JP2009062215A - Hydrogen generating material, method for manufacturing hydrogen generating material, container for hydrogen generating material, hydrogen fuel vehicle, and portable apparatus - Google Patents

Hydrogen generating material, method for manufacturing hydrogen generating material, container for hydrogen generating material, hydrogen fuel vehicle, and portable apparatus Download PDF

Info

Publication number
JP2009062215A
JP2009062215A JP2007230251A JP2007230251A JP2009062215A JP 2009062215 A JP2009062215 A JP 2009062215A JP 2007230251 A JP2007230251 A JP 2007230251A JP 2007230251 A JP2007230251 A JP 2007230251A JP 2009062215 A JP2009062215 A JP 2009062215A
Authority
JP
Japan
Prior art keywords
hydrogen
generating material
metal hydride
water
hydrogen generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007230251A
Other languages
Japanese (ja)
Inventor
Tomohiro Kaburagi
智裕 蕪木
Takahiro Kuriiwa
貴寛 栗岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007230251A priority Critical patent/JP2009062215A/en
Publication of JP2009062215A publication Critical patent/JP2009062215A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen generating material decreasing supplied calories upon generating hydrogen from a hydrogenated metal and downsizing a heating device. <P>SOLUTION: The hydrogen generating material contains a metal hydride 1 and a water-releasing material 2. The hydrogen generating material has a particle structure such as a particle structure having the water-releasing material 2 included inside the metal hydride 1, a structure having a layer of the water-releasing material 2 on the surface of the metal hydride 1, or a structure having the water-releasing material 2 on the surface of a metal oxide covering the surface of the metal hydride 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水素発生材料及びその周辺技術に係り、特に移動体に水素を供給するのに好適な水素発生材料、水素発生材料の製造方法、水素発生材料の容器、水素燃料車両、及び携帯用機器に関する。   The present invention relates to a hydrogen generating material and peripheral technologies thereof, and more particularly to a hydrogen generating material suitable for supplying hydrogen to a moving body, a method for manufacturing the hydrogen generating material, a container for the hydrogen generating material, a hydrogen fuel vehicle, and a portable device. Regarding equipment.

従来より携帯型燃料電池や水素燃料車両に水素を供給する方法として、極低温の液体水素貯蔵装置から水素を供給する方法、高圧水素ガスタンクから水素を供給する方法、及び水素を含む材料から移動体上で水素を発生させて供給する方法が知られている。   Conventionally, as a method of supplying hydrogen to a portable fuel cell or a hydrogen fuel vehicle, a method of supplying hydrogen from a cryogenic liquid hydrogen storage device, a method of supplying hydrogen from a high-pressure hydrogen gas tank, and a moving body from a material containing hydrogen A method for generating and supplying hydrogen is known.

ところが液体水素貯蔵装置は、高性能な断熱容器を備えても一日当たり数%の液体水素蒸発を抑制できず、また装置が大がかりになる欠点がある。また高圧水素ガスタンクも高圧力に対して強度を備えなければならず、単位貯蔵水素当たりの容積及び重量が嵩むという欠点がある。このため、水素以外の原料から携帯型燃料電池または水素燃料車両において水素を発生させる方法に注目されている。   However, the liquid hydrogen storage device has a drawback that even if it has a high-performance heat insulating container, it cannot suppress evaporation of several percent of liquid hydrogen per day, and the device becomes large. In addition, the high-pressure hydrogen gas tank must have strength against high pressure, and there is a drawback that the volume and weight per unit storage hydrogen increase. For this reason, attention is focused on a method for generating hydrogen from a raw material other than hydrogen in a portable fuel cell or a hydrogen fuel vehicle.

このような水素発生方法の従来技術としては、アルミニウム水素化物を約200℃の温度で加熱すると、(化a)式に示すように、金属アルミニウムと水素に分解することが知られている(非特許文献1)。   As a prior art of such a hydrogen generation method, it is known that when aluminum hydride is heated at a temperature of about 200 ° C., it is decomposed into metallic aluminum and hydrogen as shown in the formula (a) (non- Patent Document 1).

AlH3 → Al + (3/2)H2 …(化a)
また、燃料電池用の水素供給システムとして、金属水素化物の加水分解により水素を供給する第1の水素貯蔵システムと、水素吸蔵材を用いて水素を供給する第2の水素貯蔵システムとの間で熱交換を行う水素供給システムが知られている(特許文献1)。この水素供給システムによれば、第1の水素貯蔵システムで発生した熱を第2の水素貯蔵システムへ供給することにより、水素発生時に外部からの加熱を必要とせず、また外部へ無駄な熱を廃棄する必要もなくなり、総合的なエネルギ効率を高めることができる。
Decomposition Kinetics of the AlH3 Polymorphs Jason Greatz and James J. Reilly J.Phys.Chem.B 2005,109,22181-22185. 特開2004−206950号公報(第6頁、図2)
AlH 3 → Al + (3/2) H 2 (Chemical Formula a)
Further, as a hydrogen supply system for a fuel cell, between a first hydrogen storage system that supplies hydrogen by hydrolysis of a metal hydride and a second hydrogen storage system that supplies hydrogen using a hydrogen storage material. A hydrogen supply system that performs heat exchange is known (Patent Document 1). According to this hydrogen supply system, the heat generated in the first hydrogen storage system is supplied to the second hydrogen storage system, so that no external heating is required at the time of hydrogen generation, and wasteful heat is generated outside. There is no need to dispose of it and overall energy efficiency can be improved.
Decomposition Kinetics of the AlH3 Polymorphs Jason Greatz and James J. Reilly J. Phys. Chem. B 2005, 109, 22181-22185. JP 2004-206950 A (6th page, FIG. 2)

しかしながら非特許文献1に記載の金属水素化物の分解反応は吸熱反応であり、水素発生時に大量の熱供給が必要となるので、金属水素化物を加熱するための加熱装置の容積及び重量が嵩むとともに、必要な熱量の供給を継続しなければならないという問題点があった。   However, the decomposition reaction of the metal hydride described in Non-Patent Document 1 is an endothermic reaction, and a large amount of heat supply is required at the time of hydrogen generation, so that the volume and weight of the heating device for heating the metal hydride increases. There was a problem that the supply of the necessary amount of heat had to be continued.

また、特許文献1に記載の金属水素化物の加水分解により水素を供給する第1の水素貯蔵システムと、水素吸蔵材を用いて水素を供給する第2の水素貯蔵システムとを備える水素供給システムでは、異なる2つの水素貯蔵システムを備える必要があり、既存の水素貯蔵タンクよりも大きな重量、容積を必要とするという問題点があった。   Moreover, in a hydrogen supply system provided with the 1st hydrogen storage system which supplies hydrogen by hydrolysis of the metal hydride of patent document 1, and the 2nd hydrogen storage system which supplies hydrogen using a hydrogen storage material However, it is necessary to provide two different hydrogen storage systems, and there is a problem that a larger weight and volume are required than existing hydrogen storage tanks.

本発明は、上記問題点を解決するために、金属水素化物と、加熱により発熱を誘発する物質と、を含むことを要旨とする水素発生材料である。   In order to solve the above-mentioned problems, the present invention is a hydrogen generating material including a metal hydride and a substance that induces heat generation by heating.

また、本発明は、ヒドロキシル基を有する化合物と金属水素化物とを接触させることにより、金属水素化物に水を放出する層を形成したことを要旨とする水素発生材料の製造方法である。   Moreover, this invention is a manufacturing method of the hydrogen generating material which makes the summary the layer which discharge | releases water to a metal hydride by making the compound and metal hydride which have a hydroxyl group contact.

本発明に係る水素発生材料によれば、水素発生材料に、金属水素化物と、加熱により発熱を誘発する物質とを含むことにより、加熱時に金属水素化物の熱分解反応と平行して、加熱により発熱を誘発する物質が発熱反応を誘発するので、水素発生のために供給すべき熱量が大幅に減少し加熱装置の容積及び重量を削減することができる水素発生材料を提供することができるという効果がある。   According to the hydrogen generating material according to the present invention, the hydrogen generating material includes a metal hydride and a substance that induces heat generation by heating, so that in parallel with the thermal decomposition reaction of the metal hydride during heating, Since the substance that induces exotherm induces an exothermic reaction, the amount of heat to be supplied for hydrogen generation can be greatly reduced, and the hydrogen generating material that can reduce the volume and weight of the heating device can be provided. There is.

また本発明に係る水素発生材料の製造方法によれば、金属水素化物の表面に、水を放出する層を形成した水素発生材料を容易に形成することができ、この水素発生材料を加熱すれば、放出された水が金属水素化物或いは金属水素化物が分解した金属と反応して発熱反応を誘発するので、水素発生のために供給すべき熱量を大幅に減少した水素発生材料を提供することができるという効果がある。   Further, according to the method for producing a hydrogen generating material according to the present invention, a hydrogen generating material in which a layer for releasing water can be easily formed on the surface of the metal hydride, and if this hydrogen generating material is heated, Since the released water reacts with the metal hydride or the metal from which the metal hydride is decomposed to induce an exothermic reaction, it is possible to provide a hydrogen generating material that greatly reduces the amount of heat to be supplied for hydrogen generation. There is an effect that can be done.

本発明の実施の形態を詳細に説明する。本発明に係る水素発生材料は、金属水素化物と、加熱によりヒドロキシル基を有する化合物である水を放出する水放出物とを含むことを特徴としている。金属水素化物は、金属をMとすると、次に示す(化1)式の熱分解反応(吸熱反応)により水素を発生する。   Embodiments of the present invention will be described in detail. The hydrogen generating material according to the present invention is characterized by containing a metal hydride and a water release material that releases water, which is a compound having a hydroxyl group, by heating. When the metal hydride is M, the metal hydride generates hydrogen by the following thermal decomposition reaction (endothermic reaction) of the formula (Chemical Formula 1).

MH2 → M + H2 …(化1)
水放出物から加熱により放出された水は、金属水素化物と水分解反応(発熱反応)して、(化2)式に示すように、金属酸化物と水素とを発生させる。
MH 2 → M + H 2 (Chemical formula 1)
The water released from the water discharge by heating undergoes a water splitting reaction (exothermic reaction) with the metal hydride to generate a metal oxide and hydrogen as shown in the formula (2).

MH2 +H2O → MO + 2H2 …(化2)
この水分解反応は、発熱反応であるので、加熱により水を放出する水放出物は、金属水素化物と共に存在する場合、加熱により発熱を誘発する物質である。
MH 2 + H 2 O → MO + 2H 2 (Chemical formula 2)
Since this water splitting reaction is an exothermic reaction, the water discharge that releases water by heating is a substance that induces heat generation by heating when present together with a metal hydride.

また、(化3)に示すように、金属水素化物が分解した金属と水との反応も発熱反応である。MOとしては、金属酸化物だけではなく、金属水酸化物、金属酸化物の水和物が含まれる。Alの場合は、Al23 、Al(OH)3 、AlOOHが挙げられる。 Further, as shown in (Chemical Formula 3), the reaction between the metal obtained by decomposition of the metal hydride and water is also an exothermic reaction. The MO includes not only metal oxides but also metal hydroxides and metal oxide hydrates. In the case of Al, Al 2 O 3 , Al (OH) 3 , and AlOOH are listed.

M +H2O → MO + H2 …(化3)
従って、(化2)及び(化3)による水分解反応の熱を、(化1)に示した金属水素化物の熱分解反応(吸熱反応)のために利用することができる。これにより、水素発生材料から水素を発生させる際に、外部から供給すべき熱量を低減することができる。
M + H 2 O → MO + H 2 (Chemical formula 3)
Therefore, the heat of the water splitting reaction by (Chemical Formula 2) and (Chemical Formula 3) can be utilized for the thermal decomposition reaction (endothermic reaction) of the metal hydride shown in (Chemical Formula 1). Thereby, when generating hydrogen from a hydrogen generating material, the amount of heat to be supplied from the outside can be reduced.

加熱により発熱を誘発する物質は、加熱により水を放出する物質以外に、加熱によりヒドロキシル基を有する物質、例えば、メチルアルコール、エチルアルコール等の低級アルコール類が挙げられる。更にカルボキシル基を有する低級カルボン酸等の物質を放出する物質でも同様の効果が得られる。低級アルコール類や、低級カルボン酸等の物質は、水と同様に、金属水素化物と発熱反応して水素を放出することができる。   Examples of the substance that induces heat generation by heating include substances having a hydroxyl group by heating, for example, lower alcohols such as methyl alcohol and ethyl alcohol, in addition to substances that release water by heating. Furthermore, the same effect can be obtained with a substance that releases a substance such as a lower carboxylic acid having a carboxyl group. Substances such as lower alcohols and lower carboxylic acids can release hydrogen through an exothermic reaction with metal hydrides, like water.

次に、図1を参照して、本発明に係る金属水素化物1と加熱により水を放出する物質である水放出物2とを含む水素発生材料の様々な構造を説明する。図1(a)は、金属水素化物1及び水放出物2がそれぞれ個別の粒子として水素発生材料に含まれる状態の模式図である。金属水素化物1、水放出物2が個別の粒子として水素発生材料に含まれる場合、2種類の粒子の分布が均一になるように混合して容器へ充填する必要がある。   Next, with reference to FIG. 1, various structures of the hydrogen generating material including the metal hydride 1 according to the present invention and the water discharge material 2 which is a substance that releases water by heating will be described. FIG. 1A is a schematic diagram showing a state where the metal hydride 1 and the water discharge 2 are contained in the hydrogen generating material as individual particles. When the metal hydride 1 and the water discharge 2 are contained as individual particles in the hydrogen generating material, it is necessary to mix the two types of particles so that the distribution of the two types of particles is uniform and to fill the container.

図1(b)は、金属水素化物1の内部に水放出物2が含まれた水素発生材料の粒子構造を示す図である。このように金属水素化物1と水放出物2が近い距離にある方が発熱反応が進行しやすく、(化2)、(化3)の反応熱を(化1)で利用するのに好都合である。また、図1(b)の構造により、1つの粒子に金属水素化物1と水放出物2とを含むために、水素発生材料を容器に充填する場合、2種類の粒子を均一に混合する必要が無くなり、水放出物分布の均一性、及び放出された水の利用効率が高まるので好ましい。   FIG. 1 (b) is a diagram showing a particle structure of a hydrogen generating material in which a water discharge 2 is contained inside a metal hydride 1. Thus, when the metal hydride 1 and the water discharge material 2 are closer to each other, the exothermic reaction proceeds more easily, and it is convenient to use the reaction heat of (Chemical Formula 2) and (Chemical Formula 3) in (Chemical Formula 1). is there. In addition, because the structure shown in FIG. 1B includes the metal hydride 1 and the water discharge 2 in one particle, it is necessary to uniformly mix the two types of particles when filling the container with the hydrogen generating material. This is preferable because the uniformity of the water discharge distribution and the utilization efficiency of the discharged water are increased.

図1(c)は、金属水素化物1の表層に水放出物2の層が形成された構造を示す図である。金属水素化物1の内部に水放出物2の層を形成するよりも金属水素化物1の表層に水放出物2の層を形成する方が合成方法が容易であるために、実用性が高い。   FIG. 1 (c) is a view showing a structure in which a layer of water discharge 2 is formed on the surface layer of metal hydride 1. Since the method of forming the water release 2 layer on the surface of the metal hydride 1 is easier than the formation of the water discharge 2 layer inside the metal hydride 1, the practicality is high.

図1(d)は、金属水素化物1の表面を覆う金属酸化物3の表面に、水放出物2が形成された構造を示す図である。この構造は、金属水素化物1と水放出物2との間に金属酸化物3の層を備えた構造と言うこともできる。金属水素化物1と水放出物2とが直接接触する場合には、金属水素化物1が分解してしまう可能性がある。これを避けるために、金属水素化物1と水放出物2との間に金属酸化物3を挟むことにより、安定性の高い水素発生材料となる。   FIG. 1 (d) is a diagram showing a structure in which a water discharge 2 is formed on the surface of the metal oxide 3 covering the surface of the metal hydride 1. This structure can also be said to be a structure in which a metal oxide 3 layer is provided between the metal hydride 1 and the water discharge 2. When the metal hydride 1 and the water discharge 2 are in direct contact, the metal hydride 1 may be decomposed. In order to avoid this, the metal oxide 3 is sandwiched between the metal hydride 1 and the water discharge 2 to provide a highly stable hydrogen generating material.

次に、本発明に係る水素発生材料の組成について、金属水素化物、金属酸化物、水放出物の順に説明する。   Next, the composition of the hydrogen generating material according to the present invention will be described in the order of metal hydride, metal oxide, and water discharge.

本発明の水素発生材料に含まれる金属水素化物1を構成する金属としては、アルカリ金属、アルカリ土類金属、ホウ素(B)、アルミニウム(Al)の何れか1種類以上の金属である。具体的には、LiH、NaH、BeH2 、MgH2 、CaH2 、AlH3 、のような金属水素化物が挙げられる。また、M(AlH4 )n、M(BH4 )n (M=アルカリ金属、またはアルカリ土類金属)で表される金属錯体化合物も金属水素化物1として利用可能である。 The metal constituting the metal hydride 1 contained in the hydrogen generating material of the present invention is at least one of alkali metal, alkaline earth metal, boron (B), and aluminum (Al). Specific examples include metal hydrides such as LiH, NaH, BeH 2 , MgH 2 , CaH 2 , and AlH 3 . A metal complex compound represented by M (AlH 4 ) n or M (BH 4 ) n (M = alkali metal or alkaline earth metal) can also be used as the metal hydride 1.

水素発生材料の構造を図1(d)の構造とした場合、金属酸化物3を構成する金属としては、アルカリ金属(Li,Na,K,Rb,Cs,Fr)、アルカリ土類金属(Be,Mg,Ca,Sr,Ba,Ra)、ホウ素(B)、アルミニウム(Al)の何れか1種類以上の金属である。   When the structure of the hydrogen generating material is the structure shown in FIG. 1D, the metal constituting the metal oxide 3 may be an alkali metal (Li, Na, K, Rb, Cs, Fr), an alkaline earth metal (Be , Mg, Ca, Sr, Ba, Ra), boron (B), or aluminum (Al).

水放出物2は、金属水酸化物、金属酸化物の水和物、或いは水吸着材料の何れかであり、且つ、金属水素化物1の分解温度付近で水を放出することができる材料である。   The water discharge 2 is a metal hydroxide, a hydrate of metal oxide, or a water adsorbing material, and is a material that can release water near the decomposition temperature of the metal hydride 1. .

水放出物2を金属水酸化物とする場合、通常、金属水素化物の表面を覆っている金属酸化物から容易に金属水酸化物を合成することができる。このため、安価に水放出物を形成することができる。   When the water discharge material 2 is a metal hydroxide, the metal hydroxide can usually be easily synthesized from the metal oxide covering the surface of the metal hydride. For this reason, water discharge can be formed at low cost.

ここで、金属水素化物の分解温度Td1と金属水酸化物の分解温度Td2が同程度である必要がある。例えば、金属水素化物の分解温度Td1が金属水酸化物の分解温度Td2より十分低ければ(Td1<<Td2)、水素発生材料をTd1付近まで昇温して金属水素化物から水素を発生させるときに、金属水酸化物からは水が放出されず、水放出物としての金属水酸化物が水素発生に寄与しない。逆に、金属水素化物の分解温度Td1が金属水酸化物の分解温度Td2より十分高ければ(Td1>>Td2)、水素発生材料をTd2付近まで昇温して金属水酸化物から水を放出させても、金属水素化物の分解温度Td1よりかなり温度が低いので、放出された水が水素発生に寄与することは困難である。   Here, the decomposition temperature Td1 of the metal hydride and the decomposition temperature Td2 of the metal hydroxide must be approximately the same. For example, if the decomposition temperature Td1 of the metal hydride is sufficiently lower than the decomposition temperature Td2 of the metal hydroxide (Td1 << Td2), the hydrogen generating material is heated to near Td1 to generate hydrogen from the metal hydride. No water is released from the metal hydroxide, and the metal hydroxide as a water discharge does not contribute to hydrogen generation. Conversely, if the decomposition temperature Td1 of the metal hydride is sufficiently higher than the decomposition temperature Td2 of the metal hydroxide (Td1 >> Td2), the hydrogen generating material is heated to near Td2 to release water from the metal hydroxide. However, since the temperature is considerably lower than the decomposition temperature Td1 of the metal hydride, it is difficult for the released water to contribute to hydrogen generation.

例えば、金属水素化物としてAlH3 、金属水酸化物としてAl(OH)3 の組み合わせを用いる場合には、両者の分解温度が近く、Al(OH)3 から放出された水がAlH3 またはAlH3 の分解物であるAlに有効に作用して、水分解反応による発熱がAlH3 の分解を促進する。 For example, when using a combination of AlH 3 as the metal hydride and Al (OH) 3 as the metal hydroxide, the decomposition temperatures of both are close, and the water released from Al (OH) 3 is AlH 3 or AlH 3. It effectively acts on Al, which is a decomposition product, and the heat generated by the water splitting reaction promotes the decomposition of AlH 3 .

また、水放出物2を金属酸化物の水和物とする場合も、金属水素化物の分解温度Td1と、金属酸化物の水和物の分解温度Td3が同程度である必要がある。   Also, when the water release material 2 is a metal oxide hydrate, the decomposition temperature Td1 of the metal hydride and the decomposition temperature Td3 of the metal oxide hydrate need to be approximately the same.

例えば、金属水素化物としてAlH3 、金属酸化物の水和物として、アルミナの1水和物であるベーマイト〔Al23・(H2O)〕の組み合わせが挙げられる。金属水素化物にAlH3 を用いる場合には、結晶性の高いベーマイトであっても非晶質のベーマイトを使用したとしても効果が得られる。 For example, a combination of AlH 3 as a metal hydride and boehmite [Al 2 O 3. (H 2 O)] which is a monohydrate of alumina as a hydrate of a metal oxide can be given. When AlH 3 is used for the metal hydride, even if boehmite having high crystallinity or amorphous boehmite is used, the effect can be obtained.

水放出物2を金属酸化物の水和物とする場合、通常、金属水素化物の表面を覆っている金属酸化物から容易に金属酸化物の水和物を合成することができる。このため、安価に水放出物を形成することができる。   When the water release 2 is a metal oxide hydrate, the metal oxide hydrate can usually be easily synthesized from the metal oxide covering the surface of the metal hydride. For this reason, water discharge can be formed at low cost.

さらに、水放出物2を水吸着材料とすることもできる。この場合にも種々の水吸着材料の中から水放出温度が金属水素化物1の分解温度に近いものを選択する。水吸着材料としては、ゼオライトやシリカゲルが挙げられる。しかし金属水素化物の表面に、ゼオライトやシリカゲルの被膜を形成するプロセスにコストが掛かる。また、ゼオライトやシリカゲルのように大量の水を吸蔵可能な水吸着材料は、金属水素化物1に対して少量の水放出物2を付着させるだけで必要量の水を放出させることができる。   Furthermore, the water discharge material 2 can also be used as a water adsorbing material. Also in this case, a material having a water release temperature close to the decomposition temperature of the metal hydride 1 is selected from various water adsorbing materials. Examples of the water adsorbing material include zeolite and silica gel. However, the process for forming a zeolite or silica gel film on the surface of the metal hydride is expensive. In addition, a water adsorbing material capable of storing a large amount of water, such as zeolite or silica gel, can release a necessary amount of water by simply attaching a small amount of water discharge material 2 to metal hydride 1.

次に、本発明に係る水素発生材料の製造方法を説明する。   Next, a method for producing a hydrogen generating material according to the present invention will be described.

〔製造方法1〕
金属水素化物の表面に水を放出する層を形成する第1の実施例は、金属水素化物を加湿雰囲気と接触させることにより、金属水素化物の表面に水を放出する層を形成する方法である。通常、金属水素化物の粒子は、その表面が金属酸化物に覆われている。この金属水素化物の粒子を室温、望ましくは25℃以下の加湿雰囲気中に保管することにより、表面の金属酸化物の一部が水酸化物に変化したり、金属酸化物の水和物に変化する。これにより、金属水素化物の粒子の表面に水放出層が形成される。この方法は、最も簡単な本発明に係る水素発生材料の製造方法であるが、処理に時間が掛かる。
[Production Method 1]
The first embodiment for forming a layer for releasing water on the surface of the metal hydride is a method for forming a layer for releasing water on the surface of the metal hydride by bringing the metal hydride into contact with a humidified atmosphere. . Usually, the surface of the metal hydride particles is covered with a metal oxide. By storing the metal hydride particles in a humidified atmosphere at room temperature, preferably 25 ° C. or less, part of the metal oxide on the surface changes to a hydroxide or changes to a metal oxide hydrate. To do. This forms a water release layer on the surface of the metal hydride particles. This method is the simplest method for producing a hydrogen generating material according to the present invention, but takes a long time to process.

〔製造方法2〕
金属水素化物の表面に水を放出する層を形成する第2の実施例は、金属水素化物をヒドロキシル基を有する液体と接触させることにより、金属水素化物の表面に水を放出する層を形成する方法である。ヒドロキシル基を有する化合物として最も一般的な水(H2O)を用いると、入手が容易であると共に、ヒドロキシル基を有する化合物としての低級アルコール等の含炭素系材料と比較して、水素発生時に不純物ガスが副生することを回避できるので好ましい。また金属水素化物を加湿雰囲気と接触させるよりも液体の水と接触させる方が、短時間で水放出層を形成することができる。尚、室温で水と接触させる場合の接触時間は3日以内であることが好ましい。
[Production Method 2]
The second embodiment of forming a water releasing layer on the surface of the metal hydride forms a layer releasing water on the surface of the metal hydride by contacting the metal hydride with a liquid having a hydroxyl group. Is the method. When the most common water (H 2 O) is used as a compound having a hydroxyl group, it is easy to obtain and at the time of hydrogen generation, compared with a carbon-containing material such as a lower alcohol as a compound having a hydroxyl group. It is preferable because impurity gas can be prevented from being by-produced. In addition, when the metal hydride is brought into contact with liquid water rather than in contact with the humidified atmosphere, the water release layer can be formed in a short time. In addition, it is preferable that the contact time when contacting with water at room temperature is within 3 days.

図2は、金属水素化物として水素化アルミニウム(AlH3 )、ヒドロキシル基を有する化合物として最も一般的な水(H2O)を用いた金属水素化物の表面に水放出層を形成する方法の概略説明図である。 FIG. 2 shows an outline of a method for forming a water release layer on the surface of a metal hydride using aluminum hydride (AlH 3 ) as a metal hydride and water (H 2 O) most commonly used as a compound having a hydroxyl group. It is explanatory drawing.

図2において、処理前の粒子10は、水素化アルミニウム11の表面にベーマイト〔AlO(OH)〕12が形成されている。この処理前粒子10の100mgをガラス製サンプル瓶(容積10cc程度)の容器20にとり、水21としてイオン交換水0.15ccを注ぐ。水素化アルミニウムとイオン交換水の体積比は、1:2程度となるように混合する。そして、8時間毎に5分間、攪拌棒(SUS製スパチュラで代用)22で攪拌する水中ミリング工程を室温(20〜25℃)、大気中で48時間行った。容器を室温に保つことにより、金属水素化物と水との接触中の金属水素化物の分解を回避することができる。   In FIG. 2, boehmite [AlO (OH)] 12 is formed on the surface of the aluminum hydride 11 in the particles 10 before treatment. 100 mg of this pre-treatment particle 10 is put in a container 20 of a glass sample bottle (volume of about 10 cc), and 0.15 cc of ion exchange water is poured as water 21. Mixing is performed so that the volume ratio of aluminum hydride to ion-exchanged water is about 1: 2. Then, an underwater milling step of stirring with a stir bar (substitute with SUS spatula) 22 for 5 minutes every 8 hours was performed at room temperature (20 to 25 ° C.) in the atmosphere for 48 hours. By keeping the container at room temperature, decomposition of the metal hydride during contact between the metal hydride and water can be avoided.

金属水素化物の粒子と水を収容した容器を攪拌することにより、粒子同士が接触し水を含有しやすくなる。処理後の粒子15は、表面のベーマイト層12に水吸着層13が形成されるとともに、ベーマイト層12にクラック14が形成され、水素発生時の水素放出が容易になるという副次的な効果もある。このプロセスを行うと、48時間後には、試料はほぼ自然乾燥しており、その後室温で1週間ほど放置したものを水素発生能測定に用いた。尚、上記の水中ミリングを大量に行う場合には、液体と固体とを混合することのできるボールミルング装置で実施することができる。また、水素化アルミニウムと水との比率は、0.1〜10程度であることが好ましい。   By stirring the container containing the metal hydride particles and water, the particles come into contact with each other and easily contain water. The treated particles 15 have a secondary effect that a water adsorbing layer 13 is formed on the boehmite layer 12 on the surface, and cracks 14 are formed on the boehmite layer 12 to facilitate hydrogen release during hydrogen generation. is there. When this process was performed, the sample was almost naturally dried after 48 hours, and the sample that was allowed to stand at room temperature for about 1 week was used for the hydrogen generation ability measurement. In addition, when performing said underwater milling in large quantities, it can implement with the ball milling apparatus which can mix a liquid and solid. Moreover, it is preferable that the ratio of aluminum hydride and water is about 0.1-10.

以上の実施例2では、金属水素化物の粒子と水との混合物を攪拌することにより、金属水素化物の表面に水放出層を形成したが、攪拌以外に、金属水素化物の粒子と水との混合物を収容した容器をバイブレータのような装置で振動させることにより、金属水素化物の表面に水放出層を形成することもできる。容器を振動させることにより、攪拌と同様に粒子同士を接触させ、粒子表面のベーマイト層12に水吸着層13が形成されるとともに、ベーマイト層12にクラック14が形成される。   In Example 2 described above, the water release layer was formed on the surface of the metal hydride by stirring the mixture of the metal hydride particles and water. However, in addition to the stirring, the metal hydride particles and water A water release layer can also be formed on the surface of the metal hydride by vibrating the container containing the mixture with a device such as a vibrator. By vibrating the container, the particles are brought into contact with each other in the same manner as the stirring, so that the water adsorption layer 13 is formed on the boehmite layer 12 on the particle surface and the crack 14 is formed on the boehmite layer 12.

図3は、実施例1の加湿雰囲気処理した水素発生材料と、実施例2の水中ミリングした水素発生材料と、これらの処理を行わない比較例の水素発生材料との水素放出性能を示した図である。図3(a)は、一定出力の加熱装置で試料を加熱した時の水素放出量の時間経過を示す図である。比較例に対して実施例1、実施例2ともに水素放出速度が増加している。例えば、4(wt%)の水素を放出するまでの時間は、比較例が約1.3hに対して、実施例1が約0.9h、実施例2が約0.6と大幅に短縮(放出速度は大幅に向上)している。これは、加熱装置の出力が一定であることから、一定量の水素を放出させるのに必要な熱量が比較例に対して実施例1,2が減少していることを示している。さらに、最終的な水素放出量も比較例に対して実施例1,2が増加していることがわかる。   FIG. 3 is a diagram showing the hydrogen release performance of the hydrogen generating material treated in a humidified atmosphere of Example 1, the hydrogen generating material milled in water of Example 2, and the hydrogen generating material of a comparative example that does not perform these treatments. It is. FIG. 3 (a) is a diagram showing the time course of the hydrogen release amount when the sample is heated by a heating device having a constant output. Compared with the comparative example, the hydrogen release rate is increased in both Example 1 and Example 2. For example, the time required to release 4 wt% hydrogen is significantly reduced to about 0.9 h for Example 1 and about 0.6 for Example 2 compared to about 1.3 h for the Comparative Example ( The release rate is greatly improved). This indicates that since the output of the heating device is constant, the amount of heat necessary to release a certain amount of hydrogen is reduced in Examples 1 and 2 compared to the comparative example. Further, it can be seen that the final hydrogen release amount is increased in Examples 1 and 2 with respect to the comparative example.

図3(b)は、実施例1と比較例との水素放出温度を示す図であり、比較例に対して実施例1は、水素放出温度が15℃程度低温化している。   FIG. 3B is a diagram showing the hydrogen release temperature between Example 1 and the comparative example. In Example 1, the hydrogen release temperature is lowered by about 15 ° C. with respect to the comparative example.

図4は、本発明に係る水素発生材料の水含有量(wt%)を様々に変えた場合の水素放出速度(任意単位)を示す図である。水含有量が3%程度から13%程度まで水含有させた場合に、水素放出速度が向上している。水含有量が3%程度より少ない場合には、水放出量の絶対量が少なく効果が少ない。水含有量が15%を超えると、過剰な水が含まれるために水素発生材料の金属水素化物の比率が低下し、水素放出速度が低下すると考えられる。   FIG. 4 is a diagram showing the hydrogen release rate (arbitrary unit) when the water content (wt%) of the hydrogen generating material according to the present invention is variously changed. When the water content is from about 3% to about 13%, the hydrogen release rate is improved. When the water content is less than about 3%, the absolute amount of water discharge is small and the effect is small. If the water content exceeds 15%, it is considered that the ratio of the metal hydride of the hydrogen generating material is reduced due to the inclusion of excess water, and the hydrogen release rate is reduced.

次に、本発明に係る水素発生材料の応用を説明する。まず、本発明の水素発生材料を収容する容器の材料としては、水素脆性が起きにくいオーステナイト系(SUS304,316等、面心立方構造)のステンレススチールや、カーボン繊維等を樹脂で固めたコンポジット材、あるいはアルミニウムが考えられる。容器の耐熱温度は、使用する金属水素化物の分解温度により異なるが、少なくとも200℃程度が必要であり、容器の耐圧は、1MPa程度の耐圧性能が必要である。特に、カーボン繊維等を樹脂で固めたコンポジット材は、高温耐性が低いために、使用する温度域に注意が必要である。   Next, application of the hydrogen generating material according to the present invention will be described. First, as a material for the container for containing the hydrogen generating material of the present invention, austenite-based (SUS304, 316, etc., face-centered cubic structure) stainless steel, a composite material in which carbon fiber or the like is hardened with a resin, which hardly causes hydrogen embrittlement. Or aluminum. The heat-resistant temperature of the container varies depending on the decomposition temperature of the metal hydride to be used, but at least about 200 ° C. is necessary, and the pressure resistance of the container needs a pressure-resistant performance of about 1 MPa. In particular, a composite material in which carbon fibers or the like are hardened with a resin has low high-temperature resistance, so attention must be paid to the temperature range to be used.

本発明に係る水素発生材料は、高い水素放出量を有し、水素放出時に外部から供給する熱量が少なくてすむために、移動体に水素を供給するのに好適である。本発明の水素発生材料から水素を供給する移動体としては、例えば、固体高分子型燃料電池または固体酸化物型燃料電池等の水素を燃料とする燃料電池を動力源とする水素燃料車両や、水素燃料の内燃機関を動力源とする水素燃料車両が適している。また、水素燃料車両のみならず、燃料電池を電源とした電動カートや電動車椅子等の用途にも好適である。   The hydrogen generating material according to the present invention is suitable for supplying hydrogen to a moving body because it has a high hydrogen release amount and requires less heat to be supplied from the outside during hydrogen release. Examples of the mobile body that supplies hydrogen from the hydrogen generating material of the present invention include a hydrogen fuel vehicle that uses a fuel cell that uses hydrogen as a fuel, such as a solid polymer fuel cell or a solid oxide fuel cell, as a power source, A hydrogen fuel vehicle using a hydrogen fuel internal combustion engine as a power source is suitable. Moreover, it is suitable not only for hydrogen fuel vehicles but also for applications such as electric carts and electric wheelchairs powered by fuel cells.

さらに本発明の水素発生材料は、高い水素放出量を有し、水素放出時に外部から供給する熱量が少なくてすむために、ノート型パーソナルコンピュータやポータブルナビゲーション装置、携帯電話等の携帯用電子機器や携帯用電気機器の電源としての燃料電池に水素を供給するために本発明の水素発生材料が好適である。   Furthermore, since the hydrogen generating material of the present invention has a high hydrogen release amount and requires less heat to be supplied from the outside at the time of hydrogen release, portable electronic devices such as notebook personal computers, portable navigation devices, and mobile phones, and portable phones can be used. The hydrogen generating material of the present invention is suitable for supplying hydrogen to a fuel cell as a power source for an electric appliance for a vehicle.

(a)金属水素化物1及び水放出物2がそれぞれ個別の粒子として水素発生材料に含まれる状態の模式図、(b)金属水素化物1の内部に水放出物2が含まれた水素発生材料の粒子構造を示す図、(c)金属水素化物1の表層に水放出物2の層が形成された構造を示す図、(d)金属水素化物1の表面を覆う金属酸化物3の表面に、水放出物2が形成された構造を示す図である。(A) Schematic of a state in which the metal hydride 1 and the water discharge 2 are each contained in the hydrogen generation material as individual particles, (b) the hydrogen generation material in which the water discharge 2 is contained inside the metal hydride 1 (C) The figure which shows the structure in which the layer of the water discharge | release material 2 was formed in the surface layer of the metal hydride 1, (d) On the surface of the metal oxide 3 which covers the surface of the metal hydride 1 It is a figure which shows the structure in which the water discharge 2 was formed. 金属水素化物として水素化アルミニウム(AlH3 )の表面に水放出層を形成する方法の概略説明図である。It is a schematic illustration of a method of forming a water-releasing layer on the surface of the aluminum hydride as a metal hydride (AlH 3). (a)一定出力の加熱装置で試料を加熱した時の実施例1の加湿雰囲気処理した水素発生材料と、実施例2の水中ミリングした水素発生材料と、比較例との水素放出量の時間経過を示す図、(b)実施例1と比較例との水素放出温度を示す図である。(A) The time lapse of the hydrogen release amount of the hydrogen generating material treated with the humidified atmosphere of Example 1, the hydrogen generating material milled in water of Example 2, and the comparative example when the sample was heated with a heating device having a constant output (B) It is a figure which shows the hydrogen releasing temperature of Example 1 and a comparative example. 本発明に係る水素発生材料の水含有量を様々に変えた場合の水素放出速度を示す図である。It is a figure which shows the hydrogen release speed | velocity at the time of changing the water content of the hydrogen generating material which concerns on this invention variously.

符号の説明Explanation of symbols

1 金属水素化物
2 水放出物
3 金属酸化物
10 処理前粒子
11 AlH3
12 AlO(OH)
13 水吸着層
14 クラック
15 処理後粒子
20 容器
21 水
22 攪拌棒
1 Metal hydride 2 Water discharge 3 Metal oxide 10 Particles before treatment 11 AlH 3
12 AlO (OH)
13 Water adsorption layer 14 Crack 15 Particles after treatment 20 Container 21 Water 22 Stirring rod

Claims (21)

金属水素化物と、加熱により発熱を誘発する物質と、を含むことを特徴とする水素発生材料。   A hydrogen generating material comprising a metal hydride and a substance that induces heat generation by heating. 前記加熱により発熱を誘発する物質は、加熱によりヒドロキシル基を有する化合物を放出する物質であることを特徴とする請求項1に記載の水素発生材料。   The hydrogen generating material according to claim 1, wherein the substance that induces heat generation by heating is a substance that releases a compound having a hydroxyl group by heating. 前記加熱により発熱を誘発する物質は、加熱により水を放出する物質であり、前記金属水素化物または該金属水素化物の分解物と放出された水とが反応することにより発熱することを特徴とする請求項1に記載の水素発生材料。   The substance that induces heat generation by heating is a substance that releases water by heating, and generates heat when the metal hydride or a decomposition product of the metal hydride reacts with the released water. The hydrogen generating material according to claim 1. 前記金属酸化物の粒子の内部に、前記加熱により水を放出する物質の層が形成されていることを特徴とする請求項3に記載の水素発生材料。   The hydrogen generating material according to claim 3, wherein a layer of a substance that releases water by the heating is formed inside the metal oxide particles. 前記金属酸化物の粒子表面の一部に、前記加熱により水を放出する物質の層が形成されていることを特徴とする請求項3に記載の水素発生材料。   The hydrogen generating material according to claim 3, wherein a layer of a substance that releases water by the heating is formed on a part of the particle surface of the metal oxide. 前記金属酸化物と前記加熱により水を放出する物質の層との間に、金属酸化物の層を備えていることを特徴とする請求項5に記載の水素発生材料。   6. The hydrogen generating material according to claim 5, further comprising a metal oxide layer between the metal oxide and the layer of the substance that releases water by the heating. 前記加熱により水を放出する物質は、金属水酸化物であることを特徴とする請求項3乃至請求項6の何れか1項に記載の水素発生材料。   The hydrogen generating material according to any one of claims 3 to 6, wherein the substance that releases water by heating is a metal hydroxide. 前記加熱により水を放出する物質は、金属酸化物の水和物であることを特徴とする請求項3乃至請求項6の何れか1項に記載の水素発生材料。   The hydrogen generating material according to any one of claims 3 to 6, wherein the substance that releases water by heating is a hydrate of a metal oxide. 前記加熱により水を放出する物質は、水吸着材料であることを特徴とする請求項3乃至請求項6の何れか1項に記載の水素発生材料。   The hydrogen generating material according to any one of claims 3 to 6, wherein the substance that releases water by heating is a water adsorbing material. 前記金属水素化物を構成する金属は、アルカリ金属、アルカリ土類金属、ホウ素、アルミニウムの何れか1種類以上を含むことを特徴とする請求項1乃至請求項9の何れか1項に記載の水素発生材料。   10. The hydrogen according to claim 1, wherein the metal constituting the metal hydride includes at least one of an alkali metal, an alkaline earth metal, boron, and aluminum. Generating material. 前記金属水素化物の表面を覆う物質が、アルカリ金属、アルカリ土類金属、ホウ素、アルミニウムの何れか1種類以上の金属の酸化物、或いは水酸化物であることを特徴とする請求項1乃至請求項10の何れか1項に記載の水素発生材料。   The material covering the surface of the metal hydride is an oxide or hydroxide of one or more kinds of metals selected from alkali metals, alkaline earth metals, boron, and aluminum. Item 11. The hydrogen generating material according to any one of Items 10. ヒドロキシル基を有する化合物と金属水素化物とを接触させることにより、金属水素化物に水を放出する層を形成したことを特徴とする水素発生材料の製造方法。   A method for producing a hydrogen generating material, wherein a layer for releasing water is formed on a metal hydride by contacting a compound having a hydroxyl group with the metal hydride. 前記ヒドロキシル基を有する化合物は、水であることを特徴とする請求項12に記載の水素発生材料の製造方法。   The method for producing a hydrogen generating material according to claim 12, wherein the compound having a hydroxyl group is water. ヒドロキシル基を有する化合物の蒸気を含む雰囲気と金属水素化物とを接触させることにより、金属水素化物に水を放出する層を形成したことを特徴とする請求項12または請求項13に記載の水素発生材料の製造方法。   14. The hydrogen generation according to claim 12 or 13, wherein a layer for releasing water is formed in the metal hydride by contacting an atmosphere containing a vapor of a compound having a hydroxyl group with the metal hydride. Material manufacturing method. ヒドロキシル基を有する化合物の液体と金属水素化物とを接触させる場合、液体と金属水素化物とを収容した容器を振動させることにより、金属水素化物に水を放出する層を形成したことを特徴とする請求項12または請求項13に記載の水素発生材料の製造方法。   When the liquid of the compound having a hydroxyl group is brought into contact with the metal hydride, a layer for releasing water is formed on the metal hydride by vibrating the container containing the liquid and the metal hydride. A method for producing a hydrogen generating material according to claim 12 or claim 13. ヒドロキシル基を有する化合物の液体と金属水素化物とを接触させる場合、液体と金属水素化物とを収容した容器を攪拌することにより、金属水素化物に水を放出する層を形成したことを特徴とする請求項12または請求項13に記載の水素発生材料の製造方法。   When the liquid of the compound having a hydroxyl group and the metal hydride are brought into contact with each other, the container containing the liquid and the metal hydride is stirred to form a layer for releasing water in the metal hydride. A method for producing a hydrogen generating material according to claim 12 or claim 13. ヒドロキシル基を有する化合物の液体と金属水素化物とを接触させる場合、温度環境を室温として、金属水素化物に水を放出する層を形成したことを特徴とする請求項12乃至請求項16の何れか1項に記載の水素発生材料の製造方法。   17. When contacting a liquid of a compound having a hydroxyl group with a metal hydride, the temperature environment is set to room temperature, and a layer for releasing water into the metal hydride is formed. 2. A method for producing a hydrogen generating material according to item 1. 請求項1乃至請求項11の何れか1項に記載の水素発生材料を収容する容器であって、その材質が、ステンレススチール、炭素系材料、アルミニウムの何れかであることを特徴とする水素発生材料の容器。   A hydrogen generation material containing the hydrogen generation material according to any one of claims 1 to 11, wherein the material is any one of stainless steel, a carbon-based material, and aluminum. Material container. 請求項1乃至請求項11の何れか1項に記載の水素発生材料から発生する水素を燃料とする燃料電池を搭載したことを特徴とする水素燃料車両。   A hydrogen-fueled vehicle equipped with a fuel cell that uses hydrogen generated from the hydrogen-generating material according to any one of claims 1 to 11 as fuel. 請求項1乃至請求項11の何れか1項に記載の水素発生材料から発生する水素を燃料とする内燃機関を搭載したことを特徴とする水素燃料車両。   A hydrogen-fueled vehicle comprising an internal combustion engine that uses hydrogen generated from the hydrogen-generating material according to any one of claims 1 to 11 as fuel. 請求項1乃至請求項11の何れか1項に記載の水素発生材料から発生する水素を燃料とする燃料電池を電源とすることを特徴とする携帯用機器。   A portable device using as a power source a fuel cell using hydrogen generated from the hydrogen generating material according to any one of claims 1 to 11.
JP2007230251A 2007-09-05 2007-09-05 Hydrogen generating material, method for manufacturing hydrogen generating material, container for hydrogen generating material, hydrogen fuel vehicle, and portable apparatus Pending JP2009062215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007230251A JP2009062215A (en) 2007-09-05 2007-09-05 Hydrogen generating material, method for manufacturing hydrogen generating material, container for hydrogen generating material, hydrogen fuel vehicle, and portable apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007230251A JP2009062215A (en) 2007-09-05 2007-09-05 Hydrogen generating material, method for manufacturing hydrogen generating material, container for hydrogen generating material, hydrogen fuel vehicle, and portable apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012227857A Division JP5708611B2 (en) 2012-10-15 2012-10-15 Hydrogen generating material, hydrogen generating material container, hydrogen fuel vehicle, and portable device

Publications (1)

Publication Number Publication Date
JP2009062215A true JP2009062215A (en) 2009-03-26

Family

ID=40557158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007230251A Pending JP2009062215A (en) 2007-09-05 2007-09-05 Hydrogen generating material, method for manufacturing hydrogen generating material, container for hydrogen generating material, hydrogen fuel vehicle, and portable apparatus

Country Status (1)

Country Link
JP (1) JP2009062215A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040182A1 (en) * 2009-09-30 2011-04-07 コニカミノルタホールディングス株式会社 Fuel cell device
WO2011052283A1 (en) * 2009-10-29 2011-05-05 コニカミノルタホールディングス株式会社 Fuel cell device
CN102694190A (en) * 2012-06-12 2012-09-26 中国科学院上海硅酸盐研究所 Solid-oxide fuel cell based energy storage cell and preparation method thereof
JP2013063901A (en) * 2012-10-15 2013-04-11 Nissan Motor Co Ltd Hydrogen-generating material, method of producing the hydrogen-generating material, container for the hydrogen-generating material, hydrogen-powered vehicle, and portable equipment
JP2018013090A (en) * 2016-07-21 2018-01-25 海老原 雄二 Hydrogen engine device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002137903A (en) * 2000-10-30 2002-05-14 Toyota Motor Corp Hydrogen gas generating apparatus
JP2002234701A (en) * 2001-02-07 2002-08-23 Toyota Central Res & Dev Lab Inc Method and apparatus for generating hydrogen
JP2003146605A (en) * 2001-11-09 2003-05-21 Seijiro Suda Method and device for generating hydrogen
JP2003527281A (en) * 2000-03-17 2003-09-16 イドロ−ケベック Method for producing hydrogen gas by chemical reaction of metal or metal hydride subjected to severe mechanical deformation
US20050191232A1 (en) * 2004-02-26 2005-09-01 Vajo John J. Hydrogen storage materials and methods including hydrides and hydroxides
WO2006019061A1 (en) * 2004-08-19 2006-02-23 Shinroku Kawasumi Method for driving hydrogen internal combustion engine car
JP2006056753A (en) * 2004-08-20 2006-03-02 Materials & Energy Research Institute Tokyo Ltd Method and apparatus for generating hydrogen and fuel cell system
JP2006069869A (en) * 2004-09-06 2006-03-16 Materials & Energy Research Institute Tokyo Ltd Hydrogen generation method, hydrogen generation device and fuel cell system
JP2006160545A (en) * 2004-12-03 2006-06-22 Seiko Instruments Inc Hydrogen producing device and fuel cell system
JP2006298670A (en) * 2005-04-18 2006-11-02 Sony Corp Method and apparatus for generating hydrogen and method and system for generating electrochemical energy
JP2007070203A (en) * 2005-09-09 2007-03-22 Toyota Central Res & Dev Lab Inc Composite hydrogen storing material, and hydrogen generating and storing apparatus
JP2007254256A (en) * 2005-04-28 2007-10-04 Hitachi Maxell Ltd Hydrogen generating material, method for producing the same, method and apparatus for producing hydrogen, and fuel cell
JP2009046331A (en) * 2007-08-16 2009-03-05 Seiko Instruments Inc Hydrogen generating apparatus and fuel cell system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003527281A (en) * 2000-03-17 2003-09-16 イドロ−ケベック Method for producing hydrogen gas by chemical reaction of metal or metal hydride subjected to severe mechanical deformation
JP2002137903A (en) * 2000-10-30 2002-05-14 Toyota Motor Corp Hydrogen gas generating apparatus
JP2002234701A (en) * 2001-02-07 2002-08-23 Toyota Central Res & Dev Lab Inc Method and apparatus for generating hydrogen
JP2003146605A (en) * 2001-11-09 2003-05-21 Seijiro Suda Method and device for generating hydrogen
US20050191232A1 (en) * 2004-02-26 2005-09-01 Vajo John J. Hydrogen storage materials and methods including hydrides and hydroxides
WO2006019061A1 (en) * 2004-08-19 2006-02-23 Shinroku Kawasumi Method for driving hydrogen internal combustion engine car
JP2006056753A (en) * 2004-08-20 2006-03-02 Materials & Energy Research Institute Tokyo Ltd Method and apparatus for generating hydrogen and fuel cell system
JP2006069869A (en) * 2004-09-06 2006-03-16 Materials & Energy Research Institute Tokyo Ltd Hydrogen generation method, hydrogen generation device and fuel cell system
JP2006160545A (en) * 2004-12-03 2006-06-22 Seiko Instruments Inc Hydrogen producing device and fuel cell system
JP2006298670A (en) * 2005-04-18 2006-11-02 Sony Corp Method and apparatus for generating hydrogen and method and system for generating electrochemical energy
JP2007254256A (en) * 2005-04-28 2007-10-04 Hitachi Maxell Ltd Hydrogen generating material, method for producing the same, method and apparatus for producing hydrogen, and fuel cell
JP2007070203A (en) * 2005-09-09 2007-03-22 Toyota Central Res & Dev Lab Inc Composite hydrogen storing material, and hydrogen generating and storing apparatus
JP2009046331A (en) * 2007-08-16 2009-03-05 Seiko Instruments Inc Hydrogen generating apparatus and fuel cell system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040182A1 (en) * 2009-09-30 2011-04-07 コニカミノルタホールディングス株式会社 Fuel cell device
JP4788847B2 (en) * 2009-09-30 2011-10-05 コニカミノルタホールディングス株式会社 Fuel cell device
US8962201B2 (en) 2009-09-30 2015-02-24 Konica Minolta Holdings, Inc. Fuel cell apparatus
WO2011052283A1 (en) * 2009-10-29 2011-05-05 コニカミノルタホールディングス株式会社 Fuel cell device
JP4821937B2 (en) * 2009-10-29 2011-11-24 コニカミノルタホールディングス株式会社 Fuel cell device
CN102694190A (en) * 2012-06-12 2012-09-26 中国科学院上海硅酸盐研究所 Solid-oxide fuel cell based energy storage cell and preparation method thereof
JP2013063901A (en) * 2012-10-15 2013-04-11 Nissan Motor Co Ltd Hydrogen-generating material, method of producing the hydrogen-generating material, container for the hydrogen-generating material, hydrogen-powered vehicle, and portable equipment
JP2018013090A (en) * 2016-07-21 2018-01-25 海老原 雄二 Hydrogen engine device

Similar Documents

Publication Publication Date Title
US6821499B2 (en) Method of generating hydrogen by reaction of borohydrides and hydrates
Huang et al. Improved hydrolysis properties of Mg3RE hydrides alloyed with Ni
WO2005091767A2 (en) Hydrogen storage materials and methods including hybrides and hydroxides
JP2009062215A (en) Hydrogen generating material, method for manufacturing hydrogen generating material, container for hydrogen generating material, hydrogen fuel vehicle, and portable apparatus
Mao et al. Reversible hydrogen storage in titanium-catalyzed LiAlH4–LiBH4 system
JPWO2009031578A1 (en) Hydrogen generating material composition, hydrogen generating material molded body, and method for producing hydrogen
WO2006055262A2 (en) Method for producing a borohydride
Liang et al. Unraveling the synergistic catalytic effects of TiO2 and Pr6O11 on superior dehydrogenation performances of α-AlH3
El-Eskandarany et al. Bulk nanocomposite MgH2/10 wt%(8 Nb2O5/2 Ni) solid-hydrogen storage system for fuel cell applications
CN108793071A (en) A kind of no electrical heating quickly starts hydrogen storage material hydrogen production process and its device
JP2007070203A (en) Composite hydrogen storing material, and hydrogen generating and storing apparatus
Potapov et al. Magnesium hydride based hydrogen chemical source: Development and application perspectives
Liu et al. Trimethyl borate regenerated from spent sodium borohydride after hydrogen production
Mao et al. Improvement of the LiAlH4− NaBH4 system for reversible hydrogen storage
JP5708611B2 (en) Hydrogen generating material, hydrogen generating material container, hydrogen fuel vehicle, and portable device
CN103264988A (en) Method for producing hydrogen by reaction of aluminium and water catalyzed by aluminum hydroxide or oxide
Xueping et al. Catalytic effect of Gd2O3 and Nd2O3 on hydrogen desorption behavior of NaAlH4
CN107910572A (en) A kind of hydrogen storage material reaction chamber and its fuel cell power generating system
TW200400663A (en) High capacity calcium lithium based hydrogen storage material and method of making the same
US20130004413A1 (en) Oxides-based material, device, and process for hydrogen storage
US20100233076A1 (en) Hydrogen Storage Materials
Li et al. Ni–B-doped NaAlH 4 hydrogen storage materials prepared by a facile two-step synthesis method
Li et al. Geometric optimization of hydrolysis reactors to enhance MgH2 hydrolysis performance
POTTMAIER VICENTE et al. Materials for hydrogen storage and the Na-Mg-BH system
Khan et al. Kinetics study of sodium alanate with catalyst TiO2

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204