JPS5814361B2 - Method for manufacturing hydrogen storage materials - Google Patents

Method for manufacturing hydrogen storage materials

Info

Publication number
JPS5814361B2
JPS5814361B2 JP54076144A JP7614479A JPS5814361B2 JP S5814361 B2 JPS5814361 B2 JP S5814361B2 JP 54076144 A JP54076144 A JP 54076144A JP 7614479 A JP7614479 A JP 7614479A JP S5814361 B2 JPS5814361 B2 JP S5814361B2
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
release
container
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54076144A
Other languages
Japanese (ja)
Other versions
JPS55167101A (en
Inventor
蒲生孝治
岩城勉
森脇良夫
柳原伸行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP54076144A priority Critical patent/JPS5814361B2/en
Publication of JPS55167101A publication Critical patent/JPS55167101A/en
Publication of JPS5814361B2 publication Critical patent/JPS5814361B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

【発明の詳細な説明】 本発明は、熱の授受もしくは水素圧力の増減によって可
塑的に水素を貯蔵、発生する水素貯蔵用材料に関し、と
くに多数回繰り返し継続使用しても水素貯蔵特性が劣化
することがなく、そのため長寿命で、経済的な水素貯蔵
用材利を提供することを主目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrogen storage material that plastically stores and generates hydrogen by receiving and receiving heat or increasing and decreasing hydrogen pressure, and in particular, the hydrogen storage characteristics deteriorate even after repeated use many times. The main objective is to provide a long-life and economical hydrogen storage material.

金属単体もしくは合金には、熱の授受あるいは水素圧力
の増減によって可逆的に水素を吸蔵・放出するものがあ
る。
Some metals or alloys can reversibly absorb and release hydrogen by transferring heat or increasing or decreasing hydrogen pressure.

これらの物質は、水素の吸蔵・放出を繰り返すと、つい
には殆んど数μm程度の粉末になる性質を持っている。
These substances have the property that when they repeatedly absorb and release hydrogen, they eventually turn into powder approximately several micrometers in size.

このように微粉化すると水素吸蔵・放出に関係する各粒
子間の空隙が減少し、微粉化した物質が次第に固結化し
て水素の吸蔵や取り出しが困難になる。
When it is pulverized in this way, the voids between each particle involved in hydrogen storage and release are reduced, and the pulverized material gradually solidifies, making it difficult to store and extract hydrogen.

そこで、この問題点を解決する目的で、従来は、粉粒状
水素貯蔵材中に、多孔性チューブや多孔性隔壁などを介
在させて、水素を多孔質材利を通過させて供給し、金属
粉末に吸蔵させ、水素を放出させる時はこの金属多孔性
チューブなどを通過させて水素を取り出していた。
Therefore, in order to solve this problem, conventionally, porous tubes or porous partitions were interposed in the granular hydrogen storage material, and hydrogen was supplied by passing through the porous material. When hydrogen was to be absorbed and released, hydrogen was extracted by passing it through this metal porous tube.

しかし、この場合、水素貯蔵容器内には微粉末状態の金
属が充填されているため、たとえ多孔壁などを介在させ
ても局部的に、充填状態に粗密が出来、しかもこの現象
は、水素貯蔵用金属水素化物の中でも常温で使用が可能
なTiMn1,5,TiFe,LaNi,など比較的活
性な材料に多くみられ、特に水素吸蔵・放出サイクルを
多く繰り返し使用するほど顕著であった。
However, in this case, since the hydrogen storage container is filled with metal in a fine powder state, even if a porous wall is used, there will be local gaps in the filling state. Among the metal hydrides used for commercial use, this phenomenon was often observed in relatively active materials such as TiMn1, 5, TiFe, and LaNi, which can be used at room temperature, and was particularly noticeable the more hydrogen absorption/desorption cycles were used.

またこのような水素の貯蔵・放出サイクルの繰り返しに
よる微粉末化の他にも、容器の運搬、移動あるいは水素
ガス充填時における容器の振動、衝撃、あるいは加圧に
よっても容器の底部の水素貯蔵材が著しく密な状態にな
る。
In addition to the pulverization caused by repeated storage and release cycles of hydrogen, the hydrogen storage material at the bottom of the container may also be damaged by vibration, impact, or pressurization of the container during transportation, movement, or filling with hydrogen gas. become extremely dense.

この状態の部分では、水素の拡散速度が著しく遅くなり
、水素の貯蔵効率(水素貯蔵可能量に対する実際の水素
貯蔵量)や水素の利用効率(全吸蔵水素量に対する実際
の放出水素量)が、実用上低く、経済的ロスが大きかっ
た。
In this state, the diffusion rate of hydrogen is significantly slowed down, and the hydrogen storage efficiency (the actual amount of hydrogen stored relative to the amount of hydrogen that can be stored) and the hydrogen utilization efficiency (the actual amount of hydrogen released relative to the total amount of hydrogen stored) are The cost was low in practical terms, and the economic loss was large.

このことを次に具体例を用いて説明する。This will be explained next using a specific example.

いま、TiMn1,,水素化物(TiMn1.5H2,
47)tTspe水素化物(TiFeH1.65),L
aNi,水素化物(LaNi5Ha.7)(但し、水素
貯蔵用材料が水素を吸蔵した状態の物質を水素化物と称
す〕の周囲温度と、その時の平衡水素圧力との関係を第
1図に示す。
Now, TiMn1,, hydride (TiMn1.5H2,
47) tTspe hydride (TiFeH1.65), L
FIG. 1 shows the relationship between the ambient temperature of aNi, a hydride (LaNi5Ha.7) (a substance in which a hydrogen storage material has occluded hydrogen is referred to as a hydride), and the equilibrium hydrogen pressure at that time.

図において、水素吸蔵・放出特性を示す各材料に関する
2本の直線の右側は水素吸蔵領域、左側は水素放出領域
である。
In the figure, the right side of the two straight lines for each material showing hydrogen storage/release characteristics is the hydrogen storage region, and the left side is the hydrogen release region.

従来の比較的優れた容器の例としては、水あるいは有機
塩素化物からなる加熱、冷却媒体のパイプを備えた容器
があり、これら金属水素化物を多孔性隔壁や多孔性水素
パイプを介在させて充填し前記水素供給用パイプより加
圧状態の水素ガスを供給して吸蔵させ、金属粉末を金属
水素化物にすることにより水素を貯蔵し、水素を必要と
する時には、水素放出バルブを開いて水素放出パイプよ
り放出させるものである。
Examples of relatively good conventional containers include containers equipped with pipes for heating and cooling media consisting of water or organic chlorides, which are filled with metal hydrides through porous partition walls or porous hydrogen pipes. Then, pressurized hydrogen gas is supplied from the hydrogen supply pipe and stored, and hydrogen is stored by converting metal powder into metal hydride. When hydrogen is needed, hydrogen is released by opening the hydrogen release valve. It is released from a pipe.

ここで加熱冷却媒体用パイプは、加熱冷却媒体を通すこ
とにより水素吸蔵・放出時に発生して、水素吸蔵・放出
反応を妨げるように作用をする相当量の反応熱量による
反応抑制効果を防止するために用いられる。
Here, the heating and cooling medium pipe is used to prevent the reaction suppression effect due to the considerable amount of reaction heat that is generated during hydrogen storage and release by passing the heating and cooling medium and acts to hinder the hydrogen storage and release reaction. used for.

しかし、前記従来の容器では、このように各種の工夫を
施しているにもかかわらず、なお水素吸蔵・放出サイク
ルを繰り返すにつれて、金属粉末が微粉化し、特に容器
の下部になる程、粉末の固結化現象が著しく、前記水素
貯蔵効率や水素利用効率が劣化する傾向があった。
However, in the conventional container described above, despite these various improvements, as the hydrogen absorption/release cycle is repeated, the metal powder becomes finer, and the powder becomes more solid, especially toward the bottom of the container. The condensation phenomenon was significant, and the hydrogen storage efficiency and hydrogen utilization efficiency tended to deteriorate.

本発明は、水素貯蔵効果を有する粒状又は塊状金属材料
の間に、水素とほとんど反応しない物質を一体に介在さ
せ、粒状又は塊状の水素貯蔵用金属材料を相互に分離、
隔離して、微粉化による粉末の粗密化や固結化を極力防
止したものであり、個々の粒状又は塊状材利と水素との
接触を極めて容易にして、上記従来の欠点を除去したも
のである。
The present invention integrates a substance that hardly reacts with hydrogen between granular or lumpy metal materials that have a hydrogen storage effect, and separates the granular or lumpy metal materials for hydrogen storage from each other.
This method prevents as much as possible the coarsening and caking of the powder due to pulverization by separating it, and makes it extremely easy for individual granular or lump materials to come into contact with hydrogen, eliminating the above-mentioned drawbacks of the conventional method. be.

すなわち、本発明は、水素な吸蔵・放出する物質の融点
以下で、かつ水素を吸蔵・放出しない物質の融点以上の
温度で前記両物質を加熱して、前者物質の表面に後者物
質を被覆させ、その後粉砕して前者物質が部分的に表面
に露出した粒状ないし塊状の水素貯蔵材を得る水素貯蔵
材の製造法である。
That is, the present invention heats both of the above-mentioned substances at a temperature below the melting point of the substance that absorbs and releases hydrogen and above the melting point of the substance that does not absorb and release hydrogen, so that the surface of the former substance is coated with the latter substance. This is a method for producing a hydrogen storage material, which is then crushed to obtain a granular or lumpy hydrogen storage material in which the former substance is partially exposed on the surface.

金属材別による水素の吸蔵・放出反応は以下のように表
される。
Hydrogen storage and release reactions for different metal materials are expressed as follows.

ただし、Mは金属単体または合金、MHは金属水素化物
、Qは反応熱量である。
However, M is a single metal or an alloy, MH is a metal hydride, and Q is the reaction heat amount.

上記のように反応する代表的な金属水素化物としては、
TiMr1.5Hx,TiFeHx,LaNi,Hx,
LaCo5HxtMmNt!HxlNg2CuHxlM
g2NtH,tvHx,vNbHx(ただし、Mmはミ
ツシュメタルで稀十類元素の混合物、Xは金属単体また
は合金1モル当たりの保有水素原子数である)などがあ
り、一般的にはアルカリ金属、アルカリ土類金属、稀十
類金属、遷移金属などの組み合わせにより合成される合
金の金属水素化物が本発明の水素吸蔵・放出用材料とし
て使用できる。
Typical metal hydrides that react as described above include:
TiMr1.5Hx, TiFeHx, LaNi, Hx,
LaCo5HxtMmNt! HxlNg2CuHxlM
g2NtH, tvHx, vNbHx (where Mm is Mitsushi metal, a mixture of rare elements, and X is the number of hydrogen atoms per mole of metal or alloy), and generally alkali metals and alkaline earths. Metal hydrides of alloys synthesized by combinations of metals, rare metals, transition metals, etc. can be used as the hydrogen storage/release material of the present invention.

ここで、常温付近で水素な吸蔵・放出しうるという実用
面を考慮すれば、これらのうちTiMn1.5,TiF
e+LaNi5jMmNi5,CaN輸5が好ましく、
また単位重量当たりの吸蔵水素量が大きいという点から
は、Mg2Niが好まし材料である。
Here, considering the practical aspect that hydrogen can be absorbed and released at around room temperature, TiMn1.5, TiF
e+LaNi5jMmNi5, CaNi5 is preferable,
Furthermore, Mg2Ni is a preferable material from the viewpoint of a large amount of absorbed hydrogen per unit weight.

一方、本発明に用いる水素をほとんど吸蔵しない介在物
としては、Mg,Atなどの低融点を有する金属材別が
好ましい。
On the other hand, as the inclusion that hardly absorbs hydrogen used in the present invention, metal materials having a low melting point such as Mg and At are preferable.

なぜならこれらの物質は、上記の実用的水素吸蔵・放出
金属材料よりも低融点であるから、溶解法により本発明
材料を製造する時に水素吸蔵・放出金属材料の合金組成
を何ら損なうことなく、また酸化や窒化など表面の汚れ
による水素貯蔵能の劣化も招かないからである。
This is because these substances have a lower melting point than the above-mentioned practical hydrogen storage/release metal materials, so when the material of the present invention is manufactured by the melting method, the alloy composition of the hydrogen storage/release metal materials can be manufactured without any damage. This is because the hydrogen storage capacity does not deteriorate due to surface contamination such as oxidation or nitridation.

その他には、水素の移動を容易にする面から、水素の自
己拡散速度の大きい材刺がよい。
In addition, from the viewpoint of facilitating the movement of hydrogen, a material with a high self-diffusion rate of hydrogen is preferable.

ところが、水素の拡散速度は、一般に大多数の金属につ
いて、ほぼ同程度(拡散係数:室温において約10−4
〜1.0−5cr2/sec)であるから、これはあま
り考慮に入れなくてもよい。
However, the diffusion rate of hydrogen is generally about the same for most metals (diffusion coefficient: about 10-4 at room temperature).
~1.0-5 cr2/sec), so this need not be taken into consideration much.

したがって、低融点に着目したMg,At,Ca,Zn
,In,Pb,Snなど、およびこれらの金属の合金を
選ぶことが好ましい。
Therefore, Mg, At, Ca, Zn focusing on low melting point
, In, Pb, Sn, etc., and alloys of these metals are preferably selected.

以下に水素吸蔵・放出用金属材料として TiMn1.,を用いた場合の具体的実施例を説明する
Below, TiMn1. , will be described below.

まず最初にTiMr1.5合金をアルゴンアーク溶解な
どの高温度溶解法によって形成し、出来た合金塊を約1
0mm角程度に機械的に粉砕する。
First, a TiMr1.5 alloy is formed by a high temperature melting method such as argon arc melting, and the resulting alloy ingot is
Mechanically crush into approximately 0 mm square pieces.

粉砕したTiMn1.5合金粒塊39kgとAt粉末1
ゆgを同一のマグネシアるつぼに入れ、温度約700℃
で約10分間高周波溶解した。
39 kg of crushed TiMn1.5 alloy granules and 1 At powder
Put Yug into the same magnesia crucible and bring it to a temperature of about 700℃.
High frequency dissolution was carried out for about 10 minutes.

出来た金属粒塊は、粒塊界表面がAts内部がTiMr
1.5から成る構造を有している。
The resulting metal grains have Ats on the grain boundary surface and TiMr inside.
It has a structure consisting of 1.5.

これはTiMn1.5の融点は約1315℃であるのに
対し、Atの融点は約659℃であるから、設定した溶
解温度700℃ではTiNn1.5は全く組成変化を起
こさず、むしろ均質化熱処理効果により特性は向上した
のに対し、Atは溶解してTiMn1.,合金の粒塊界
表面にほぼ均一に流れ込み、冷却過程を経て表面に付着
し、TiMn1.5合金を被覆したからである。
This is because the melting point of TiMn1.5 is about 1315°C, while the melting point of At is about 659°C. Therefore, at the set melting temperature of 700°C, TiNn1.5 does not undergo any compositional change, but rather undergoes homogenization heat treatment. Although the properties improved due to the effect, At dissolved and TiMn1. This is because the TiMn1.5 alloy flows almost uniformly onto the grain boundary surface of the alloy, adheres to the surface through the cooling process, and coats the TiMn1.5 alloy.

このようにして形成された約10〜12mL角の金属塊
を更に数mm角程度に粉砕して、水素貯蔵容器内に充填
する。
The metal lump of about 10 to 12 mL square thus formed is further crushed into pieces of about several mm square and filled into a hydrogen storage container.

また、TiFeについても、まったく同様にしてItを
被覆する方法で水素貯蔵材を形成した。
Further, a hydrogen storage material was also formed using TiFe by coating It in exactly the same manner.

第2図は、本発明の水素貯蔵用材料を充填した水素貯蔵
容器の一例を示したものである。
FIG. 2 shows an example of a hydrogen storage container filled with the hydrogen storage material of the present invention.

ここで1は肉厚10mmのアルミニウム製耐圧水素貯蔵
容器、2は介在物としてのAt3で表面を被われた水素
吸蔵・放出用材料の合金、4はこの粒状の合金が水素と
共にバルブを通って流出するのを防止するための多孔質
材からなるフィルタである。
Here, 1 is a pressure-resistant hydrogen storage container made of aluminum with a wall thickness of 10 mm, 2 is an alloy of hydrogen storage/release material whose surface is covered with At3 as an inclusion, and 4 is a granular alloy that passes through a valve together with hydrogen. This is a filter made of porous material to prevent water from flowing out.

5は水素ガスで満たされた空間部で、水素化による水素
貯蔵用材利2の膨張による容器1の歪みや破壊に備えて
確保されており、全内容積の約15チを占めている。
Reference numeral 5 denotes a space filled with hydrogen gas, which is secured in case the container 1 is distorted or destroyed due to expansion of the hydrogen storage material 2 due to hydrogenation, and occupies about 15 inches of the total internal volume.

6はAtで被覆された粒状水素貯蔵材間の空隙で、水素
ガスの流通を容易にするものである。
6 is a gap between the granular hydrogen storage materials coated with At, which facilitates the flow of hydrogen gas.

7は水素ガス出入管、8は水素ガスの導入、取り出しを
行なう為のバルブである。
7 is a hydrogen gas inlet/output pipe, and 8 is a valve for introducing and extracting hydrogen gas.

水素の吸蔵・放出方法は、Atによって被覆された粒状
合金約40k9を内蔵した内容積10リットルの耐圧容
器1内を、常温のまま真空ポンプで排気し、空気、その
他の不純物を除去する。
The hydrogen storage and release method involves evacuating the pressure vessel 1 with an internal volume of 10 liters containing a granular alloy coated with At at room temperature using a vacuum pump to remove air and other impurities.

次いでバルブ8から水素ガスを供給すれば、粒状合金は
水素を吸蔵しはじめ、金属水素化物を形成した,この時
の全吸蔵水素量は、TiMn1,5,TiFe共に8−
3に達した。
Next, when hydrogen gas was supplied from the valve 8, the granular alloy began to absorb hydrogen and formed a metal hydride.The total amount of absorbed hydrogen at this time was 8-
Reached 3.

水素吸蔵反応が完全に終了してから、バルブ8を閉じて
水素吸蔵操作過程を完了した。
After the hydrogen storage reaction was completely completed, the valve 8 was closed to complete the hydrogen storage operation process.

次いで常温のもとで、バルブ8を開くと水素ガスが数気
圧で定常的に発生し、TiMnl,sおよびTiFe共
に全量で約7−3の水素ガスを放出し、これを使用する
事が出来た。
Next, when valve 8 is opened at room temperature, hydrogen gas is generated steadily at several atmospheres, and a total amount of hydrogen gas of about 7-3 is released for both TiMnl,s and TiFe, which can be used. Ta.

この時、水素貯蔵用材料は、第3図の拡大図のような構
造を有しており、At3に被覆された内部の合金2は、
ひびが入ってはいたが、各粒塊はAtで被覆されている
為水素吸蔵・放出サイクルを繰り返してもこれ以上の微
粉化が極めて抑制され、粒形が損なわれることはなく、
粉末の固結{による水素吸蔵・放出速度の劣化や耐圧容
器1の歪み、膨張などは全く生じなかった。
At this time, the hydrogen storage material has a structure as shown in the enlarged view of Fig. 3, and the inner alloy 2 coated with At3 is
Although there were cracks, each grain agglomerate was coated with At, so even if the hydrogen storage/release cycle was repeated, further pulverization was extremely suppressed, and the grain shape was not damaged.
There was no deterioration in the hydrogen storage/release rate due to powder caking, and no distortion or expansion of the pressure vessel 1 occurred.

これは、水素をほとんど吸蔵しないAtが、金属水素化
物の粒子間の結着剤として作用し、粒状水素吸蔵材の微
粉末化を抑制している事と、非水素吸蔵材であるAtは
、水素吸蔵・放出サイクルを繰り返しても、形状が全く
変化せず、介在物としての効果をいつまでも持続してい
ることによるものである。
This is because At, which absorbs almost no hydrogen, acts as a binder between metal hydride particles and suppresses the pulverization of the granular hydrogen storage material, and At, which is a non-hydrogen storage material, This is because the shape does not change at all even after repeated hydrogen absorption/release cycles, and the effect as an inclusion continues indefinitely.

なお、粒塊状の水素吸蔵材の全表面が、非水素貯蔵材で
あるA/でおおわれていても、水素吸蔵速度は遅くなる
ものの、水素貯蔵材の作用は損なわれない。
Note that even if the entire surface of the granular hydrogen storage material is covered with A/, which is a non-hydrogen storage material, the action of the hydrogen storage material is not impaired, although the hydrogen storage rate is slowed down.

これは水素の原子の大きさは極めて小さいから、水素が
At中に容易に浸入し、拡散、透過して水素吸蔵材に達
し吸蔵されたためである。
This is because the size of hydrogen atoms is extremely small, so hydrogen easily penetrates into At, diffuses and permeates, and reaches the hydrogen storage material where it is stored.

しかし、この場合は、水素の吸蔵速度が遅いため実用的
でない。
However, this case is not practical because the hydrogen absorption rate is slow.

また、一般には一度水素の透過による吸蔵がスタートす
ると水素化反応熱と粉末化によって合金塊に歪みが生じ
水素の移動、拡散がなだれ的に発生して、水素吸蔵作用
が急激に生じ完了する。
Generally, once hydrogen absorption by permeation starts, the alloy mass becomes distorted due to hydrogenation reaction heat and powderization, hydrogen movement and diffusion occur in an avalanche manner, and the hydrogen absorption action rapidly occurs and is completed.

第4図に本発明の水素貯蔵用材利を用いた他の水素貯蔵
容器の実施例を示す。
FIG. 4 shows an example of another hydrogen storage container using the hydrogen storage material of the present invention.

第2図と同様に、アルミニウム製容器1に本発明のA4
3で被覆された水素吸蔵・放出用合金2を収納し、更に
図の如く、水素取り出し時の吸熱効果による放出水素量
の減少を防止するための加熱用パイプと、水素吸蔵時の
発熱効果による吸蔵水素量の低下を防止するための冷却
用パイプ9を水素貯蔵容器1内に装備する。
Similar to FIG. 2, the A4 according to the present invention is placed in the aluminum container
As shown in the figure, there is a heating pipe to prevent the amount of released hydrogen from decreasing due to the heat absorption effect during hydrogen extraction, and a heating pipe to prevent the amount of released hydrogen from decreasing due to the heat absorption effect during hydrogen absorption, as shown in the figure. A cooling pipe 9 is provided in the hydrogen storage container 1 to prevent a decrease in the amount of stored hydrogen.

10は加熱、冷却水の導入バルブ、11は加熱、冷却水
の排出バルブである。
10 is a heating/cooling water inlet valve, and 11 is a heating/cooling water discharge valve.

12は水素ガス導入バルブ13を有する吸蔵水素ガスの
導入管、14は水素ガスの取り出しバルブ15を有する
水素取り出し管であり、4,5.6の目的は第2図と同
じである。
Reference numeral 12 denotes a stored hydrogen gas introduction pipe having a hydrogen gas introduction valve 13, and 14 a hydrogen extraction pipe having a hydrogen gas extraction valve 15.The purpose of 4, 5.6 is the same as in FIG. 2.

この容器は、特に水素吸蔵・放出速度の遅いTiFe系
合金などに対して有効である。
This container is particularly effective for TiFe-based alloys, etc., which have a slow hydrogen storage and release rate.

いま第2図と第4図に示した本発明の水素貯蔵材を内蔵
した水素貯蔵容器を使用した場合の、水素放出特性を測
定すると、第5図および第6図に示すとおりであった。
When the hydrogen storage container incorporating the hydrogen storage material of the present invention shown in FIGS. 2 and 4 was used, the hydrogen release characteristics were measured, and the results were as shown in FIGS. 5 and 6.

図中、曲線Aは第2図に示すものの場合、曲線Bは第4
図に示すものの場合、曲線Cは従来のAtによる被覆を
しない水素吸蔵放出材を用い容器は第4図に多孔性隔壁
を設けたものの場合であり、さらに本発明と同じ割合で
水素貯蔵用合金に、単に粒状At(平均粒径1m1)を
混合し他はCと同じ条件にした場合をDとした。
In the figure, curve A is the one shown in Figure 2, and curve B is the one shown in Figure 2.
In the case shown in the figure, curve C is a case in which a conventional hydrogen storage/release material not coated with At is used and the container is provided with a porous partition as shown in FIG. The case where granular At (average particle size: 1 m1) was simply mixed into the sample and the other conditions were the same as C was designated as D.

なお、特性の測定は、水素吸蔵・放出サイクルを100
回繰り返した後の水素吸蔵・放出材料に対して水素貯蔵
容器1を20℃の恒温槽に入れて周囲を一定温度(20
℃)とし、容器1内の水素の拡散、移動により大気圧下
へ放出する水素の速度を測定したものである。
The characteristics were measured after 100 hydrogen absorption/release cycles.
After repeating the hydrogen storage/release material several times, the hydrogen storage container 1 is placed in a constant temperature bath at 20°C, and the surrounding temperature is kept at a constant temperature (20°C).
℃), and the rate of hydrogen released to atmospheric pressure due to diffusion and movement of hydrogen in the container 1 was measured.

また第4図の実施例の場合(図中の曲線B)およびC,
Dの場合は、パイプ9に60℃の温水を流して測定した
In addition, in the case of the embodiment shown in Fig. 4 (curve B in the figure) and C,
In the case of D, the measurement was performed by flowing hot water at 60°C through the pipe 9.

この測定において、吸蔵させる水素量が100%(計算
値)になるまで、長時間をかけて水素を吸蔵させたのち
、水素を放出させた。
In this measurement, hydrogen was stored over a long period of time until the amount of hydrogen stored reached 100% (calculated value), and then hydrogen was released.

その結果、本発明の水素貯蔵材を用いた容器においては
、100%水素を放出するために、TiMn1.,H2
,47の場合は、第5図、曲線A,Hに示すように10
〜20分しか要しなかったのに比し、従来のAtを被覆
させずに多孔体隔壁およびチューブを用いた容器(加熱
、冷却水用パイプ付き)においては、曲線Cに示すよう
に150分でも90%しか放出できず、また単に介在物
を混合した場合も、それよりややすぐれている程度であ
った。
As a result, in a container using the hydrogen storage material of the present invention, in order to release 100% hydrogen, TiMn1. ,H2
, 47, as shown in Figure 5, curves A and H, 10
Compared to the conventional container (with pipes for heating and cooling water) that uses porous partition walls and tubes without being coated with At, it takes 150 minutes as shown in curve C. However, only 90% could be released, and even when inclusions were simply mixed, the result was only slightly better.

またTiFeH1.65の場合は、第6図に示すように
本発明の材利を充填した容器では曲線A,Hに示すよう
に、30〜60分で100チ放出するのに比し、従来の
材料では曲線Cの如く、150分でも80%しか放出で
きなかった。
In addition, in the case of TiFeH1.65, as shown in Figure 6, a container filled with the material of the present invention releases 100 Ti in 30 to 60 minutes, as shown by curves A and H, compared to the conventional one. As shown in curve C, only 80% of the material could be released even after 150 minutes.

またDはそれよりやや、すぐれている程度であった。Also, D was slightly better than that.

さらに水素を100%吸蔵させる時間については、本発
明材刺が従来材料に比較して3倍以上も短縮することが
出来た。
Furthermore, the time required to absorb 100% of hydrogen was more than three times shorter with the material of the present invention than with conventional materials.

これは、従来容器の場合は、水素が固結化した金属微粉
末の間を通過しながら拡散、移動するので、拡散、移動
の速度が遅く、これに対して本発明の水素貯蔵用材刺の
場合は水素吸蔵・放出物質の各粒子が、単に介在物と共
に存在しているのではなく、被覆、隔離されているので
微粉化が抑制され、固結化しないため各粒子間の空隙部
が水素吸蔵・放出サイクルを繰り返しても損なわれず、
そのため水素の拡散、移動が速くスムーズに行なわれる
からである。
This is because in the case of conventional containers, hydrogen diffuses and moves while passing through solidified metal fine powder, so the speed of diffusion and movement is slow, whereas in the case of the hydrogen storage material of the present invention, In this case, each particle of the hydrogen storage/release material does not simply exist with inclusions, but is coated and isolated, which suppresses pulverization and prevents caking, so the voids between each particle are filled with hydrogen. It remains intact even after repeated storage and release cycles,
This is because hydrogen diffusion and movement occur quickly and smoothly.

以上のように、本発明により得られる水素貯蔵材は、水
素の吸蔵・放出材が水素をほとんど吸蔵しない材料によ
り部分的に被覆された粒状ないし塊状のものであるから
、あらゆる形状や規模の水素容器に内蔵させることがで
きるとともに、水素の吸蔵および放出に要する時間を大
幅に短縮することができる。
As described above, the hydrogen storage material obtained by the present invention is a granular or lumpy material in which the hydrogen storage/release material is partially covered with a material that hardly absorbs hydrogen. It can be built into a container, and the time required for storing and releasing hydrogen can be significantly shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は代表的な金属水素化物の周囲温度と平衡水素圧
力との関係を示す図、第2図は本発明の水素貯蔵材料を
内蔵した水素貯蔵容器の一実施例の縦断面図、第3図は
その水素貯蔵用材料の部分拡大図、第4図は本発明の水
素貯蔵材料を内蔵した水素貯蔵容器の他の実施例の縦断
面図、第5図及び第6図は、水素貯蔵・放出材料として
各々TiMn1.,,TiFeを用いた場合の水素放出
速度特性を示す図である。 1・・・・・・水素貯蔵容器、2・・・・・・水素吸蔵
・放出材料、3・・・・・・介在物としての非水素吸蔵
材料。
FIG. 1 is a diagram showing the relationship between ambient temperature and equilibrium hydrogen pressure of a typical metal hydride, FIG. 3 is a partially enlarged view of the hydrogen storage material, FIG. 4 is a vertical sectional view of another embodiment of a hydrogen storage container incorporating the hydrogen storage material of the present invention, and FIGS. 5 and 6 are hydrogen storage containers. - TiMn1. each as release material. , , is a diagram showing hydrogen release rate characteristics when using TiFe. 1...Hydrogen storage container, 2...Hydrogen storage/release material, 3...Non-hydrogen storage material as an inclusion.

Claims (1)

【特許請求の範囲】[Claims] 1 水素を吸蔵・放出する物質の融点以下で、かつ水素
を吸蔵・放出しない物質の融点以上の温度で前記両物質
を加熱して、前者物質の表面に後者物質を被覆させ、そ
の後これを粉砕して前者物質が部分的に表面に露出した
粒状ないし塊状の水素貯蔵材を得ることを特徴とする水
素貯蔵用材料の製造法。
1 Heating both of the above-mentioned substances at a temperature below the melting point of the substance that absorbs and releases hydrogen and above the melting point of the substance that does not absorb and release hydrogen, coating the surface of the former substance with the latter substance, and then pulverizing it. A method for producing a hydrogen storage material, the method comprising: obtaining a granular or lumpy hydrogen storage material in which the former substance is partially exposed on the surface.
JP54076144A 1979-06-15 1979-06-15 Method for manufacturing hydrogen storage materials Expired JPS5814361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54076144A JPS5814361B2 (en) 1979-06-15 1979-06-15 Method for manufacturing hydrogen storage materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54076144A JPS5814361B2 (en) 1979-06-15 1979-06-15 Method for manufacturing hydrogen storage materials

Publications (2)

Publication Number Publication Date
JPS55167101A JPS55167101A (en) 1980-12-26
JPS5814361B2 true JPS5814361B2 (en) 1983-03-18

Family

ID=13596795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54076144A Expired JPS5814361B2 (en) 1979-06-15 1979-06-15 Method for manufacturing hydrogen storage materials

Country Status (1)

Country Link
JP (1) JPS5814361B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935001A (en) * 1982-08-23 1984-02-25 Mitsubishi Steel Mfg Co Ltd Preparation of hydrogen storing material
JPS6130682A (en) * 1984-07-23 1986-02-12 Daido Steel Co Ltd Hydrogen occluding material
JPS6486448A (en) * 1987-08-20 1989-03-31 Sanyo Electric Co Hydrogen absorption electrode
JPH055137A (en) * 1991-03-28 1993-01-14 Mazda Motor Corp Hydrogen storing alloy member and its production
JPH07118772A (en) * 1993-10-19 1995-05-09 Mazda Motor Corp Combined hydrogen storage alloy and its production
CN104169211B (en) 2011-12-15 2018-04-27 南威尔士大学商业服务有限公司 Metal hydride and they storing hydrogen application in purposes
DK3008011T3 (en) * 2013-06-14 2023-10-30 Usw Commercial Services Ltd SYNTHESIS AND HYDROGEN STORAGE PROPERTIES OF MANGANESE HYDRIDES
DK3154901T3 (en) 2014-06-13 2023-12-18 Usw Commercial Services Ltd SYNTHESIS AND HYDROGEN STORAGE PROPERTIES OF UNKNOWN METAL HYDRIDES

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366852A (en) * 1976-11-26 1978-06-14 Chiyoo Komori Hydrogen absorbloting sponge titanium foil and said manufacturing process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366852A (en) * 1976-11-26 1978-06-14 Chiyoo Komori Hydrogen absorbloting sponge titanium foil and said manufacturing process

Also Published As

Publication number Publication date
JPS55167101A (en) 1980-12-26

Similar Documents

Publication Publication Date Title
US4839085A (en) Method of manufacturing tough and porous getters by means of hydrogen pulverization and getters produced thereby
US8628609B2 (en) Hydrogen storage tank
US9045334B2 (en) Method for manufacturing a hydrogen tank with metal hydrides
JP2008088467A (en) Hydrogen storage alloy, hydrogen separation membrane, hydrogen storage tank and method for storing/discharging hydrogen
JPS5814361B2 (en) Method for manufacturing hydrogen storage materials
US4222770A (en) Alloy for occlusion of hydrogen
JPS60100664A (en) Material for storing hydrogen
US4576640A (en) Hydrogen storage material
JPS5935001A (en) Preparation of hydrogen storing material
JPS5821995Y2 (en) hydrogen storage device
JPH10194701A (en) Absorption and release of hydrogen and vessel for storing hydrogen
JPS59183196A (en) Vessel for metallic hydride
JP4417805B2 (en) Hydrogen storage alloy and hydrogen storage container
JPS58207350A (en) Hydrogen occluding alloy
JP2002302733A (en) Hydrogen storage alloy, and composition and intermetallic compound each containing hydrogen storage alloy
Okumura et al. Microstructure and protium absorbing/desorbing characteristics of Mg2Ni-Mn alloys
JPH0210210B2 (en)
JP2000303101A (en) Hydrogen storage alloy excellent in durability, and its manufacture
JPH11246923A (en) Hydrogen storage alloy and its production
JPH0388701A (en) Hydrogen absorbing alloy mixture
JPS59152202A (en) Storage method of hydrogen
Guinet et al. Technological aspects and characteristics of industrial hydride reservoirs
JPS59162103A (en) Preservation of hydrogen and device for preservation
JP2004068049A (en) Bcc solid solution type hydrogen storage alloy with excellent hydrogen migration capacity, and method for manufacturing the hydrogen storage alloy
JPS6224679B2 (en)