒体に蓄積した熱と補助熱源による熱と
を併用し、さらに水素貯蔵容器の外壁からの熱吸
収も加わつて、水素の放出を効果的にしているも
のと考えられる。
On the other hand, when releasing hydrogen, the heat accumulated in the heat medium in the heat storage container during hydrogen storage is combined with the heat from the auxiliary heat source, and heat absorption from the outer wall of the hydrogen storage container is also added to effectively release hydrogen. It is thought that this is the case.

つぎに、水素吸蔵時の熱を蓄積せず、補助熱源
だけで加熱して、水素の放出を行わせた場合は、
実施例のように両熱を併用して使用する場合と比
べて、補助熱源の熱量として4〜6倍程を必要と
する。したがつて、外部熱源のみ使用する場合と
比較して実施例では、約70〜80%程の省エネルギ
ーとなる。
Next, if we release hydrogen by heating only with an auxiliary heat source without accumulating the heat during hydrogen storage,
Compared to the case where both types of heat are used together as in the embodiment, the amount of heat of the auxiliary heat source is about 4 to 6 times larger. Therefore, compared to the case where only an external heat source is used, the embodiment saves about 70 to 80% of energy.

なお、ここに用いる水素吸蔵合金としては、常
温での水素放出圧力が1〜20気圧のものが望まし
い。
Note that the hydrogen storage alloy used here preferably has a hydrogen release pressure of 1 to 20 atm at room temperature.

発明の効果 以上のように、本発明によれば、取り出し得る
水素放出流量も大きくすることができる上に、水
素の放出時間も短縮することができる。また有効
水素量が増大し、より多くの水素を取り出し得
る。さらに、水素利用効率と省エネルギーに大き
な効果がある。
Effects of the Invention As described above, according to the present invention, not only can the amount of hydrogen released that can be extracted be increased, but also the hydrogen release time can be shortened. Moreover, the effective amount of hydrogen increases, and more hydrogen can be extracted. Furthermore, it has a significant effect on hydrogen utilization efficiency and energy conservation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の水素ガスの貯蔵装置
を示す全体構成図、第2図は他の実施例の要部の
構成図、第3図は他の実施例の構成図である。 1……水素貯蔵容器、2……水素吸蔵合金、
9,12……熱交換器、11……熱貯蔵容器、1
5……熱媒体、17……電気ヒータ。
FIG. 1 is an overall configuration diagram showing a hydrogen gas storage device according to an embodiment of the present invention, FIG. 2 is a configuration diagram of main parts of another embodiment, and FIG. 3 is a configuration diagram of another embodiment. 1...Hydrogen storage container, 2...Hydrogen storage alloy,
9, 12... Heat exchanger, 11... Heat storage container, 1
5... Heat medium, 17... Electric heater.

Claims (1)

【特許請求の範囲】[Claims] 1 水素吸蔵合金を内蔵した水素貯蔵容器と、前
記水素吸蔵合金と熱交換可能に連結された熱媒体
を含み前記水素貯蔵容器とは独立した熱貯蔵容
器、および前記熱媒体を加熱する補助熱源を備え
た装置による貯蔵水素ガスの放出方法であつて、
水素吸蔵時に熱貯蔵容器内の熱媒体に蓄積した熱
と補助熱源による熱とを併用して水素の放出を行
わせることを特徴とする貯蔵水素ガスの放出方
法。
1. A hydrogen storage container containing a hydrogen storage alloy, a heat storage container independent of the hydrogen storage container that includes a heat medium connected to the hydrogen storage alloy for heat exchange, and an auxiliary heat source for heating the heat medium. A method for releasing stored hydrogen gas using a device comprising:
A method for releasing stored hydrogen gas, characterized in that hydrogen is released using a combination of heat accumulated in a heat medium in a heat storage container and heat from an auxiliary heat source during hydrogen storage.
JP59138197A 1984-07-03 1984-07-03 Method for releasing stored hydrogen gas Granted JPS6046901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59138197A JPS6046901A (en) 1984-07-03 1984-07-03 Method for releasing stored hydrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59138197A JPS6046901A (en) 1984-07-03 1984-07-03 Method for releasing stored hydrogen gas

Publications (2)

Publication Number Publication Date
JPS6046901A JPS6046901A (en) 1985-03-14
JPH0218281B2 true JPH0218281B2 (en) 1990-04-25

Family

ID=15216347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59138197A Granted JPS6046901A (en) 1984-07-03 1984-07-03 Method for releasing stored hydrogen gas

Country Status (1)

Country Link
JP (1) JPS6046901A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2640518B2 (en) * 1987-11-04 1997-08-13 サエス・ゲッテルス・ソシエタ・ペル・アチオニ Method and apparatus for purifying hydrogen gas
JPH01294501A (en) * 1988-05-24 1989-11-28 Nippon Steel Corp Hydrogen gas purifier and method for purification
JPH02307801A (en) * 1989-05-23 1990-12-21 Toyota Autom Loom Works Ltd Hydrogen filling device
JP2000128502A (en) * 1998-10-22 2000-05-09 Honda Motor Co Ltd Hydrogen filling method to hydrogen storage tank of automobile
JP6036747B2 (en) * 2014-05-09 2016-11-30 株式会社豊田中央研究所 Gas storage and supply system
JP6595177B2 (en) * 2014-12-09 2019-10-23 ヤマト・H2Energy Japan株式会社 Hydrogen gas filling apparatus and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132632A (en) * 1979-02-12 1980-10-15 Int Nickel Co Method of accumulating reaction heat for hydride tank

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132632A (en) * 1979-02-12 1980-10-15 Int Nickel Co Method of accumulating reaction heat for hydride tank

Also Published As

Publication number Publication date
JPS6046901A (en) 1985-03-14

Similar Documents

Publication Publication Date Title
US6080381A (en) Method for inducing hydrogen desorption from a metal hydride
US4566281A (en) Reaction heat storage method for hydride tanks
US4187092A (en) Method and apparatus for providing increased thermal conductivity and heat capacity to a pressure vessel containing a hydride-forming metal material
US4607826A (en) Apparatus for preparing improved porous metal-hydride compacts
AU2009334709B2 (en) Adiabatic tank for metal hydride
US20030167923A1 (en) Tank for the reversible storage of hydrogen
JP2004530628A (en) How to store hydrogen in a hybrid state
EP1476693A1 (en) Vane heat transfer structure
JP2004108570A (en) Hydrogen storage container
JP2711274B2 (en) Heat storage, heat conversion and cold generation systems and methods
US4537761A (en) Hydrogen storage system
JPH0218281B2 (en)
JP4073703B2 (en) Method for filling hydrogen into a high-pressure vessel
JP2007069184A (en) Hydrogen adsorbing material for adsorbing/desorbing hydrogen at low temperature and low-temperature hydrogen storage vessel
JPS5814361B2 (en) Method for manufacturing hydrogen storage materials
JP4663839B2 (en) Hydrogen recovery / storage container
JPS5890A (en) Structure of heat exchanger utilizing metal hydride
JPS6060399A (en) Hydrogen storing system
JPH0214600B2 (en)
JP2001289397A (en) Hydrogen storage alloy storing container
JPS6126719Y2 (en)
JPS6037394B2 (en) Heat storage method and heat storage tank
JPS5953203B2 (en) Hydrogen gas storage and purification equipment
Guinet et al. Technological aspects and characteristics of industrial hydride reservoirs
JPH0820142B2 (en) Heat recovery method using hydrogen storage alloy