JPS6229446Y2 - - Google Patents

Info

Publication number
JPS6229446Y2
JPS6229446Y2 JP2048683U JP2048683U JPS6229446Y2 JP S6229446 Y2 JPS6229446 Y2 JP S6229446Y2 JP 2048683 U JP2048683 U JP 2048683U JP 2048683 U JP2048683 U JP 2048683U JP S6229446 Y2 JPS6229446 Y2 JP S6229446Y2
Authority
JP
Japan
Prior art keywords
hydrogen
storage alloy
hydrogen storage
container
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2048683U
Other languages
Japanese (ja)
Other versions
JPS59125938U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2048683U priority Critical patent/JPS59125938U/en
Publication of JPS59125938U publication Critical patent/JPS59125938U/en
Application granted granted Critical
Publication of JPS6229446Y2 publication Critical patent/JPS6229446Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

【考案の詳細な説明】 本考案は水素吸蔵合金容器に関するものであ
る。
[Detailed Description of the Invention] The present invention relates to a hydrogen storage alloy container.

水素は各産業分野で広く利用されており、水素
の貯蔵・輸送が効率的で安全且つ容易なことが求
められている。従来、水素の貯蔵・輸送は高圧水
素ガスあるいは液体水素として容器に収容して行
つていたが、高圧あるいは超低温にするためには
多大なエネルギーを要すること等もあつて、最近
は水素吸蔵合金を用いる試みが盛んに検討されて
いる。
Hydrogen is widely used in various industrial fields, and there is a need for efficient, safe, and easy storage and transportation of hydrogen. Traditionally, hydrogen has been stored and transported in containers as high-pressure hydrogen gas or liquid hydrogen, but because it requires a large amount of energy to achieve high pressure or ultra-low temperature, recently hydrogen storage alloys have been used. Attempts to use are being actively considered.

水素吸蔵合金とは水素H2を吸蔵する能力のあ
る合金のことで、既に知られた種々の水素吸蔵合
金があるが加圧水素と接触して水素を吸蔵して金
属水素化物となつて発熱し、金属水素化物を減
圧・加熱すると水素を放出すると共に吸熱する。
なお、水素吸蔵合金を加圧水素と接触させると水
素を吸蔵して金属水素化物となる。通常、水素吸
蔵合金に水素を吸蔵させるには常温下で高圧の水
素を接触させればよく、また金属水素化物から水
素を放出させるには金属水素化物間を湯水等の熱
媒を通過させる。
A hydrogen-absorbing alloy is an alloy that has the ability to absorb hydrogen H2.There are various known hydrogen-absorbing alloys, but when they come into contact with pressurized hydrogen, they absorb hydrogen and become metal hydrides, which generate heat. When a metal hydride is depressurized and heated, it releases hydrogen and absorbs heat.
Note that when the hydrogen storage alloy is brought into contact with pressurized hydrogen, it absorbs hydrogen and becomes a metal hydride. Usually, to make a hydrogen storage alloy absorb hydrogen, it is sufficient to contact it with high-pressure hydrogen at room temperature, and to release hydrogen from a metal hydride, a heat medium such as hot water is passed between the metal hydrides.

水素吸蔵合金で水素の吸蔵・放出を繰り返すこ
とにより塊状の水素吸蔵合金が微粉末化し、容器
内に配置され水素吸蔵合金を収容する多孔質金属
収納体の水素の通過孔が目詰りを生じ、吸蔵時の
発生熱により微粉末体の焼結による固化が起り、
反応効率の低下を招いている。
By repeating hydrogen storage and release in the hydrogen storage alloy, the lumpy hydrogen storage alloy becomes finely powdered, and the hydrogen passage holes of the porous metal container placed in the container and housing the hydrogen storage alloy become clogged. The heat generated during occlusion causes the fine powder to solidify due to sintering,
This results in a decrease in reaction efficiency.

そこで、本考案は上記の事情に鑑み、水素吸蔵
合金の固結化を防ぎさらに実用的に使用できるよ
うに吸蔵速度を速めるべく、容器内で水素吸蔵合
金を移動させ、移動している水素吸蔵合金に水素
を接触させて水素を吸蔵するようにしたものであ
る。
Therefore, in view of the above-mentioned circumstances, the present invention aims to prevent the hydrogen storage alloy from solidifying and increase the storage speed for practical use. This is an alloy that absorbs hydrogen by contacting it with hydrogen.

以下、本考案を添付する図面に示す実施例に基
づいて詳細に説明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.

第1図の実施例では、容器1の側壁中央部に外
方に向けて反転軸2を突設する。容器1を反転軸
2に対して上方側の円錐状の水素吸蔵合金収容室
3と下方側の円錐状の空室4との2室に区画す
る。水素吸蔵合金収容室3は上方が大径で下方が
小径の円錐状で、空室4は上方が小径で下方が大
径の円錐状で、水素吸蔵合金収容室3と空室4と
はそれぞれ小径部で接合する。その接合部に水素
供給通路管5を突設する。また、水素吸蔵合金収
容室3の上部および空室4の下部にそれぞれ水素
吸蔵合金の投入排出口6を設ける。
In the embodiment shown in FIG. 1, a reversing shaft 2 is provided at the center of the side wall of the container 1 to protrude outward. The container 1 is divided into two chambers: a conical hydrogen storage alloy storage chamber 3 on the upper side with respect to the inversion axis 2 and a conical empty chamber 4 on the lower side. The hydrogen storage alloy storage chamber 3 has a conical shape with a large diameter at the top and a small diameter at the bottom, and the empty chamber 4 has a conical shape with a small diameter at the top and a large diameter at the bottom, and the hydrogen storage alloy storage chamber 3 and the empty chamber 4 are respectively Join at the small diameter part. A hydrogen supply passage pipe 5 is provided protruding from the joint. In addition, a hydrogen storage alloy input/output port 6 is provided in the upper part of the hydrogen storage alloy storage chamber 3 and the lower part of the empty space 4, respectively.

水素吸蔵合金Aを水素吸蔵合金収容室3内に収
容し、この水素吸蔵合金収容室3が空室4の下方
に位置していたのを反転軸2を回転して上方に位
置させると、この反転中あるいは上方に位置して
からも水素吸蔵合金Aは水素吸蔵合金収容室3か
ら空室4に移動する。この水素吸蔵合金Aの移動
中ある特定の水素吸蔵合金を選ぶと7〜8Kg/cm2
程度の水素を水素供給通路管5を通して水素吸蔵
合金収容室3と空室4との接合部に送入し水素吸
蔵合金Aに接触させて水素吸蔵合金Aに水素を吸
蔵させ水素吸蔵合金Aは金属水素化物となる。な
お、水素吸蔵合金Aの移動後暫時水素は供給した
方がよい。水素を吸蔵し下方に移動した水素化物
は、容器に内蔵された熱媒通路管(図示されてい
ない)に湯水等の熱媒を通すことにより、水素を
放出し、この水素を通路管5により取り出し使用
に供する。水素を放出した水素吸蔵合金Aは再び
反転軸2を回転し水素を水素供給通路管5に通す
と前記と全く同様にして水素が移動中の水素吸蔵
合金Aと接触して水素吸蔵合金Aが水素を吸蔵す
る。このように水素吸蔵合金Aを何回でも移動さ
せて水素を吸蔵できる。
When the hydrogen storage alloy A is accommodated in the hydrogen storage alloy storage chamber 3 and the hydrogen storage alloy storage chamber 3 is moved from being located below the empty chamber 4 to being positioned above by rotating the reversing shaft 2, this The hydrogen storage alloy A moves from the hydrogen storage alloy storage chamber 3 to the empty chamber 4 even during the inversion or after being positioned upward. During the movement of hydrogen storage alloy A, if a certain hydrogen storage alloy is selected, the weight will be 7 to 8 kg/cm 2
A certain amount of hydrogen is fed through the hydrogen supply passage pipe 5 to the junction between the hydrogen storage alloy storage chamber 3 and the empty chamber 4, and brought into contact with the hydrogen storage alloy A to cause the hydrogen storage alloy A to store hydrogen. It becomes a metal hydride. Note that it is better to supply hydrogen for a while after the hydrogen storage alloy A is moved. The hydride that has absorbed hydrogen and moved downward releases hydrogen by passing a heating medium such as hot water through a heating medium passage pipe (not shown) built into the container, and this hydrogen is passed through a passage pipe 5. Take it out and use it. The hydrogen storage alloy A that has released hydrogen rotates the reversing shaft 2 again to pass hydrogen through the hydrogen supply passage pipe 5, and in exactly the same manner as above, the hydrogen comes into contact with the moving hydrogen storage alloy A, and the hydrogen storage alloy A Stores hydrogen. In this way, hydrogen storage alloy A can be moved any number of times to store hydrogen.

次に第2・3図の実施例では、円筒状の容器1
の側壁中央部に外方に向けて反転軸2を突設す
る。容器1内の中間部に反転軸2に対して上方側
と下方側の2室に区画できるように2枚の多孔板
7を水平状に張り、上方側を水素吸蔵合金収容室
3、下方側を空室4とする。多孔板7と多孔板7
とにより形成される空間の水素吸蔵合金収容室3
と空室4との接合部に水素供給通路管5を接続す
る。
Next, in the embodiment shown in FIGS. 2 and 3, the cylindrical container 1
A reversing shaft 2 is provided protruding outward from the center of the side wall. Two perforated plates 7 are placed horizontally in the middle part of the container 1 so as to divide it into two chambers, one above and one below with respect to the inversion axis 2, with the upper side being the hydrogen storage alloy storage chamber 3 and the lower side. Let be vacant room 4. Perforated plate 7 and perforated plate 7
Hydrogen storage alloy storage chamber 3 in the space formed by
A hydrogen supply passage pipe 5 is connected to the junction between the space 4 and the space 4.

ここで、水素吸蔵合金Aを収容し下方に位置し
ていた水素吸蔵合金収容室3を反転軸2を回転し
て上方に位置させると、この反転中あるいは上方
に位置してからも水素吸蔵合金Aは水素吸蔵合金
収容室3から空室4に移動する。この水素吸蔵合
金Aの移動中水素を水素供給通路管5を通して水
素吸蔵合金収容室3と空室4との接合部に送入し
水素吸蔵合金Aに接触させて水素吸蔵合金Aに水
素を吸蔵させ水素吸蔵合金Aは金属水素化物とな
る。下方に移動した水素吸蔵合金Aは再び反転軸
2を回転し水素を水素供給通路管5に通すと前記
と全く同様にして水素が移動中の水素吸蔵合金A
と接触して水素吸蔵合金Aが水素を吸蔵する。こ
のように水素吸蔵合金Aを何回でも移動させて水
素を吸蔵できる。
Here, when the hydrogen storage alloy storage chamber 3, which accommodates the hydrogen storage alloy A and is located below, is moved upward by rotating the reversal shaft 2, the hydrogen storage alloy A moves from the hydrogen storage alloy storage chamber 3 to the empty chamber 4. During the movement of the hydrogen storage alloy A, hydrogen is fed into the junction between the hydrogen storage alloy storage chamber 3 and the empty space 4 through the hydrogen supply passage pipe 5, and is brought into contact with the hydrogen storage alloy A, so that hydrogen is stored in the hydrogen storage alloy A. The hydrogen storage alloy A becomes a metal hydride. The hydrogen storage alloy A that has moved downward rotates the reversing shaft 2 again and passes hydrogen through the hydrogen supply passage pipe 5, and the hydrogen storage alloy A that has moved downward is moved in exactly the same manner as above.
Hydrogen storage alloy A absorbs hydrogen upon contact with the hydrogen storage alloy A. In this way, hydrogen storage alloy A can be moved any number of times to store hydrogen.

第4・5図の実施例は前記の第2・3図のもの
と殆ど同様で、容器1が直方状である点と多孔板
7が容器1内に斜行状に設けてある点とが異な
り、他は全く同じである。
The embodiment shown in FIGS. 4 and 5 is almost the same as that shown in FIGS. 2 and 3 above, except that the container 1 is rectangular and the perforated plate 7 is provided obliquely within the container 1. , everything else is exactly the same.

本考案は、上述のように、容器の側壁中央部に
反転軸を突設し、容器を反転軸に対し上方側の水
素吸蔵合金収容室と下方側の空室との2室に区画
し、水素吸蔵合金収容室と空室との接合部に水素
供給通路管を連設した水素吸蔵合金容器であり、
水素を吸蔵させる際水素吸蔵合金を移動させなが
ら行うので、水素吸蔵合金の固形化を防止し、水
素との接触面積を増し吸蔵速度を速め吸蔵に要す
る時間を短縮でき実用的に使用できるようにな
る。このように水素吸蔵合金の移動時に水素を吸
蔵させるから容器内の多孔板の目詰りがなくな
る。また、上記のような容器を反転させ水素を流
入させるだけで水素吸蔵合金に水素を吸蔵させら
れるので水素の吸蔵が至極容易である。なお本考
案は水素を吸蔵した合金の運搬容器としてだけで
なく、水素を吸蔵させる工程設備の一部としても
使用し得るものである。
As mentioned above, the present invention has an inversion shaft protruding from the center of the side wall of the container, and divides the container into two chambers, the hydrogen storage alloy storage chamber above the inversion shaft and the empty chamber below. A hydrogen storage alloy container in which a hydrogen supply passage pipe is connected to the joint between the hydrogen storage alloy storage chamber and the empty chamber,
Since hydrogen is stored while moving the hydrogen storage alloy, it prevents the hydrogen storage alloy from solidifying, increases the contact area with hydrogen, increases the storage speed, and shortens the time required for storage, making it practical for use. Become. In this way, since hydrogen is stored during the movement of the hydrogen storage alloy, clogging of the perforated plate inside the container is eliminated. Further, hydrogen can be stored in the hydrogen storage alloy simply by inverting the container as described above and allowing hydrogen to flow in, making it extremely easy to store hydrogen. The present invention can be used not only as a container for transporting hydrogen-absorbing alloys, but also as a part of process equipment that stores hydrogen.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の実施例を示し、第1図はその正
面図、第2・3図は他の実施例で、第2図は正面
図、第3図は第2図の平面図、第4・5図はさら
に他の実施例で、第4図は正面図、第5図は第4
図の平面図である。 1……容器、2……反転軸、3……水素吸蔵合
金収容室、4……空室、5……水素供給通路管。
The drawings show an embodiment of the present invention, FIG. 1 is a front view thereof, FIGS. 2 and 3 are other embodiments, FIG. 2 is a front view, FIG. 3 is a plan view of FIG. 2, and FIG.・Figure 5 shows yet another embodiment, where Figure 4 is a front view and Figure 5 is a front view.
FIG. DESCRIPTION OF SYMBOLS 1...Container, 2...Reversing shaft, 3...Hydrogen storage alloy storage chamber, 4...Empty room, 5...Hydrogen supply passage pipe.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 容器の側壁中央部に反転軸を突設し、容器を反
転軸に対し上方側の水素吸蔵合金収容室と下方側
の空室との2室に区画し、水素吸蔵合金収容室と
空室との接合部に水素供給通路管を連設したこと
を特徴とする水素吸蔵合金容器。
A reversing shaft is provided protruding from the center of the side wall of the container, and the container is divided into two chambers: a hydrogen storage alloy storage chamber above the reversal shaft and a vacant chamber below. A hydrogen storage alloy container characterized in that a hydrogen supply passage pipe is connected to the joint of the hydrogen storage alloy container.
JP2048683U 1983-02-14 1983-02-14 Hydrogen storage alloy container Granted JPS59125938U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2048683U JPS59125938U (en) 1983-02-14 1983-02-14 Hydrogen storage alloy container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2048683U JPS59125938U (en) 1983-02-14 1983-02-14 Hydrogen storage alloy container

Publications (2)

Publication Number Publication Date
JPS59125938U JPS59125938U (en) 1984-08-24
JPS6229446Y2 true JPS6229446Y2 (en) 1987-07-29

Family

ID=30151615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2048683U Granted JPS59125938U (en) 1983-02-14 1983-02-14 Hydrogen storage alloy container

Country Status (1)

Country Link
JP (1) JPS59125938U (en)

Also Published As

Publication number Publication date
JPS59125938U (en) 1984-08-24

Similar Documents

Publication Publication Date Title
US4446111A (en) Vessel for use in hydrogen/hydride technology
US4134491A (en) Hydride storage containment
JP2623245B2 (en) Active metal bead
JPH0680395B2 (en) Heat storage device
JPS6229446Y2 (en)
JPS6052360B2 (en) hydrogen storage device
JPS5992902A (en) Hydrogen from ammonia
JPS5925956B2 (en) metal hydride container
JPS5814361B2 (en) Method for manufacturing hydrogen storage materials
JPS62241801A (en) Occlusion and release of hydrogen and apparatus therefor
JP2503472B2 (en) Hydrogen storage metal container
JPS6246481B2 (en)
JPS6145440Y2 (en)
JPS62479Y2 (en)
JPS5821995Y2 (en) hydrogen storage device
JPS6366761B2 (en)
JPS59212600A (en) Storing method of hydrogen
JPH0214600B2 (en)
JPS6129881B2 (en)
JPS5950300A (en) Container for metal hydride
JPS59152201A (en) Method of hydrogen storage and storage container
JPS62132099A (en) Container for hydrogen absorbing alloy
JPS59162103A (en) Preservation of hydrogen and device for preservation
JPS56100101A (en) Hydrogen occluding unit
JPS59195501A (en) Hydrogen reaction element and its apparatus