JP2003314792A - Method of filling hydrogen into high pressure container - Google Patents

Method of filling hydrogen into high pressure container

Info

Publication number
JP2003314792A
JP2003314792A JP2002121158A JP2002121158A JP2003314792A JP 2003314792 A JP2003314792 A JP 2003314792A JP 2002121158 A JP2002121158 A JP 2002121158A JP 2002121158 A JP2002121158 A JP 2002121158A JP 2003314792 A JP2003314792 A JP 2003314792A
Authority
JP
Japan
Prior art keywords
hydrogen
fine particles
pressure
alloy
pressure container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002121158A
Other languages
Japanese (ja)
Other versions
JP4073703B2 (en
Inventor
Takanori Suzuki
貴紀 鈴木
Izuru Kanoya
出 鹿屋
Mitsuya Hosoe
光矢 細江
Buyo Isobe
武揚 磯辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002121158A priority Critical patent/JP4073703B2/en
Priority to US10/419,989 priority patent/US7037483B2/en
Publication of JP2003314792A publication Critical patent/JP2003314792A/en
Application granted granted Critical
Publication of JP4073703B2 publication Critical patent/JP4073703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of filling hydrogen into a high pressure container, using extremely easy means for producing high pressure hydrogen at low cost. <P>SOLUTION: In filling hydrogen into the high pressure container, a hydrogen producing material MgH<SB>2</SB>for reacting with water to produce hydrogen and water are measured to create targeted high hydrogen pressure in the high pressure container. Then, the hydrogen producing material is supplied into the high pressure container through its supply port and the water is supplied into the high pressure container through its supply port. Thereafter, the supply port is closed and the reaction of the hydrogen producing material with the water allows the hydrogen pressure in the high pressure container to reach the target high hydrogen pressure. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高圧容器への水素充
填方法に関する。
TECHNICAL FIELD The present invention relates to a method for filling hydrogen into a high-pressure container.

【0002】[0002]

【従来の技術】従来,高圧容器に水素を充填する場合,
高圧コンプレッサが用いられている。
2. Description of the Related Art Conventionally, when filling a high-pressure container with hydrogen,
A high pressure compressor is used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら高圧コン
プレッサの圧縮効率は一般的に低いため,高圧水素を得
るためには多くのエネルギを必要とし,不経済であっ
た。
However, since the compression efficiency of a high-pressure compressor is generally low, a large amount of energy is required to obtain high-pressure hydrogen, which is uneconomical.

【0004】[0004]

【課題を解決するための手段】本発明は極めて簡単な手
段を採用することによって低コストで高圧水素を得るこ
とができる,経済的な高圧容器への水素充填方法を提供
することを目的とする前記目的を達成するため本発明に
よれば,水と反応して水素を発生する水素発生物質と水
とを,高圧容器内において目標とする高水素圧が得られ
るように秤量し,次いで前記水素発生物質および前記水
を前記高圧容器内にその供給口を通じて入れ,その後,
前記供給口を封鎖して前記水素発生物質と前記水との反
応により,前記高圧容器内の水素圧を目標とする前記高
水素圧に到達させる,高圧容器への水素充填方法が提供
される。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an economical method for filling hydrogen into a high-pressure container, by which high-pressure hydrogen can be obtained at low cost by adopting an extremely simple means. To achieve the above object, according to the present invention, a hydrogen generating substance which reacts with water to generate hydrogen and water are weighed in a high pressure vessel so as to obtain a target high hydrogen pressure, and then the hydrogen is removed. The generated substance and the water are put into the high-pressure container through its supply port, and thereafter,
A method for filling hydrogen into a high-pressure container is provided, in which the supply port is closed and the hydrogen generation substance and the water react to cause the hydrogen pressure in the high-pressure container to reach the target high hydrogen pressure.

【0005】前記方法によれば,水素発生物質および水
を秤量して,それらを高圧容器内に入れる,といった極
めて簡単な手段により低コストで高圧水素を得ることが
できる。
According to the above method, high-pressure hydrogen can be obtained at low cost by an extremely simple means such as weighing a hydrogen-generating substance and water and putting them in a high-pressure container.

【0006】水素発生物質と水との反応による到達水素
圧は,その反応の到達温度における水素発生量により決
まり,平衡論的に決定される。常温付近で水に対し極め
て活性な水素発生物質の水素発生量は,一般的に容器内
圧力に大きく依存せず,よって,化学量論的に決定され
る水素圧に到達することになる。ただし,反応時の容器
内圧力が十分に高く,平衡論的に反応が進行しない場合
には,水素圧は化学量論的圧力までは到達せずに,平衡
論的圧力で一定となって,未反応の水素発生物質が残る
ことになる。即ち,未反応の水素発生物質が全て反応す
るまで,容器内圧力は一定に保たれることになる。
The hydrogen pressure reached by the reaction between the hydrogen generating substance and water is determined by the amount of hydrogen generated at the temperature reached by the reaction and is determined equilibrium. The hydrogen generation amount of the hydrogen generating substance which is extremely active against water at around room temperature generally does not largely depend on the pressure inside the container, and therefore reaches the hydrogen pressure stoichiometrically determined. However, when the pressure in the container during the reaction is sufficiently high and the reaction does not proceed equilibrium, the hydrogen pressure does not reach the stoichiometric pressure and becomes constant at the equilibrium pressure. Unreacted hydrogen generating material will remain. That is, the pressure in the container is kept constant until all unreacted hydrogen generating substances have reacted.

【0007】[0007]

【発明の実施の形態】図1において,高圧容器1は車両
に搭載されており,その器体2は円筒部3と,円筒部3
の両端にそれぞれ連なる椀形端壁部4,5とを有する。
一方の椀形端壁部4から供給口6を有する第1接続部7
が突出し,また他方の椀形端壁部5からは放出口8を有
する第2接続部9が突出する。第1接続部7には開閉弁
10を有する第1管11が接続され,また第2接続部9
は第2管12を介して燃料電池13に接続されており,
その第2管12には開閉弁を有する減圧器14が装置さ
れる。図2に示すように,器体2はカーボン複合材料製
外殻15と,その内面全体を覆う高密度ポリエチレン製
ライナ16とよりなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, a high-pressure container 1 is mounted on a vehicle, and its container 2 has a cylindrical portion 3 and a cylindrical portion 3.
And bowl-shaped end wall portions 4 and 5 which are respectively connected to both ends.
One bowl-shaped end wall part 4 to a first connection part 7 having a supply port 6
And a second connecting part 9 having a discharge port 8 projects from the other bowl-shaped end wall part 5. A first pipe 11 having an on-off valve 10 is connected to the first connecting portion 7, and a second connecting portion 9
Is connected to the fuel cell 13 via the second tube 12,
A pressure reducer 14 having an on-off valve is installed in the second pipe 12. As shown in FIG. 2, the body 2 includes an outer shell 15 made of carbon composite material and a high-density polyethylene liner 16 covering the entire inner surface thereof.

【0008】高圧容器1に高圧水素が充填されている状
態において,燃料電池13の運転開始時には,減圧器1
4の開閉弁を開けば,高圧水素が所定値に減圧された後
燃料電池13に供給される。
With the high-pressure vessel 1 filled with high-pressure hydrogen, the decompressor 1 is activated when the fuel cell 13 starts operating.
When the on-off valve 4 is opened, the high-pressure hydrogen is depressurized to a predetermined value and then supplied to the fuel cell 13.

【0009】高圧容器1への水素の充填に当っては,先
ず,水と反応して水素を発生する粉末状水素発生物質と
水とを,その高圧容器内において目標とする高水素圧が
得られるように秤量する。次いで,図3に示すように,
第1接続部7から第1管11が外された状態において,
秤量された粉末状水素発生物質17を高圧容器1内にそ
の供給口6を通じて入れる。さらに,図4に示すよう
に,第1接続部7に第1管11を接続し,また減圧器1
4の開閉弁を閉じた状態において,秤量された水を高圧
容器1内にその供給口6を通じて入れる。その後,開閉
弁10を閉じることにより供給口6を封鎖して粉末状水
素発生物質17と水との反応により,高圧容器1内の水
素圧を目標とする高水素圧に到達させるものである。
In filling the high-pressure container 1 with hydrogen, first, a powdery hydrogen generating substance which reacts with water to generate hydrogen and water are obtained in the high-pressure container so as to obtain a target high hydrogen pressure. Weigh so that Then, as shown in FIG.
With the first pipe 11 removed from the first connecting portion 7,
The weighed powdery hydrogen generating substance 17 is put into the high-pressure container 1 through the supply port 6. Further, as shown in FIG. 4, the first pipe 11 is connected to the first connecting portion 7, and the decompressor 1
With the on-off valve 4 closed, the weighed water is put into the high-pressure container 1 through the supply port 6. After that, the opening / closing valve 10 is closed to close the supply port 6 and the reaction between the powdery hydrogen generating substance 17 and water causes the hydrogen pressure in the high-pressure vessel 1 to reach a target high hydrogen pressure.

【0010】水素発生物質17としては,Mg粒子およ
び水素化Mg(MgH2 )粒子の少なくとも一方からな
る集合体,つまりMg粉末,水素化Mg粉末ならびにM
g粉末および水素化Mg粉末の混合粉末が使用される。
As the hydrogen generating substance 17, an aggregate composed of at least one of Mg particles and hydrogenated Mg (MgH 2 ) particles, that is, Mg powder, hydrogenated Mg powder and M
A mixed powder of g powder and Mg hydride powder is used.

【0011】水素発生物質としては水素化Mg合金粉末
も用いられ,その水素化Mg合金粉末は,図5に示すよ
うに,粒状Mg18と,その粒状Mg18の表面および
内部に存在する複数の触媒金属微粒子19とよりなるM
g合金粒子20の集合体に水素化処理を施したものであ
る。触媒金属微粒子19にはNi微粒子,Ni合金微粒
子,Fe微粒子,Fe合金微粒子,V微粒子,V合金微
粒子,Mn微粒子,Mn合金微粒子,Ti微粒子,Ti
合金微粒子,Cu微粒子,Cu合金微粒子,Ag微粒
子,Ag合金微粒子,Ca微粒子,Ca合金微粒子,Z
n微粒子,Zn合金微粒子,Zr微粒子,Zr合金微粒
子,Co微粒子,Co合金微粒子,Cr微粒子,Cr合
金微粒子,Al微粒子およびAl合金微粒子から選択さ
れる少なくとも一種が該当する。
As the hydrogen generating substance, hydrogenated Mg alloy powder is also used. As shown in FIG. 5, the hydrogenated Mg alloy powder contains granular Mg18 and a plurality of catalytic metals present on the surface and inside of the granular Mg18. M consisting of fine particles 19
The g-alloy particles 20 are subjected to hydrogenation treatment. The catalyst metal particles 19 include Ni particles, Ni alloy particles, Fe particles, Fe alloy particles, V particles, V alloy particles, Mn particles, Mn alloy particles, Ti particles, and Ti particles.
Alloy fine particles, Cu fine particles, Cu alloy fine particles, Ag fine particles, Ag alloy fine particles, Ca fine particles, Ca alloy fine particles, Z
At least one selected from n fine particles, Zn alloy fine particles, Zr fine particles, Zr alloy fine particles, Co fine particles, Co alloy fine particles, Cr fine particles, Cr alloy fine particles, Al fine particles and Al alloy fine particles is applicable.

【0012】Mg合金粉末における触媒金属微粒子19
の含有量Gは0.1原子%≦G≦5.0原子%に設定さ
れる。その含有量GがG<0.1原子%では添加効果が
なく,一方,G>5.0原子%では水素発生量が減少す
るため実用性がない。触媒金属微粒子19の含有量G
は,好ましくは0.3原子%≦G≦1.0原子%であ
る。Mg合金粉末はメカニカルアロイングの適用下で製
造されるので,粒状Mg18の粒径Dは1μm≦D≦5
00μm,また触媒金属微粒子19の粒径dは10nm
≦d≦500nmが適当である。この場合,粒径D,d
とは,顕微鏡写真における粒状Mg等の最長部分の長さ
(最大わたし径)とする。
Catalyst metal fine particles 19 in Mg alloy powder 19
The content G of is set to 0.1 atomic% ≦ G ≦ 5.0 atomic%. When the content G is G <0.1 at%, there is no effect of addition, while when G> 5.0 at%, the hydrogen generation amount is reduced, which is impractical. Content G of catalyst metal fine particles 19
Is preferably 0.3 atom% ≦ G ≦ 1.0 atom%. Since the Mg alloy powder is manufactured under the application of mechanical alloying, the particle size D of the granular Mg18 is 1 μm ≦ D ≦ 5.
00 μm, and the particle size d of the catalytic metal fine particles 19 is 10 nm
≦ d ≦ 500 nm is suitable. In this case, the particle size D, d
Is the length of the longest part (maximum private diameter) of granular Mg etc. in the micrograph.

【0013】〔実施例〕高圧容器1:内径200mm,塔
長800mm,内容積約100L;目標とする高水素圧:
27MPa;水素発生物質17:Mg99.5Ni0.5 (数
値の単位は原子%)の組成を有する合金粉末,粒状Mg
18の粒径D 2μm≦D≦300μm,Ni粒子の粒
径d 10nm≦d≦200nm,供給量15kg;水:
40℃のイオン交換水,供給量25L.
[Example] High-pressure vessel 1: inner diameter 200 mm, tower length 800 mm, inner volume about 100 L; target high hydrogen pressure:
27 MPa; Hydrogen-evolving substance 17: Mg 99.5 Ni 0.5 (numerical unit is atomic%) alloy powder, granular Mg
18 particle diameter D 2 μm ≦ D ≦ 300 μm, Ni particle diameter d 10 nm ≦ d ≦ 200 nm, supply amount 15 kg; water:
Deionized water at 40 ° C., supply amount 25 L.

【0014】図6の線aは,高圧容器1内における合金
粉末と水との反応,つまり,MgH 2 +2H2 O→Mg
(OH)2 +2H2 による水素圧の経時的変化を示す。
また図6の線bは,高圧コンプレッサにより高圧容器1
内に水素を充填した場合に該当する。図6,線aから明
らかなように,前記のような水素発生物質と水とを用い
ることによって,高圧コンプレッサを使用することな
く,それを使用した場合と同等の高水素圧を現出させる
ことができるものである。
The line a in FIG. 6 indicates the alloy in the high pressure vessel 1.
Reaction between powder and water, ie MgH 2+ 2H2O → Mg
(OH)2+ 2H22 shows the change over time in hydrogen pressure due to.
The line b in FIG. 6 indicates that the high pressure container 1
It corresponds to the case where hydrogen is filled inside. Figure 6, clear from line a
As can be seen, using the hydrogen generating substance and water as described above
By using a high pressure compressor
The same high hydrogen pressure as when using it.
Is something that can be done.

【0015】高圧容器1内に残留するMg(OH)2
供給口6から排出されて,Mgの回収が行われる。
The Mg (OH) 2 remaining in the high pressure vessel 1 is discharged from the supply port 6 to recover Mg.

【0016】図6において,車両を走行させるべく燃料
電池13を運転するためには,高圧容器1内の水素圧が
10MPa程度であれば十分であるから,高圧容器1内
に水を入れた後,約2分といった極めて短時間のうちに
車両を発進させることが可能である。その後は,水素発
生物質が無くなるまで水素の発生が継続するので,車両
の走行は滞りなく行われる。
In FIG. 6, in order to drive the fuel cell 13 to drive the vehicle, it is sufficient that the hydrogen pressure in the high-pressure container 1 is about 10 MPa. It is possible to start the vehicle in an extremely short time of about 2 minutes. After that, hydrogen continues to be generated until the hydrogen-generating substance is exhausted, so the vehicle travels smoothly.

【0017】高圧コンプレッサを用いた場合は,高圧容
器への水素充填が終了するまで車両を発進させることが
できない,つまり,図6,線bにおいて水素充填開始か
ら約10分間経過しないと水素の充填は終了しないの
で,それまで車両の発進を待たなければならない。
When the high-pressure compressor is used, the vehicle cannot be started until the hydrogen filling into the high-pressure container is completed, that is, the hydrogen filling is started until about 10 minutes have elapsed from the hydrogen filling start in FIG. 6, line b. Will not end, so you have to wait until the vehicle starts.

【0018】車載の高圧容器1への水素充填方法として
は,その充填時間を短縮すべく,水素ステーションにお
いて,高圧コンプレッサにより水素をバッファタンクに
充填し,そのバッファタンク内の高圧水素を車載の高圧
容器に移す,といった手段も考えられているが,この場
合には,バッファタンク内の水素圧は高圧容器1内のそ
れよりも大でなければならないので,そのバッファタン
ク内への水素充填に際して多大なエネルギを必要とす
る。またバッファタンクを複数組合せたカスケード式充
填システムを用いた場合にはシステムの大型化およびそ
の占有スペースの増大,といった不具合を招く。本発明
によれば,これらの問題点はことごとく解消される。
As a method of filling hydrogen into the vehicle-mounted high-pressure container 1, in order to shorten the filling time, hydrogen is filled in the buffer tank by the high-pressure compressor at the hydrogen station, and the high-pressure hydrogen in the buffer tank is charged into the vehicle under high pressure. A means of transferring to a container is also considered, but in this case, the hydrogen pressure in the buffer tank must be higher than that in the high-pressure container 1, so that a large amount of hydrogen is needed to fill the buffer tank with hydrogen. Need a lot of energy. Further, when a cascade type filling system in which a plurality of buffer tanks are combined is used, the system becomes large and the space occupied by the system is increased. According to the present invention, all of these problems are solved.

【0019】[0019]

【発明の効果】本発明によれば,極めて簡単な手段を採
用することによって,低コストで高圧水素を得ることが
可能な,高圧容器への水素充填方法を提供することがで
きる。
According to the present invention, by adopting an extremely simple means, it is possible to provide a method for filling hydrogen into a high-pressure container, which is capable of obtaining high-pressure hydrogen at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】高圧容器と燃料電池との接続関係を示す説明図
である。
FIG. 1 is an explanatory diagram showing a connection relationship between a high-pressure container and a fuel cell.

【図2】高圧容器の要部拡大断面図である。FIG. 2 is an enlarged sectional view of a main part of a high pressure container.

【図3】水素発生物質を高圧容器内に入れる状態を示す
説明図である。
FIG. 3 is an explanatory diagram showing a state in which a hydrogen generating substance is put into a high-pressure container.

【図4】水を高圧容器内に入れる状態を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing a state in which water is put into a high-pressure container.

【図5】Mg合金粒子の説明図である。FIG. 5 is an explanatory diagram of Mg alloy particles.

【図6】高圧容器内における水素圧の経時的変化を示す
グラフである。
FIG. 6 is a graph showing changes with time in hydrogen pressure in the high-pressure container.

【符号の説明】[Explanation of symbols]

1……………高圧容器 6……………供給口 17…………水素発生物質 18…………粒状Mg 19…………触媒金属微粒子 20…………Mg合金粒子 1 ……………… High-pressure container 6 ……………… Supply port 17 ………… Hydrogen generating substance 18 ………… Granular Mg 19 ………… Catalyst metal fine particles 20 ………… Mg alloy particles

フロントページの続き (72)発明者 細江 光矢 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 磯辺 武揚 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 3E072 AA03 DA10 4G069 AA02 AA11 BB02A BB02B BC09A BC16A BC31A BC32A BC35A BC50A BC51A BC54A BC58A BC62A BC66A BC67A BC68A BC68B CB81 EA01Y EB18Y EB19 Continued front page    (72) Inventor Mitsuya Hosoe             1-4-1 Chuo Stock Market, Wako City, Saitama Prefecture             Inside Honda Research Laboratory (72) Inventor Takeyo Isobe             1-4-1 Chuo Stock Market, Wako City, Saitama Prefecture             Inside Honda Research Laboratory F-term (reference) 3E072 AA03 DA10                 4G069 AA02 AA11 BB02A BB02B                       BC09A BC16A BC31A BC32A                       BC35A BC50A BC51A BC54A                       BC58A BC62A BC66A BC67A                       BC68A BC68B CB81 EA01Y                       EB18Y EB19

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水と反応して水素を発生する水素発生物
質(17)と水とを,高圧容器(1)内において目標と
する高水素圧が得られるように秤量し,次いで前記水素
発生物質(17)および前記水を前記高圧容器(1)内
にその供給口(6)を通じて入れ,その後,前記供給口
(6)を封鎖して前記水素発生物質(17)と前記水と
の反応により,前記高圧容器(1)内の水素圧を目標と
する前記高水素圧に到達させることを特徴とする高圧容
器への水素充填方法。
1. A hydrogen generating substance (17) which reacts with water to generate hydrogen and water are weighed in a high pressure vessel (1) so as to obtain a target high hydrogen pressure, and then the hydrogen generation is performed. The substance (17) and the water are put into the high-pressure container (1) through its supply port (6), and then the supply port (6) is closed to react the hydrogen generating substance (17) with the water. According to the method, the hydrogen pressure in the high pressure vessel (1) is made to reach the target high hydrogen pressure.
【請求項2】 前記水素発生物質(17)は,Mg粒子
および水素化Mg粒子の少なくとも一方からなる集合体
である,請求項1記載の高圧容器への水素充填方法。
2. The method for filling hydrogen into a high-pressure container according to claim 1, wherein the hydrogen generating substance (17) is an aggregate composed of at least one of Mg particles and hydrogenated Mg particles.
【請求項3】 前記水素発生物質(17)は,粒状Mg
(18)と,その粒状Mg(18)の表面および内部に
存在する複数の触媒金属微粒子(19)とよりなるMg
合金粒子(20)の集合体に水素化処理を施したもので
あり,前記触媒金属微粒子(19)はNi微粒子,Ni
合金微粒子,Fe微粒子,Fe合金微粒子,V微粒子,
V合金微粒子,Mn微粒子,Mn合金微粒子,Ti微粒
子,Ti合金微粒子,Cu微粒子,Cu合金微粒子,A
g微粒子,Ag合金微粒子,Ca微粒子,Ca合金微粒
子,Zn微粒子,Zn合金微粒子,Zr微粒子,Zr合
金微粒子,Co微粒子,Co合金微粒子,Cr微粒子,
Cr合金微粒子,Al微粒子およびAl合金微粒子から
選択される少なくとも一種である,請求項1記載の高圧
容器への水素充填方法。
3. The hydrogen generating substance (17) is granular Mg.
Mg composed of (18) and a plurality of catalytic metal fine particles (19) existing on the surface and inside of the granular Mg (18)
The aggregate of alloy particles (20) is subjected to hydrogenation treatment, and the catalyst metal fine particles (19) are Ni fine particles, Ni
Alloy fine particles, Fe fine particles, Fe alloy fine particles, V fine particles,
V alloy fine particles, Mn fine particles, Mn alloy fine particles, Ti fine particles, Ti alloy fine particles, Cu fine particles, Cu alloy fine particles, A
g fine particles, Ag alloy fine particles, Ca fine particles, Ca alloy fine particles, Zn fine particles, Zn alloy fine particles, Zr fine particles, Zr alloy fine particles, Co fine particles, Co alloy fine particles, Cr fine particles,
The method for filling hydrogen into a high-pressure container according to claim 1, wherein the method is at least one selected from Cr alloy fine particles, Al fine particles, and Al alloy fine particles.
JP2002121158A 2002-04-23 2002-04-23 Method for filling hydrogen into a high-pressure vessel Expired - Fee Related JP4073703B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002121158A JP4073703B2 (en) 2002-04-23 2002-04-23 Method for filling hydrogen into a high-pressure vessel
US10/419,989 US7037483B2 (en) 2002-04-23 2003-04-22 Process for producing high-pressure hydrogen and system for producing high-pressure hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002121158A JP4073703B2 (en) 2002-04-23 2002-04-23 Method for filling hydrogen into a high-pressure vessel

Publications (2)

Publication Number Publication Date
JP2003314792A true JP2003314792A (en) 2003-11-06
JP4073703B2 JP4073703B2 (en) 2008-04-09

Family

ID=29537182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002121158A Expired - Fee Related JP4073703B2 (en) 2002-04-23 2002-04-23 Method for filling hydrogen into a high-pressure vessel

Country Status (1)

Country Link
JP (1) JP4073703B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107146A (en) * 2002-09-19 2004-04-08 Honda Motor Co Ltd System for producing high-pressure hydrogen
WO2006073113A1 (en) * 2005-01-07 2006-07-13 Hitachi Maxell, Ltd. Hydrogen generating material, hydrogen generator and fuel cell
JP2007502769A (en) * 2003-08-19 2007-02-15 グリフィン,リナド Apparatus and method for producing hydrogen
KR100870723B1 (en) 2005-03-25 2008-11-27 히다치 막셀 가부시키가이샤 Hydrogen generating material, method for producing same, and method for producing hydrogen
JP2009149484A (en) * 2007-12-18 2009-07-09 Fukuhara Co Ltd Manufacturing process of high pressure hydrogen gas and manufacturing apparatus
JP2009274944A (en) * 2008-05-16 2009-11-26 Fukuhara Co Ltd Method and apparatus for producing hydrogen gas
JP2010202438A (en) * 2009-03-02 2010-09-16 Aquafairy Kk Hydrogen generation method and hydrogen generation apparatus
JP2013530912A (en) * 2010-05-13 2013-08-01 アマリオ、ガヒード、エスクデロ On-site controllable demand hydrogen generation system using recyclable liquid metal reagent and method used in the system
US9434611B2 (en) 2009-04-22 2016-09-06 Aquafairy Corporation Packaged hydrogen-generating agent, manufacturing method therefor, and hydrogen generation method
CN111041263A (en) * 2020-01-03 2020-04-21 长沙理工大学 MgH is improved based on NiCu solid solution catalysis2Method for storing hydrogen performance
WO2023008848A1 (en) * 2021-07-26 2023-02-02 한국기계연구원 High-pressure gas filling system and high-pressure gas filling method using same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107146A (en) * 2002-09-19 2004-04-08 Honda Motor Co Ltd System for producing high-pressure hydrogen
JP2007502769A (en) * 2003-08-19 2007-02-15 グリフィン,リナド Apparatus and method for producing hydrogen
US7883805B2 (en) 2005-01-07 2011-02-08 Hitachi Maxell, Ltd. Hydrogen generating material, hydrogen generator and fuel cell
WO2006073113A1 (en) * 2005-01-07 2006-07-13 Hitachi Maxell, Ltd. Hydrogen generating material, hydrogen generator and fuel cell
EP1757557A4 (en) * 2005-01-07 2008-09-24 Hitachi Maxell Hydrogen generating material, hydrogen generator and fuel cell
KR100870723B1 (en) 2005-03-25 2008-11-27 히다치 막셀 가부시키가이샤 Hydrogen generating material, method for producing same, and method for producing hydrogen
JP2009149484A (en) * 2007-12-18 2009-07-09 Fukuhara Co Ltd Manufacturing process of high pressure hydrogen gas and manufacturing apparatus
JP2009274944A (en) * 2008-05-16 2009-11-26 Fukuhara Co Ltd Method and apparatus for producing hydrogen gas
JP2010202438A (en) * 2009-03-02 2010-09-16 Aquafairy Kk Hydrogen generation method and hydrogen generation apparatus
US9434611B2 (en) 2009-04-22 2016-09-06 Aquafairy Corporation Packaged hydrogen-generating agent, manufacturing method therefor, and hydrogen generation method
EP3115335A1 (en) 2009-04-22 2017-01-11 Aquafairy Corporation Hydrogen-generating agent and manufacturing method therefor
JP2013530912A (en) * 2010-05-13 2013-08-01 アマリオ、ガヒード、エスクデロ On-site controllable demand hydrogen generation system using recyclable liquid metal reagent and method used in the system
CN111041263A (en) * 2020-01-03 2020-04-21 长沙理工大学 MgH is improved based on NiCu solid solution catalysis2Method for storing hydrogen performance
CN111041263B (en) * 2020-01-03 2021-06-01 长沙理工大学 MgH is improved based on NiCu solid solution catalysis2Method for storing hydrogen performance
WO2023008848A1 (en) * 2021-07-26 2023-02-02 한국기계연구원 High-pressure gas filling system and high-pressure gas filling method using same

Also Published As

Publication number Publication date
JP4073703B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
US7037483B2 (en) Process for producing high-pressure hydrogen and system for producing high-pressure hydrogen
EP1868941B1 (en) High density storage of ammonia
JP2003314792A (en) Method of filling hydrogen into high pressure container
CN102333722B (en) Compositions and methods for hydrogen generation
US20080152584A1 (en) Method and Composition for Production of Hydrogen
US7431151B2 (en) Hydrogen storage tank
US20110000798A1 (en) hydrogen storage tank
US6387152B1 (en) Process for manufacturing nanocrystalline metal hydrides
JP2008156148A (en) Method for generating hydrogen
CA2458589A1 (en) Powder metal hydride hydrogen generator
CN107017419A (en) Solid state hydrogen storage facilities and solid-state hydrogen storage system
US20100330443A1 (en) Hydrogen production method, hydrogen production system, and fuel cell system
JP2007070203A (en) Composite hydrogen storing material, and hydrogen generating and storing apparatus
JP2016109265A (en) Hydrogen gas charging device and method
JP2002187595A (en) Hydrogen generator, and hydrogen generator especially for diving apparatus
JPH01208301A (en) Generating method of hydrogen
JP5383352B2 (en) Hydrogen oxygen generator and fuel cell system using the same
JP2009062215A (en) Hydrogen generating material, method for manufacturing hydrogen generating material, container for hydrogen generating material, hydrogen fuel vehicle, and portable apparatus
EP0107497A2 (en) Production of hydrogen
US20100233076A1 (en) Hydrogen Storage Materials
JP4109942B2 (en) High pressure hydrogen production equipment
JP2002069558A (en) Fuel for hydrogen generation, hydrogen generating device and hydrogen generating method
JP5109053B2 (en) Method and apparatus for producing hydrogen gas
CN101519186B (en) Activation of metal hydrides
JPS6046901A (en) Method for releasing stored hydrogen gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees