JP4073703B2 - Method for filling hydrogen into a high-pressure vessel - Google Patents

Method for filling hydrogen into a high-pressure vessel Download PDF

Info

Publication number
JP4073703B2
JP4073703B2 JP2002121158A JP2002121158A JP4073703B2 JP 4073703 B2 JP4073703 B2 JP 4073703B2 JP 2002121158 A JP2002121158 A JP 2002121158A JP 2002121158 A JP2002121158 A JP 2002121158A JP 4073703 B2 JP4073703 B2 JP 4073703B2
Authority
JP
Japan
Prior art keywords
hydrogen
pressure
pressure vessel
water
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002121158A
Other languages
Japanese (ja)
Other versions
JP2003314792A (en
Inventor
貴紀 鈴木
出 鹿屋
光矢 細江
武揚 磯辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002121158A priority Critical patent/JP4073703B2/en
Priority to US10/419,989 priority patent/US7037483B2/en
Publication of JP2003314792A publication Critical patent/JP2003314792A/en
Application granted granted Critical
Publication of JP4073703B2 publication Critical patent/JP4073703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高圧容器への水素充填方法に関する。
【0002】
【従来の技術】
従来、高圧容器に水素を充填する場合、高圧コンプレッサが用いられている。
【0003】
【発明が解決しようとする課題】
しかしながら高圧コンプレッサの圧縮効率は一般的に低いため、高圧水素を得るためには多くのエネルギを必要とし、不経済であった。
【0004】
【課題を解決するための手段】
本発明は、極めて簡単な手段を採用することによって低コストで高圧水素を得ることができる、経済的な高圧容器への水素充填方法を提供することを目的とする
【0005】
前記目的を達成するため本発明によれば、水と反応して水素を発生する水素発生物質と水とを、高圧容器内において目標とする高水素圧が得られるように秤量し、次いで前記水素発生物質および前記水を前記高圧容器内にその供給口を通じて入れ、その後、前記供給口を封鎖して前記水素発生物質と前記水との反応により、前記高圧容器内の水素圧を目標とする前記高水素圧に到達させるようにした、高圧容器への水素充填方法であって、前記水素発生物質が、粒状Mgと、その粒状Mgの表面および内部に存在する複数の触媒金属微粒子とよりなるMg合金粒子の集合体に水素化処理を施したものであり、前記触媒金属微粒子が、Ni微粒子およびNi合金微粒子から選択される少なくとも一種であることを特徴とする高圧容器への水素充填方法が提供される。
【0006】
前記方法によれば、水素発生物質および水を秤量して、それらを高圧容器内に入れる、といった極めて簡単な手段により低コストで高圧水素を得ることができる。
【0007】
水素発生物質と水との反応による到達水素圧は、その反応の到達温度における水素発生量により決まり、平衡論的に決定される。常温付近で水に対し極めて活性な水素発生物質の水素発生量は、一般的に容器内圧力に大きく依存せず、よって、化学量論的に決定される水素圧に到達することになる。ただし、反応時の容器内圧力が十分に高く、平衡論的に反応が進行しない場合には、水素圧は化学量論的圧力までは到達せずに、平衡論的圧力で一定となって、未反応の水素発生物質が残ることになる。即ち、未反応の水素発生物質が全て反応するまで、容器内圧力は一定に保たれることになる。
【0008】
【発明の実施の形態】
図1において、高圧容器1は車両に搭載されており、その器体2は円筒部3と、円筒部3の両端にそれぞれ連なる椀形端壁部4、5とを有する。一方の椀形端壁部4から供給口6を有する第1接続部7が突出し、また他方の椀形端壁部5からは放出口8を有する第2接続部9が突出する。第1接続部7には開閉弁10を有する第1管11が接続され、また第2接続部9は第2管12を介して燃料電池13に接続されており、その第2管12には開閉弁を有する減圧器14が装置される。図2に示すように、器体2はカーボン複合材料製外殻15と、その内面全体を覆う高密度ポリエチレン製ライナ16とよりなる。
【0009】
高圧容器1に高圧水素が充填されている状態において、燃料電池13の運転開始時には、減圧器14の開閉弁を開けば、高圧水素が所定値に減圧された後燃料電池13に供給される。
【0010】
高圧容器1への水素の充填に当っては、先ず、水と反応して水素を発生する粉末状水素発生物質と水とを、その高圧容器内において目標とする高水素圧が得られるように秤量する。次いで、図3に示すように、第1接続部7から第1管11が外された状態において、秤量された粉末状水素発生物質17を高圧容器1内にその供給口6を通じて入れる。さらに、図4に示すように、第1接続部7に第1管11を接続し、また減圧器14の開閉弁を閉じた状態において、秤量された水を高圧容器1内にその供給口6を通じて入れる。その後、開閉弁10を閉じることにより供給口6を封鎖して粉末状水素発生物質17と水との反応により、高圧容器1内の水素圧を目標とする高水素圧に到達させるものである。
【0011】
水素発生物質17としては、Mg粒子および水素化Mg(MgH2 )粒子の少なくとも一方からなる集合体、つまりMg粉末、水素化Mg粉末ならびにMg粉末および水素化Mg粉末の混合粉末が使用される。
【0012】
水素発生物質としては水素化Mg合金粉末も用いられ、その水素化Mg合金粉末は、図5に示すように、粒状Mg18と、その粒状Mg18の表面および内部に存在する複数の触媒金属微粒子19とよりなるMg合金粒子20の集合体に水素化処理を施したものである。触媒金属微粒子19にはNi微粒子およびNi合金微粒から選択される少なくとも一種が該当する。
【0013】
Mg合金粉末における触媒金属微粒子19の含有量Gは0.1原子%≦G≦5.0原子%に設定される。その含有量GがG<0.1原子%では添加効果がなく、一方、G>5.0原子%では水素発生量が減少するため実用性がない。触媒金属微粒子19の含有量Gは、好ましくは0.3原子%≦G≦1.0原子%である。Mg合金粉末はメカニカルアロイングの適用下で製造されるので、粒状Mg18の粒径Dは1μm≦D≦500μm、また触媒金属微粒子19の粒径dは10nm≦d≦500nmが適当である。この場合、粒径D、dとは、顕微鏡写真における粒状Mg等の最長部分の長さ(最大わたし径)とする。
【0014】
〔実施例〕
高圧容器1:内径200mm、塔長800mm、内容積約100L;目標とする高水素圧:27MPa;水素発生物質17:Mg99.5Ni0.5 (数値の単位は原子%)の組成を有する合金粉末、粒状Mg18の粒径D 2μm≦D≦300μm、Ni粒子の粒径d 10nm≦d≦200nm、供給量15kg;水:40℃のイオン交換水、供給量25L.
図6の線aは、高圧容器1内における合金粉末と水との反応、つまり、MgH2 +2H2 O→Mg(OH)2 +2H2 による水素圧の経時的変化を示す。また図6の線bは、高圧コンプレッサにより高圧容器1内に水素を充填した場合に該当する。図6、線aから明らかなように、前記のような水素発生物質と水とを用いることによって、高圧コンプレッサを使用することなく、それを使用した場合と同等の高水素圧を現出させることができるものである。
【0015】
高圧容器1内に残留するMg(OH)2 は供給口6から排出されて、Mgの回収が行われる。
【0016】
図6において、車両を走行させるべく燃料電池13を運転するためには、高圧容器1内の水素圧が10MPa程度であれば十分であるから、高圧容器1内に水を入れた後、約2分といった極めて短時間のうちに車両を発進させることが可能である。その後は、水素発生物質が無くなるまで水素の発生が継続するので、車両の走行は滞りなく行われる。
【0017】
高圧コンプレッサを用いた場合は、高圧容器への水素充填が終了するまで車両を発進させることができない、つまり、図6、線bにおいて水素充填開始から約10分間経過しないと水素の充填は終了しないので、それまで車両の発進を待たなければならない。
【0018】
車載の高圧容器1への水素充填方法としては、その充填時間を短縮すべく、水素ステーションにおいて、高圧コンプレッサにより水素をバッファタンクに充填し、そのバッファタンク内の高圧水素を車載の高圧容器に移す、といった手段も考えられているが、この場合には、バッファタンク内の水素圧は高圧容器1内のそれよりも大でなければならないので、そのバッファタンク内への水素充填に際して多大なエネルギを必要とする。またバッファタンクを複数組合せたカスケード式充填システムを用いた場合にはシステムの大型化およびその占有スペースの増大、といった不具合を招く。本発明によれば、これらの問題点はことごとく解消される。
【0019】
【発明の効果】
本発明によれば、極めて簡単な手段を採用することによって、低コストで高圧水素を得ることが可能な、高圧容器への水素充填方法を提供することができる。
【図面の簡単な説明】
【図1】 高圧容器と燃料電池との接続関係を示す説明図である。
【図2】 高圧容器の要部拡大断面図である。
【図3】 水素発生物質を高圧容器内に入れる状態を示す説明図である。
【図4】 水を高圧容器内に入れる状態を示す説明図である。
【図5】 Mg合金粒子の説明図である。
【図6】 高圧容器内における水素圧の経時的変化を示すグラフである。
【符号の説明】
1……………高圧容器
6……………供給口
17…………水素発生物質
18…………粒状Mg
19…………触媒金属微粒子
20…………Mg合金粒子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for filling hydrogen into a high-pressure vessel.
[0002]
[Prior art]
Conventionally, when a high pressure vessel is filled with hydrogen, a high pressure compressor has been used.
[0003]
[Problems to be solved by the invention]
However, since the compression efficiency of a high-pressure compressor is generally low, a large amount of energy is required to obtain high-pressure hydrogen, which is uneconomical.
[0004]
[Means for Solving the Problems]
An object of the present invention is to provide an economical method for filling hydrogen into a high-pressure vessel, in which high-pressure hydrogen can be obtained at a low cost by employing extremely simple means .
[0005]
In order to achieve the above object, according to the present invention, a hydrogen generating substance that reacts with water to generate hydrogen and water are weighed in a high-pressure vessel so as to obtain a target high hydrogen pressure, and then the hydrogen The generated substance and the water are put into the high-pressure vessel through the supply port, and then the supply port is sealed, and the hydrogen pressure in the high-pressure vessel is targeted by the reaction between the hydrogen-generating material and the water. A method for filling hydrogen into a high-pressure vessel in which a high hydrogen pressure is reached , wherein the hydrogen generating material is composed of granular Mg and a plurality of catalytic metal fine particles existing on and inside the granular Mg. and were subjected to hydrotreating in the aggregate of alloy particles, wherein the catalyst metal fine particles, charge and hydrogen into the high-pressure container, characterized in that at least one selected from Ni particles and Ni alloy fine particles A method is provided.
[0006]
According to the above method, high-pressure hydrogen can be obtained at a low cost by a very simple means such as weighing the hydrogen generating substance and water and placing them in a high-pressure vessel.
[0007]
The ultimate hydrogen pressure due to the reaction between the hydrogen generating substance and water is determined by the amount of hydrogen generated at the ultimate temperature of the reaction, and is determined in equilibrium. The hydrogen generation amount of a hydrogen generating substance that is extremely active with respect to water near room temperature generally does not greatly depend on the pressure in the container, and thus reaches a hydrogen pressure determined stoichiometrically. However, if the pressure in the container during the reaction is sufficiently high and the reaction does not proceed in equilibrium, the hydrogen pressure does not reach the stoichiometric pressure, and is constant at the equilibrium pressure. Unreacted hydrogen generating material remains. That is, the pressure in the container is kept constant until all the unreacted hydrogen generating material has reacted.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In FIG. 1, the high-pressure vessel 1 is mounted on a vehicle, and the container 2 has a cylindrical portion 3 and bowl-shaped end wall portions 4 and 5 respectively connected to both ends of the cylindrical portion 3. A first connecting portion 7 having a supply port 6 projects from one of the bowl-shaped end wall portions 4, and a second connecting portion 9 having a discharge port 8 projects from the other bowl-shaped end wall portion 5. A first pipe 11 having an on-off valve 10 is connected to the first connection part 7, and a second connection part 9 is connected to a fuel cell 13 via a second pipe 12, A pressure reducer 14 having an on-off valve is installed. As shown in FIG. 2, the container 2 includes a carbon composite material outer shell 15 and a high-density polyethylene liner 16 covering the entire inner surface thereof.
[0009]
In the state where the high-pressure vessel 1 is filled with high-pressure hydrogen, when the fuel cell 13 starts operation, the high-pressure hydrogen is supplied to the fuel cell 13 after being decompressed to a predetermined value by opening the on-off valve of the decompressor 14.
[0010]
In filling the high-pressure vessel 1 with hydrogen, first, a target hydrogen-generating material that reacts with water to generate hydrogen and water so as to obtain a target high hydrogen pressure in the high-pressure vessel can be obtained. Weigh. Next, as shown in FIG. 3, in a state where the first tube 11 is removed from the first connection portion 7, the weighed powdered hydrogen generating substance 17 is put into the high-pressure vessel 1 through the supply port 6. Further, as shown in FIG. 4, in a state where the first pipe 11 is connected to the first connection portion 7 and the on-off valve of the decompressor 14 is closed, the weighed water is supplied into the high-pressure vessel 1 through its supply port 6. Through. Thereafter, the supply port 6 is closed by closing the on-off valve 10, and the hydrogen pressure in the high-pressure vessel 1 is reached to a target high hydrogen pressure by the reaction between the powdered hydrogen generating substance 17 and water.
[0011]
As the hydrogen generating substance 17, an aggregate composed of at least one of Mg particles and hydrogenated Mg (MgH 2 ) particles, that is, Mg powder, hydrogenated Mg powder, and mixed powder of Mg powder and hydrogenated Mg powder are used.
[0012]
As the hydrogen generating material, hydrogenated Mg alloy powder is also used. As shown in FIG. 5, the hydrogenated Mg alloy powder includes granular Mg 18 and a plurality of catalyst metal fine particles 19 existing on and inside the granular Mg 18. The aggregate of Mg alloy particles 20 is subjected to a hydrogenation treatment. At least one corresponds is selected from Ni particles and Ni alloy fine particles in the catalytic metal particle 19.
[0013]
The content G of the catalyst metal fine particles 19 in the Mg alloy powder is set to 0.1 atomic% ≦ G ≦ 5.0 atomic%. If the content G is G <0.1 atomic%, there is no effect of addition, while if G> 5.0 atomic%, the amount of hydrogen generation decreases, so there is no practicality. The content G of the catalyst metal fine particles 19 is preferably 0.3 atomic% ≦ G ≦ 1.0 atomic%. Since the Mg alloy powder is manufactured under application of mechanical alloying, the particle diameter D of the granular Mg 18 is suitably 1 μm ≦ D ≦ 500 μm, and the particle diameter d of the catalytic metal fine particles 19 is suitably 10 nm ≦ d ≦ 500 nm. In this case, the particle diameters D and d are the lengths of the longest portion (maximum self-diameter) of granular Mg or the like in the micrograph.
[0014]
〔Example〕
High pressure vessel 1: Inner diameter 200 mm, tower length 800 mm, internal volume about 100 L; target high hydrogen pressure: 27 MPa; hydrogen generating material 17: alloy powder having a composition of Mg 99.5 Ni 0.5 (the unit of numerical value is atomic%), granular Mg 18 particle diameter D 2 μm ≦ D ≦ 300 μm, Ni particle diameter d 10 nm ≦ d ≦ 200 nm, supply amount 15 kg; water: 40 ° C. ion-exchanged water, supply amount 25 L.M.
The line a in FIG. 6 shows the reaction between the alloy powder and water in the high-pressure vessel 1, that is, the change over time of the hydrogen pressure due to MgH 2 + 2H 2 O → Mg (OH) 2 + 2H 2 . Moreover, line b in FIG. 6 corresponds to the case where the high-pressure vessel 1 is filled with hydrogen by a high-pressure compressor. As can be seen from FIG. 6 and line a, by using the hydrogen generating substance and water as described above, a high hydrogen pressure equivalent to that obtained by using a high pressure compressor can be produced without using a high pressure compressor. It is something that can be done.
[0015]
Mg (OH) 2 remaining in the high-pressure vessel 1 is discharged from the supply port 6 and Mg is collected.
[0016]
In FIG. 6, in order to drive the fuel cell 13 to drive the vehicle, it is sufficient if the hydrogen pressure in the high-pressure vessel 1 is about 10 MPa, so about 2 after water is put into the high-pressure vessel 1. It is possible to start the vehicle in an extremely short time such as minutes. Thereafter, the generation of hydrogen continues until the hydrogen generating substance is exhausted, so that the vehicle travels smoothly.
[0017]
When a high-pressure compressor is used, the vehicle cannot be started until hydrogen filling into the high-pressure vessel is completed. That is, hydrogen filling is not completed unless about 10 minutes have elapsed from the start of hydrogen filling in FIG. So you have to wait for the vehicle to start.
[0018]
As a method of filling hydrogen into the on-board high-pressure vessel 1, in order to shorten the filling time, hydrogen is filled into the buffer tank by a high-pressure compressor at the hydrogen station, and the high-pressure hydrogen in the buffer tank is transferred to the on-board high-pressure vessel. However, in this case, since the hydrogen pressure in the buffer tank must be higher than that in the high-pressure vessel 1, a large amount of energy is charged when filling the buffer tank with hydrogen. I need. In addition, when a cascade-type filling system in which a plurality of buffer tanks are combined is used, problems such as an increase in the size of the system and an increase in the occupied space are caused. According to the present invention, these problems are all solved.
[0019]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the hydrogen filling method to the high pressure vessel which can obtain high pressure hydrogen at low cost can be provided by employ | adopting a very simple means.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a connection relationship between a high-pressure vessel and a fuel cell.
FIG. 2 is an enlarged cross-sectional view of a main part of the high-pressure vessel.
FIG. 3 is an explanatory view showing a state in which a hydrogen generating substance is put in a high-pressure vessel.
FIG. 4 is an explanatory view showing a state in which water is put into a high-pressure vessel.
FIG. 5 is an explanatory diagram of Mg alloy particles.
FIG. 6 is a graph showing the change with time of the hydrogen pressure in the high-pressure vessel.
[Explanation of symbols]
1 ……………… High-pressure vessel 6 ……………… Supply port 17 ………… Hydrogen generating material 18 ………… Granular Mg
19 ………… Catalyst metal fine particle 20 ………… Mg alloy particle

Claims (1)

水と反応して水素を発生する水素発生物質(17)と水とを、高圧容器(1)内において目標とする高水素圧が得られるように秤量し、次いで前記水素発生物質(17)および前記水を前記高圧容器(1)内にその供給口(6)を通じて入れ、その後、前記供給口(6)を封鎖して前記水素発生物質(17)と前記水との反応により、前記高圧容器(1)内の水素圧を目標とする前記高水素圧に到達させるようにした、高圧容器への水素充填方法であって、
前記水素発生物質(17)が、粒状Mg(18)と、その粒状Mg(18)の表面および内部に存在する複数の触媒金属微粒子(19)とよりなるMg合金粒子(20)の集合体に水素化処理を施したものであり、
前記触媒金属微粒子(19)が、Ni微粒子およびNi合金微粒子から選択される少なくとも一種であることを特徴とする、高圧容器への水素充填方法
The hydrogen generating substance (17) that reacts with water to generate hydrogen and water are weighed in the high pressure vessel (1) so as to obtain a target high hydrogen pressure, and then the hydrogen generating substance (17) and The water is put into the high-pressure vessel (1) through the supply port (6), and then the supply port (6) is sealed, and the reaction between the hydrogen generating substance (17) and the water results in the high-pressure vessel (1) A method for filling hydrogen into a high-pressure vessel, wherein the hydrogen pressure in (1) is made to reach the target high hydrogen pressure ,
The hydrogen generating material (17) is an aggregate of Mg alloy particles (20) composed of granular Mg (18) and a plurality of catalytic metal fine particles (19) existing on and inside the granular Mg (18). It has been subjected to hydrogenation treatment,
The method for filling hydrogen into a high-pressure vessel, wherein the catalytic metal fine particles (19) are at least one selected from Ni fine particles and Ni alloy fine particles .
JP2002121158A 2002-04-23 2002-04-23 Method for filling hydrogen into a high-pressure vessel Expired - Fee Related JP4073703B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002121158A JP4073703B2 (en) 2002-04-23 2002-04-23 Method for filling hydrogen into a high-pressure vessel
US10/419,989 US7037483B2 (en) 2002-04-23 2003-04-22 Process for producing high-pressure hydrogen and system for producing high-pressure hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002121158A JP4073703B2 (en) 2002-04-23 2002-04-23 Method for filling hydrogen into a high-pressure vessel

Publications (2)

Publication Number Publication Date
JP2003314792A JP2003314792A (en) 2003-11-06
JP4073703B2 true JP4073703B2 (en) 2008-04-09

Family

ID=29537182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002121158A Expired - Fee Related JP4073703B2 (en) 2002-04-23 2002-04-23 Method for filling hydrogen into a high-pressure vessel

Country Status (1)

Country Link
JP (1) JP4073703B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4109942B2 (en) * 2002-09-19 2008-07-02 本田技研工業株式会社 High pressure hydrogen production equipment
US20050042150A1 (en) * 2003-08-19 2005-02-24 Linnard Griffin Apparatus and method for the production of hydrogen
CN1989067B (en) * 2005-01-07 2011-04-13 日立麦克赛尔株式会社 Hydrogen generating material, hydrogen generator and fuel cell
US7695709B2 (en) 2005-03-25 2010-04-13 Hitachi Maxell, Ltd. Hydrogen generating material and method for producing the same, and method for producing hydrogen
JP5109051B2 (en) * 2007-12-18 2012-12-26 株式会社フクハラ Method and apparatus for producing high-pressure hydrogen gas
JP5109053B2 (en) * 2008-05-16 2012-12-26 株式会社フクハラ Method and apparatus for producing hydrogen gas
JP5400424B2 (en) * 2009-03-02 2014-01-29 ローム株式会社 Hydrogen generating method and hydrogen generating apparatus
WO2010123020A1 (en) 2009-04-22 2010-10-28 アクアフェアリー株式会社 Packaged hydrogen-generating agent, manufacturing method therefor, and hydrogen generation method
ES2392939T3 (en) * 2010-05-13 2012-12-17 Amalio Garrido Escudero On-site hydrogen generation system on demand using a recyclable liquid metal reagent, and the method used in the system
CN111041263B (en) * 2020-01-03 2021-06-01 长沙理工大学 MgH is improved based on NiCu solid solution catalysis2Method for storing hydrogen performance
WO2023008848A1 (en) * 2021-07-26 2023-02-02 한국기계연구원 High-pressure gas filling system and high-pressure gas filling method using same

Also Published As

Publication number Publication date
JP2003314792A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
JP4073703B2 (en) Method for filling hydrogen into a high-pressure vessel
US7037483B2 (en) Process for producing high-pressure hydrogen and system for producing high-pressure hydrogen
US4607826A (en) Apparatus for preparing improved porous metal-hydride compacts
US8628609B2 (en) Hydrogen storage tank
TW567290B (en) A hydrogen infrastructure, a combined bulk hydrogen storage/single stage metal hydride hydrogen compressor therefor and alloys for use therein
EP1868941B1 (en) High density storage of ammonia
CN101128394B (en) High density storage of ammonia
US6811764B2 (en) Hydrogen generation system using stabilized borohydrides for hydrogen storage
JP5847175B2 (en) Production and supply system for hydrogen and sodium chlorate, including sodium chloride electrolyzer for producing sodium chlorate
JP2004108570A (en) Hydrogen storage container
KR20030007578A (en) Tank for the reversible storage of hydrogen
JP2003222299A (en) Hybrid type hydrogen storage vessel and hydrogen storing method into vessel
CA2458589A1 (en) Powder metal hydride hydrogen generator
CN101100285A (en) Chemical hydride hydrogen storing material system, hydrogen preparing method and hydrogen preparing device
JP6595177B2 (en) Hydrogen gas filling apparatus and method
JP2007070203A (en) Composite hydrogen storing material, and hydrogen generating and storing apparatus
JP2004502031A (en) Large storage capacity, fast reactivity, long cycle life hydrogen storage alloy
JP2009062215A (en) Hydrogen generating material, method for manufacturing hydrogen generating material, container for hydrogen generating material, hydrogen fuel vehicle, and portable apparatus
JP2008013375A (en) Composite material of hydride, and hydrogen storage material
US20050013770A1 (en) Method for storing hydrogen in an hybrid form
JP4109942B2 (en) High pressure hydrogen production equipment
JPH0218281B2 (en)
JP2002069558A (en) Fuel for hydrogen generation, hydrogen generating device and hydrogen generating method
WO2005064227A1 (en) Method for storing hydrogen in hybrid form
JP5938035B2 (en) Electric vehicle with a fuel cell including a sodium chlorate decomposition reactor for supplying oxygen to the fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees