JPS6145440Y2 - - Google Patents
Info
- Publication number
- JPS6145440Y2 JPS6145440Y2 JP1982157397U JP15739782U JPS6145440Y2 JP S6145440 Y2 JPS6145440 Y2 JP S6145440Y2 JP 1982157397 U JP1982157397 U JP 1982157397U JP 15739782 U JP15739782 U JP 15739782U JP S6145440 Y2 JPS6145440 Y2 JP S6145440Y2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- hydrogen storage
- container
- hydrogen gas
- space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 55
- 239000001257 hydrogen Substances 0.000 claims description 42
- 229910052739 hydrogen Inorganic materials 0.000 claims description 42
- 238000003860 storage Methods 0.000 claims description 27
- 239000003507 refrigerant Substances 0.000 claims description 7
- 239000006096 absorbing agent Substances 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000011232 storage material Substances 0.000 claims description 4
- 239000008188 pellet Substances 0.000 claims description 3
- 239000008187 granular material Substances 0.000 claims description 2
- 239000002184 metal Substances 0.000 description 12
- 239000000843 powder Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 229910052987 metal hydride Inorganic materials 0.000 description 4
- 150000004681 metal hydrides Chemical class 0.000 description 4
- 239000002826 coolant Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 229910010340 TiFe Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Hydrogen, Water And Hydrids (AREA)
Description
【考案の詳細な説明】
産業上の利用分野
本考案は水素吸蔵体を充填し、水素を吸蔵する
ための圧力容器に関する。[Detailed Description of the Invention] Industrial Application Field The present invention relates to a pressure vessel filled with a hydrogen absorber to store hydrogen.
最近水素を容易に吸蔵する材料例えばTi、
V、TiFe、Mg2Ni、LaNi5のような金属粉末を利
用した水素貯蔵、輸送、廃熱回収、コンプレツサ
ー、高純度水素精製、動力変換、あるいは燃料電
池などへの実用研究が盛んに試みられている。
Recently, materials that easily absorb hydrogen, such as Ti,
Practical research using metal powders such as V, TiFe, Mg 2 Ni, and LaNi 5 is actively being attempted for hydrogen storage, transportation, waste heat recovery, compressors, high-purity hydrogen purification, power conversion, and fuel cells. ing.
ところで、金属粉末に水素を吸蔵させる際に
は、多量の熱を発生し、この熱を速やかに除去し
ないと局部的な発熱によつて水素の均一な吸蔵が
行なわれないばかりか、吸蔵より生成した金属水
素化物の解離による水素の放出が起り、円滑な吸
蔵反応は著しく阻害される。そして、この水素吸
蔵時の発熱を除去するために、従来は金網や多孔
質の金属からなる管部の容器内に水素吸蔵用の金
属粉末を収容し、この金属や多孔質金属からなる
容器を介して吸蔵用金属と水素ガスとを接触さ
せ、容器周囲に冷却媒体を流して発生熱を除去す
る手段、あるいは水素吸蔵用の金属粉末の中に金
属小片、ステンレスウールなどを充填し、熱伝導
率の改善を試みる手段がとられていた。 By the way, when hydrogen is stored in metal powder, a large amount of heat is generated, and if this heat is not removed quickly, not only will hydrogen not be stored uniformly due to localized heat generation, but hydrogen will be generated from storage. Hydrogen is released due to the dissociation of the metal hydride, and the smooth storage reaction is significantly inhibited. In order to remove the heat generated during hydrogen storage, metal powder for hydrogen storage is conventionally housed in a tube container made of wire mesh or porous metal, and the container made of metal or porous metal is A method for removing the generated heat by bringing the storage metal into contact with hydrogen gas through a container and flowing a cooling medium around the container, or by filling small pieces of metal, stainless steel, etc. into the metal powder for hydrogen storage Steps were taken to try to improve the rate.
しかしながら、金属水素化物は超微細粉(5μ
以下)で熱の不良導体であり、又、水素の比熱が
小さく熱伝導率も小さいために発生熱の伝導速度
が遅く、発生熱の効果的な除去が困難であつた。
更に悪いことには、金属粉末あるいは金属水素化
物は比重が極めて小さいので水素の流れにより粉
末移動を生じ、又、金属粉末は水素ガスを吸蔵す
る際に膨脹して緻密になるので容器壁部に局部的
に非常に大きな応力がかかる危険があり、又これ
により水素ガスがますます浸透しにくく、かつ発
生熱がより蓄積されて不均一な反応が起り易くな
る欠点があつた。
However, metal hydrides are ultrafine powder (5μ
(below), it is a poor conductor of heat, and since hydrogen has a small specific heat and a low thermal conductivity, the conduction speed of the generated heat is slow, making it difficult to effectively remove the generated heat.
To make matters worse, the metal powder or metal hydride has an extremely low specific gravity, so the flow of hydrogen causes the powder to move, and when the metal powder absorbs hydrogen gas, it expands and becomes dense, causing it to stick to the container wall. There is a risk that a very large stress will be applied locally, and this has the disadvantage that it becomes increasingly difficult for hydrogen gas to penetrate, and that the generated heat is more likely to accumulate, making it more likely that non-uniform reactions will occur.
このような欠点から従来の金属水素化物粉末の
充填密度は安全約50%以下にとられなければなら
なかつた。 Due to these drawbacks, the packing density of conventional metal hydride powders had to be safely kept at about 50% or less.
本考案は、このような従来の欠点を改善せんと
するもので、その要旨とするところは、熱媒又は
冷媒の供給口と排出口および水素ガス導入口を備
えた容器内に水素吸蔵体収納容器を設置し、該水
素吸蔵容器内には水素ガス供給管を配置するとと
もに、内部を横方向よりも長さ方向に長くその中
央部を水素ガス連通孔を貫通した細かい空間室に
区切つて、角柱、円柱、ペレツト、粒状にプレス
された成形体あるいはこれらを焼結してなる水素
吸蔵体を収納し、空間室の周囲と空間室間に熱媒
または冷媒の流路空間を有することを特徴とする
水素吸蔵体充填圧力容器である。
The present invention aims to improve these conventional drawbacks, and its gist is to store a hydrogen absorber in a container equipped with a heating medium or refrigerant supply and discharge port, and a hydrogen gas inlet. A container is installed, a hydrogen gas supply pipe is arranged inside the hydrogen storage container, and the interior is partitioned into a small space chamber that is longer in the length direction than in the lateral direction and has a hydrogen gas communication hole penetrated in the center, It is characterized by containing a hydrogen storage body formed by pressing into a prism, cylinder, pellet, or granule, or by sintering these, and having a flow path space for a heat medium or a refrigerant between the space chamber and the space chamber. This is a pressure vessel filled with a hydrogen absorber.
以下、図面に基づいて本考案を具体的に説明す
る。
Hereinafter, the present invention will be specifically explained based on the drawings.
第1図は実施の一例の一部切欠断面図である。
容器1には外部から熱媒あるいは冷媒を供給する
ための供給口3並びにフランジ2が設置され、
又、別の個体には空間5を通過した熱媒あるいは
冷媒を流出させるため、フランジ2のついた排出
口4が設置されている。 FIG. 1 is a partially cutaway sectional view of an example of implementation.
The container 1 is provided with a supply port 3 and a flange 2 for supplying a heat medium or a refrigerant from the outside,
Further, in another unit, a discharge port 4 with a flange 2 is installed in order to drain out the heat medium or coolant that has passed through the space 5.
そして、容器1内には内部を横方向よりも長さ
方向に長く細かい空間室6に区切つてなる水素吸
蔵前収納容器7が設置され、その水素吸蔵体収納
容器7には水素ガス導入口8からの水素ガスを分
配するための分配フランジ9を付設し、分配フラ
ンジ9と空間室6との間は連通孔10をもつてつ
ながつている。水素吸蔵体収納容器7には、前述
の如き金属、合金あるいはそれらの水素化物より
なる水素吸蔵体11が、角柱、円柱等のプレス成
形体あるいは焼結体として挿置されている。そし
て、ペレツト、粒状の成形体あるいは焼結体も用
いられる。これらは主として、角柱、円柱等の成
形体を挿置することによつて水素吸蔵体収納容器
7内にできる空隙に充填するときに用いられる。
かかる水素吸蔵体11は中心部にドリル孔の通孔
12を有している。 A pre-hydrogen storage storage container 7 is installed inside the container 1, and the hydrogen storage container 7 is partitioned into long and finer space chambers 6 in the longitudinal direction than in the lateral direction. A distribution flange 9 is attached for distributing hydrogen gas from the space, and the distribution flange 9 and the space chamber 6 are connected through a communication hole 10. In the hydrogen storage container 7, a hydrogen storage material 11 made of a metal, an alloy, or a hydride thereof as described above is inserted in the form of a press-formed body such as a prism or cylinder, or a sintered body. Pellet, granular compacts or sintered bodies may also be used. These are mainly used when filling voids created in the hydrogen storage body storage container 7 by inserting molded bodies such as prismatic or cylindrical bodies.
The hydrogen storage body 11 has a drill hole 12 in the center thereof.
水素ガス導入口8は溶接されたフランジ13を
備え、該フランジ13は容器1にボルト14をも
つて緊密に締付けられている。 The hydrogen gas inlet 8 is provided with a welded flange 13, which is tightly fastened to the container 1 with bolts 14.
つぎに、水素吸蔵体収納容器7の配置状況をよ
り明らかにするため、第2図を示す。第2図は第
1図のX−X断面図で、容器1の内部には角柱状
の空間を有する空間室6が設置されてり、該空間
室6の中には角柱状で、中心部に、通孔12を有
する水素吸蔵体11が収納されている。隣接する
空間室6同士は結合治具15で溶接固定されてい
る。 Next, in order to clarify the arrangement of the hydrogen absorber storage container 7, FIG. 2 is shown. FIG. 2 is a cross-sectional view taken along the line XX in FIG. A hydrogen storage body 11 having a through hole 12 is housed inside. Adjacent space chambers 6 are welded and fixed to each other using a joining jig 15.
空間室6は円柱状の場合は最密充填構造とし、
又、角柱状と円柱状の組合せ構造として、できる
限り空間5を小さくするようにする。 When the space chamber 6 is cylindrical, it has a close-packed structure,
Moreover, the space 5 is made as small as possible by using a combination structure of a prismatic and cylindrical shape.
本圧力容器において、水素ガスは水素ガス導入
口より導入され分配フランジ9より連通孔10を
経て空間室6内に入り、水素吸蔵体11の中の通
孔12内を通つてその間に水素を吸蔵する。 In this pressure vessel, hydrogen gas is introduced from the hydrogen gas inlet, enters the space chamber 6 from the distribution flange 9 through the communication hole 10, passes through the communication hole 12 in the hydrogen storage body 11, and stores hydrogen therebetween. do.
一方、冷媒あるいは熱媒は供給口3より供給さ
れ、空間5を通過し、熱交換をして、排出口4よ
り排出される。冷媒あるいは熱媒の種類として
は、流体、水蒸気および水素ガスをを含めた気体
が利用される。 On the other hand, the refrigerant or heat medium is supplied from the supply port 3, passes through the space 5, exchanges heat, and is discharged from the discharge port 4. As the type of refrigerant or heating medium, fluids, water vapor, and gases including hydrogen gas are used.
本考案は以上のとおりであつて、水素吸蔵体は
細かい空間室に仕切つて収納されているので、水
素を吸蔵させるときに発生する多量の熱は、空間
室壁を通して、熱媒中に速やかに除去され、局所
的な加熱が起らず、円滑な水素の吸蔵反応が阻害
されるようなことがない。又、収納されている水
素吸蔵体は成型されたものであるから、水素に流
れによつて粉末が飛散移動するようなことがな
く、又、容器底部に局所的に大きな応力がかかる
危険もなくなるので、水素吸蔵体の充填密度を大
とすることができる。
The present invention is as described above, and since the hydrogen storage body is partitioned and stored in small space chambers, a large amount of heat generated when hydrogen is stored is quickly transferred into the heat medium through the walls of the space chambers. The hydrogen is removed, no local heating occurs, and the smooth hydrogen storage reaction is not inhibited. In addition, since the hydrogen storage body stored in the container is molded, there is no possibility of the powder scattering due to the flow of hydrogen, and there is no risk of localized large stress being applied to the bottom of the container. Therefore, the packing density of the hydrogen storage body can be increased.
第1図は本考案の一実施例の一部切断面図、第
2図は同X−X断面図である。
1……容器、2……フランジ、3……供給口、
4……排出口、5……空間、6……空間室、7…
…水素吸蔵体収納容器、8……水素ガス導入口、
9……分配フランジ、10……連通孔、11……
水素吸蔵体、12……通孔、13……フランジ、
14……ボルト、15……結合治具。
FIG. 1 is a partially sectional view of an embodiment of the present invention, and FIG. 2 is a sectional view taken along line XX of the same. 1... Container, 2... Flange, 3... Supply port,
4...Exhaust port, 5...Space, 6...Space chamber, 7...
...Hydrogen absorber storage container, 8...Hydrogen gas inlet,
9... Distribution flange, 10... Communication hole, 11...
Hydrogen storage body, 12...through hole, 13...flange,
14...Bolt, 15...Joining jig.
Claims (1)
導入口を備えた容器内に水素吸蔵体収納容器を設
置し、該水素吸蔵体収納容器内には水素ガス供給
管を配置するとともに、内部を横方向よりも長さ
方向に長くその中央部を水素ガス連通孔を貫通し
た細かい空間室に区切つて、角柱、円柱、ペレツ
ト、粒状にプレスされた成形体あるいはこれらを
焼結してなる水素吸蔵体を収納し、空間室の周囲
と空間室間に熱媒または冷媒の流路空間を有する
ことを特徴とする水素吸蔵体充填圧力容器。 A hydrogen absorber storage container is installed in a container equipped with a heating medium or refrigerant supply port, a discharge port, and a hydrogen gas inlet, and a hydrogen gas supply pipe is placed inside the hydrogen storage container, and the inside is The hydrogen storage material is made of a compact pressed into a prism, cylinder, pellet, granule, or sintered from these, which is longer in the longitudinal direction than in the lateral direction and divided into small chambers with hydrogen gas communication holes passing through the center. What is claimed is: 1. A pressure vessel filled with a hydrogen storage material, characterized in that the pressure vessel houses a hydrogen storage material and has a passage space for a heat medium or a refrigerant between the space chamber and the periphery of the space chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15739782U JPS5962399U (en) | 1982-10-20 | 1982-10-20 | Hydrogen absorber filled pressure vessel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15739782U JPS5962399U (en) | 1982-10-20 | 1982-10-20 | Hydrogen absorber filled pressure vessel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5962399U JPS5962399U (en) | 1984-04-24 |
JPS6145440Y2 true JPS6145440Y2 (en) | 1986-12-20 |
Family
ID=30347024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15739782U Granted JPS5962399U (en) | 1982-10-20 | 1982-10-20 | Hydrogen absorber filled pressure vessel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5962399U (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2011127136A (en) * | 2011-07-04 | 2013-01-10 | Общество С Ограниченной Ответственностью "Промышленные Водородные Технологии И Инженеринг" | SHELL-TUBULAR MODULE OF HYDRIDE THERMOSORPTION HYDROGEN COMPRESSOR BATTERY |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51128713A (en) * | 1975-04-21 | 1976-11-09 | Billings Energy Res | Hydrogen storage method and apparatus therefor |
JPS5719347A (en) * | 1980-07-04 | 1982-02-01 | Agency Of Ind Science & Technol | Misch metal-nickel alloy for occluding hydrogen |
JPS5765587A (en) * | 1980-10-07 | 1982-04-21 | Kawasaki Heavy Ind Ltd | Structure of heat exchanger unit using metal hydride |
JPS6145440U (en) * | 1984-08-27 | 1986-03-26 | 三井化学株式会社 | Underground anchor material for vertical drain material |
-
1982
- 1982-10-20 JP JP15739782U patent/JPS5962399U/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51128713A (en) * | 1975-04-21 | 1976-11-09 | Billings Energy Res | Hydrogen storage method and apparatus therefor |
JPS5719347A (en) * | 1980-07-04 | 1982-02-01 | Agency Of Ind Science & Technol | Misch metal-nickel alloy for occluding hydrogen |
JPS5765587A (en) * | 1980-10-07 | 1982-04-21 | Kawasaki Heavy Ind Ltd | Structure of heat exchanger unit using metal hydride |
JPS6145440U (en) * | 1984-08-27 | 1986-03-26 | 三井化学株式会社 | Underground anchor material for vertical drain material |
Also Published As
Publication number | Publication date |
---|---|
JPS5962399U (en) | 1984-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4446111A (en) | Vessel for use in hydrogen/hydride technology | |
US6709497B2 (en) | Honeycomb hydrogen storage structure | |
RU2536501C2 (en) | Reservoir for accumulation and hydrogen and/or heat withdrawal | |
US20030167923A1 (en) | Tank for the reversible storage of hydrogen | |
US20050211573A1 (en) | Modular metal hydride hydrogen storage system | |
JP6109979B2 (en) | Hydrogen storage tank with metal hydride | |
US20030209149A1 (en) | Honeycomb hydrogen storage structure | |
AU2010318039B2 (en) | Hydrogen storage tank having metal hydrides | |
US6708546B2 (en) | Honeycomb hydrogen storage structure with restrictive neck | |
CN102027283B (en) | Method of manufacturing a metal-hydride hydrogen storage reservoir | |
US4756163A (en) | Containers for storing and/or transporting fluids | |
JPH0527563B2 (en) | ||
RU81568U1 (en) | HYDROGEN EXTERNAL SURFACE METAL HYDROGEN CARTRIDGE | |
EP1286406B1 (en) | Metal hydride storage canister and its manufacture | |
CN110425421A (en) | Hydrogen storage vessel, hydrogen-storing device and hydrogen-powered vehicle | |
JPS6145440Y2 (en) | ||
JPS6126719Y2 (en) | ||
JPH0218281B2 (en) | ||
RU75708U1 (en) | DEVICE FOR STORAGE AND DELIVERY OF GAS FUEL | |
CN219493819U (en) | Porous graphite grid temperature regulation and control metal hydrogen storage device | |
JPH0566881B2 (en) | ||
JPS6229446Y2 (en) | ||
JP3032998B2 (en) | Hydrogen storage alloy holding container | |
JPH0253362B2 (en) | ||
KR940011075B1 (en) | Heat pump |