JPH0680395B2 - Heat storage device - Google Patents

Heat storage device

Info

Publication number
JPH0680395B2
JPH0680395B2 JP61057670A JP5767086A JPH0680395B2 JP H0680395 B2 JPH0680395 B2 JP H0680395B2 JP 61057670 A JP61057670 A JP 61057670A JP 5767086 A JP5767086 A JP 5767086A JP H0680395 B2 JPH0680395 B2 JP H0680395B2
Authority
JP
Japan
Prior art keywords
heat storage
heat
storage material
chemical
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61057670A
Other languages
Japanese (ja)
Other versions
JPS62213690A (en
Inventor
淳 神沢
祐治 矢野
卓也 本多
功 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUI KENSAKU TOISHI KK
Original Assignee
MITSUI KENSAKU TOISHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUI KENSAKU TOISHI KK filed Critical MITSUI KENSAKU TOISHI KK
Priority to JP61057670A priority Critical patent/JPH0680395B2/en
Publication of JPS62213690A publication Critical patent/JPS62213690A/en
Publication of JPH0680395B2 publication Critical patent/JPH0680395B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、再生使用可能な蓄熱カプセルを使用し、水
蒸気を含むガス体と接触することにより、該ガス体の加
熱を行う蓄熱装置に関する。
Description: TECHNICAL FIELD The present invention relates to a heat storage device that uses a reusable heat storage capsule and heats the gas body by bringing it into contact with a gas body containing water vapor.

(従来の技術) 従来、蓄熱方法としては、ソーラー温水器、夜間給湯器
タイプの水を蓄熱媒体として使用する顕熱利用する方法
があり、これらの方法が主流を占めている。このタイプ
の欠点として、単位体積あたりの蓄熱量が低いため多量
の蓄熱材およびその容器を必要とし、さらに保温時にい
かに優れた断熱材を使用したとしても放熱のためかなり
のエネルギーを放出し長期の蓄熱保存には適さない点が
挙げられる。
(Prior Art) Conventionally, as a heat storage method, there is a method of utilizing sensible heat using a solar water heater or night water heater type water as a heat storage medium, and these methods occupy the mainstream. The disadvantage of this type is that it requires a large amount of heat storage material and its container because the amount of heat storage per unit volume is low, and even if a good heat insulating material is used during heat retention, considerable energy is released for heat dissipation and long-term It is not suitable for storing heat.

ところで、化学蓄熱は体積あたりの蓄熱量が大きく、保
温の必要もなく、長期間の蓄熱が可能であり、化学反応
を利用する蓄熱に関する研究開発が鋭意進められてい
る。それは可逆化学反応を行なう粉体若しくは固体蓄熱
物質の発熱反応による発生熱を利用し、反応後の物質を
再び排熱や太陽熱などによって吸熱反応により簡単に再
生使用する方法である。
By the way, the chemical heat storage has a large amount of heat storage per volume, does not need to be kept warm, and can store heat for a long period of time, and research and development relating to heat storage using a chemical reaction have been earnestly pursued. It is a method in which the heat generated by an exothermic reaction of a powder or solid heat storage substance that undergoes a reversible chemical reaction is utilized and the substance after the reaction is simply regenerated and reused by an endothermic reaction by exhaust heat or solar heat.

この蓄熱材を使用した装置としては、網目状物により被
覆された蓄熱物質をユニットとして、該物質の発熱によ
り該ユニットの周りに形成された空間へ収容された液体
を蒸発させることにより作動流体に仕事をなさしめる蓄
熱ユニット化装置がある(特開昭54−142,401号)。
As an apparatus using this heat storage material, a heat storage material covered with a mesh is used as a unit, and the heat generated by the material evaporates a liquid contained in a space formed around the unit to form a working fluid. There is a heat storage unitizing device for performing work (Japanese Patent Laid-Open No. 54-142,401).

(発明が解決しようとする問題点) 化学蓄熱材として使用される材料は、一般的に無機物質
であり、比較的熱伝導率が良くないため、化学蓄熱材の
発熱または吸熱反応を効率的に行うためには粉体形態が
好ましい。さらに粉体の取扱いおよび粉体と気体間の反
応を行う効率的な装置指向としてカプセル化またはユニ
ット化がある。
(Problems to be Solved by the Invention) The material used as the chemical heat storage material is generally an inorganic substance and has relatively poor thermal conductivity, so that the heat generation or endothermic reaction of the chemical heat storage material can be efficiently performed. The powder form is preferred for carrying out. Further, there is encapsulation or unitization as an efficient device orientation for handling powder and for reacting powder and gas.

カプセル化またはユニット化された装置において、反応
が化学蓄熱材(粉体)と気体間の固気反応であり該粉体
が粉末として気体とともに系外に搬出され、また気体と
して水蒸気を使用した場合には、その温度が下がると該
粉体が粘土状となって固気反応が妨げられるという問題
点がある。また、カプセル化等のため布等で化学蓄熱材
を包みまたは被覆し再生連続使用していると、布等に目
詰りを起こし、またカプセル等に対する充填量が多すぎ
ると堆積した蓄熱材の自重のため化学蓄熱材の固化を起
こし、それらの影響で発熱(吸熱)反応速度の遅れを生
ずるという問題点がある。
When the reaction is a solid-gas reaction between a chemical heat storage material (powder) and a gas in an encapsulated or unitized device and the powder is carried out of the system together with a gas as a powder, and steam is used as a gas However, there is a problem that when the temperature decreases, the powder becomes clay-like and the solid-gas reaction is hindered. In addition, when the chemical heat storage material is wrapped or covered with cloth for encapsulation, etc. and is continuously recycled for use, the cloth etc. becomes clogged, and if the amount of filling the capsule etc. is too large, the accumulated heat storage material will weigh itself. Therefore, there is a problem in that the chemical heat storage material is solidified and the heat generation (endothermic) reaction rate is delayed due to these effects.

また、特開昭54−142,401号明細書には網目状物により
被覆された蓄熱物質をユニットして使用する蓄熱ユニッ
ト化装置が開示されているが、化学蓄熱材として粉体を
使用する場合には工業的には十分でなく満足できるもの
ではない。
Further, JP-A-54-142401 discloses a heat storage unitizing device that uses a heat storage substance coated with a mesh as a unit, but when using powder as a chemical heat storage material. Is not industrially satisfactory and not satisfactory.

したがって、この発明は前記問題点を解決するためにな
されたものであって、微細な化学蓄熱材が粉末化して気
体とともに系外に搬出されることなく、耐熱性多孔質体
の目詰りを起こさずかつそれ自体が固化することがな
い、繰り返し再生使用に十分耐え得る化学蓄熱材を使用
する蓄熱装置を提供することを目的とする。
Therefore, the present invention has been made to solve the above-mentioned problems, in which the fine chemical heat storage material is not pulverized and carried out of the system together with the gas, and clogging of the heat resistant porous body is caused. It is an object of the present invention to provide a heat storage device that uses a chemical heat storage material that does not solidify itself and that can withstand repeated recycle use sufficiently.

(問題点を解決するための手段) すなわち、この発明は、内部の空間に対して10〜60容量
%の割合で粉体化学蓄熱材が収容される蓄熱カプセル
を、少なくとも1以上充填した反応器または反応塔と熱
供給装置とを連結したことを特徴とする蓄熱装置を提供
することである。
(Means for Solving Problems) That is, the present invention relates to a reactor in which at least one heat storage capsule containing a powder chemical heat storage material is contained at a ratio of 10 to 60% by volume with respect to an internal space. Another object is to provide a heat storage device characterized by connecting a reaction tower and a heat supply device.

またこの発明は該蓄熱カプセルが、細孔径が1〜10μm
である耐熱性多孔質体の筒状体内に粉体化学蓄熱材を充
填したカプセルである蓄熱装置を提供するものである さらに、この発明は排熱導管、太陽集熱器、電気炉、高
周波加熱機、赤外線発熱ランプ、ヒートポンプから成る
群から少なくとも1種以上の熱供給装置と連結した蓄熱
装置を提供するものである。
Further, in this invention, the heat storage capsule has a pore size of 1 to 10 μm.
Further, the present invention provides a heat storage device which is a capsule in which a powdery chemical heat storage material is filled in a cylindrical body of a heat-resistant porous body which is a heat-dissipating conduit, a solar heat collector, an electric furnace, a high frequency heating. The present invention provides a heat storage device connected to at least one heat supply device selected from the group consisting of a machine, an infrared heating lamp, and a heat pump.

以下、この発明を図面に基づいて詳細に説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図はこの発明の一実施例を示す蓄熱装置の概略断面
図である。第1図において1は蓄熱装置、2は反応器
(または反応塔)、3は化学蓄熱カプセルで、矢印4の
方向に流れる水蒸気を含むガス状体と化学蓄熱カプセル
3の内部に充填されている化学蓄熱材6との反応により
発生した熱によりガス状体は加熱され又は仕事をする。
また化学蓄熱材6の発熱反応終了後、熱供給装置からの
熱、例えば矢印5方向の高温排気ガスの熱により化学蓄
熱材6を再生する。上記操作を繰り返す。
FIG. 1 is a schematic sectional view of a heat storage device showing an embodiment of the present invention. In FIG. 1, reference numeral 1 is a heat storage device, 2 is a reactor (or a reaction tower), 3 is a chemical heat storage capsule, which is filled inside a gaseous body containing water vapor flowing in the direction of an arrow 4 and the chemical heat storage capsule 3. The heat generated by the reaction with the chemical heat storage material 6 heats or works the gaseous body.
After the exothermic reaction of the chemical heat storage material 6, the chemical heat storage material 6 is regenerated by the heat from the heat supply device, for example, the heat of the high temperature exhaust gas in the direction of arrow 5. The above operation is repeated.

次にこの発明にいおて使用される化学蓄熱カプセルにつ
いて説明する。第2図はこの発明に使用される化学蓄熱
カプセルの一部破断斜視図である。第2図において、7
は耐熱性多孔質体、3,6は前記と同様である。
Next, the chemical heat storage capsule used in the present invention will be described. FIG. 2 is a partially cutaway perspective view of the chemical heat storage capsule used in the present invention. In FIG. 2, 7
Is a heat resistant porous material, and 3 and 6 are the same as above.

この発明に使用される化学蓄熱材6は可逆化学反応を行
なう物質、例え酸化カルシウム、水酸化カルシウム、酸
化マグネシウム、水酸化マグネシウム、酸化ストロンチ
ウム、水酸化ストロンチウム、酸化バリウム、水酸化バ
リウムから成る群から選ばれた少なくとも1種のもので
あり、また炭酸塩等が該化学蓄熱材6に対して0〜10重
量%混入してもよい。
The chemical heat storage material 6 used in the present invention is a substance that performs a reversible chemical reaction, for example, calcium oxide, calcium hydroxide, magnesium oxide, magnesium hydroxide, strontium oxide, strontium hydroxide, barium oxide, barium hydroxide. It is at least one selected, and carbonate or the like may be mixed in the chemical heat storage material 6 in an amount of 0 to 10% by weight.

また化学蓄熱材6は、水蒸気との反応により適度な反応
速度の立ち上りを起こし、また蓄熱反応のため効率的に
加熱するためには粉体であることが好ましく、その粒径
は、酸化物が発熱反応等により粉化または細粒化して水
酸化物となる系においては水酸化物の状態において1〜
590μmであり、好ましくは5〜30μmである。
Further, the chemical heat storage material 6 is preferably a powder in order to cause an appropriate reaction rate to rise due to the reaction with water vapor, and to be efficiently heated due to the heat storage reaction. In a system where a hydroxide is formed by pulverizing or granulating due to an exothermic reaction, etc.
It is 590 μm, preferably 5 to 30 μm.

さらに化学蓄熱材6の耐熱性多孔質体の筒状体内部空間
に対する充填割合は60〜10容量%、好ましくは40〜20容
量%である。もし60容量%より多い場合には、化学蓄熱
材6の粉体の自重により繰り返し使用後固化し発熱およ
び再生効率が著しく低下し、10容量%以下では発熱等所
定の効果が得られない。化学蓄熱材6は、発熱反応終了
後、加熱により蓄熱し再使用するために、例えば水酸化
カルシウムの場合400〜800℃、好ましくは450〜550℃の
温度で加熱する。もし800℃以上の温度で加熱処理する
と化学蓄熱材6が可逆反応を起こさなくなり、400℃未
満の温度で加熱処理しても蓄熱のための反応を起こさな
い。
Further, the filling ratio of the heat-resistant porous body of the chemical heat storage material 6 to the inner space of the cylindrical body is 60 to 10% by volume, preferably 40 to 20% by volume. If it is more than 60% by volume, the powder of the chemical heat storage material 6 will be solidified after repeated use due to its own weight, and the heat generation and regeneration efficiency will be significantly reduced, and if it is less than 10% by volume, a predetermined effect such as heat generation cannot be obtained. After completion of the exothermic reaction, the chemical heat storage material 6 is heated at a temperature of 400 to 800 ° C., preferably 450 to 550 ° C., for example, in the case of calcium hydroxide, in order to store heat by heating and reuse. If the heat treatment is performed at a temperature of 800 ° C. or higher, the chemical heat storage material 6 does not cause a reversible reaction, and the heat treatment at a temperature of less than 400 ° C. does not cause a reaction for heat storage.

水酸化マグネシウムの場合は200〜400℃、水酸化カルシ
ウムの場合は400〜600℃、水酸化ストロンチウムの場合
は600〜800℃、および水酸化バリウムの場合は800〜100
0℃のもとで蓄熱する。
200-400 ° C for magnesium hydroxide, 400-600 ° C for calcium hydroxide, 600-800 ° C for strontium hydroxide, and 800-100 for barium hydroxide.
Stores heat at 0 ° C.

次に、この発明に使用される耐熱性多孔質体7は、細長
い筒状体であり、その管内に化学蓄熱材6を充填し得る
ものであり、その長手方向に対する垂直方向の断面形状
は四角形、だ円形、三角形等いずれであっても良い。こ
の場合、管の肉厚を適宜薄くすることで、また管径を細
くすることで反応速度を調節できる。管の肉厚は0.3〜3
mm、好ましくは0.7〜1.2mm、管の内径は2〜50mm、好ま
しくは4〜25mmである。またその細孔の大きさは、充填
された化学蓄熱材6が目詰りすることなくかつ細孔を通
り抜けない大きさであり、好ましくは1〜10μm、より
好ましくは3〜4μmである。ここで細孔径とは平均細
孔直径のことである。該細孔は筒状体内壁から外壁へま
たはその逆に多孔質体内を直接または多孔質体内部で絡
み合って通じてもよい。また、その気孔率は多い方が望
ましい。その気孔率は通常30〜85%、好ましくは40〜85
%である。85%より多い場合には材料の強度維持が難し
く30%以下の場合には反応の立上り遅くなり実用的でな
い。さらにその材質は、SiC、カーボン、アルミナ、活
性アルミナ、ガラス、コージェライト、ムライト、リチ
ウムアルミニウムシリケート、チタン酸アルミニウム等
耐熱性多孔質セラミックまたはNi,Cu,Al,Ti,Fe,Coおよ
びその合金等の耐熱性多孔質粉末焼結体からなる群から
選ばれた少なくとも1種のものが好ましい。また耐熱性
多孔質体7は化学蓄熱材6を充填したままで加熱される
ために、前記化学蓄熱材6処理温度においても変質せ
ず、さらに同温度の繰り返し処理によって変質しない材
料である。尚耐熱性多孔質体セラミックは、耐熱性多孔
質粉末焼結体にくらべ、細孔の均質性がより優れている
ため化学蓄熱カプセル化により適している。このような
化学蓄熱材6および耐熱性多孔質体の筒状体7から成る
化学蓄熱カプセル3は、化学蓄熱材6を耐熱性多孔質体
の筒状体7に充填後、耐熱性多孔質体の筒状体7と同程
度以下の細孔径を有する耐熱性多孔質体の栓を使用し、
粘土、陶土、セラミックセメント等の無機結合剤を使用
し両端を封ずる。この操作は、あらかじめ一方を封じた
管またはあらかじめ一端のみ開いた筒状体を形成し、そ
の内部に化学蓄熱材6を充填後残りの一端を封じてもよ
い。このようにして得られた化学蓄熱カプセルにおいて
は化学蓄熱材6が筒状体の系外に出ることなく以後直接
粉体を取扱う操作がなく容易に操作できる。
Next, the heat-resistant porous body 7 used in the present invention is an elongated cylindrical body, and the tube can be filled with the chemical heat storage material 6, and its cross-sectional shape in the direction perpendicular to the longitudinal direction is a quadrangle. It may be oval, triangular or the like. In this case, the reaction rate can be adjusted by appropriately reducing the wall thickness of the tube and by reducing the tube diameter. The wall thickness of the tube is 0.3-3
mm, preferably 0.7-1.2 mm, the inner diameter of the tube is 2-50 mm, preferably 4-25 mm. The size of the pores is such that the filled chemical heat storage material 6 does not become clogged and does not pass through the pores, and is preferably 1 to 10 μm, more preferably 3 to 4 μm. Here, the pore diameter means an average pore diameter. The pores may pass through the porous body from the inner wall of the tubular body to the outer wall or vice versa directly or intertwined with each other inside the porous body. Moreover, it is desirable that the porosity is large. Its porosity is usually 30-85%, preferably 40-85
%. If it is more than 85%, it is difficult to maintain the strength of the material, and if it is less than 30%, the reaction rises slowly and it is not practical. Furthermore, the material is SiC, carbon, alumina, activated alumina, glass, cordierite, mullite, lithium aluminum silicate, heat-resistant porous ceramics such as aluminum titanate or Ni, Cu, Al, Ti, Fe, Co and their alloys. At least one selected from the group consisting of the heat-resistant porous powder sintered bodies of is preferable. Further, since the heat-resistant porous body 7 is heated while being filled with the chemical heat storage material 6, it does not deteriorate even at the processing temperature of the chemical heat storage material 6, and further does not deteriorate by repeated treatment at the same temperature. The heat-resistant porous ceramic is more suitable for chemical heat storage encapsulation because it has more excellent pore homogeneity than the heat-resistant porous powder sintered body. The chemical heat storage capsule 3 composed of such a chemical heat storage material 6 and the tubular body 7 of the heat-resistant porous body is a heat-resistant porous body after filling the tubular body 7 of the heat-resistant porous body with the chemical heat storage material 6. Using a plug of a heat resistant porous body having a pore size equal to or less than that of the cylindrical body 7 of
Seal both ends with an inorganic binder such as clay, porcelain or ceramic cement. This operation may be performed by forming a tube whose one side is sealed in advance or a tubular body whose one end is opened in advance, and filling the inside thereof with the chemical heat storage material 6 and sealing the remaining one end. In the chemical heat storage capsule thus obtained, the chemical heat storage material 6 does not go out of the system of the cylindrical body and can be easily operated without the need of directly handling the powder thereafter.

この化学蓄熱カプセル3を水蒸気を含む気体の流通路中
または水蒸気の流通路中に投入し、該化学蓄熱材6を水
蒸気との反応により発熱されるためには該化学蓄熱材6
が水蒸気との反応前の形態、例えば酸化物であることが
必要である。再生後、直ちに発熱反応に供する場合には
そのままでよいが、長期間放置後使用する場合又は水蒸
気、水分の多い状態で保存せざるを得ない場合には該カ
プセル中に除湿した空気、He,N2またはArガスを投入
し、または除湿状態で水蒸気不透過性のプラスチックま
たは該フィルで覆って保存することが好ましい。
In order to generate heat by reacting the chemical heat storage capsules 3 with the steam, the chemical heat storage material 6 is charged into the flow path of the gas containing steam or the flow path of the steam.
Must be in the form before reaction with water vapor, eg an oxide. After regeneration, if it is subjected to an exothermic reaction immediately, it may be used as it is, but if it is used after being left for a long period of time, or if it is unavoidable to store it in a water-rich state, steam dehumidified in the capsule, He, It is preferable to add N 2 or Ar gas, or to store in a dehumidified state covered with water vapor impermeable plastic or the fill.

また化学蓄熱カプセル3は、必要熱量に応じ適宜、数量
を変更使用できる。
Further, the chemical heat storage capsule 3 can be used by appropriately changing the quantity according to the required heat quantity.

第1図において、矢印4の従って流れる流体は水蒸気ま
たは反応物質を含むガス状体であり、反応器1で加熱ま
たは予熱され、その後、タービン、エンジン、レジエー
ター等を作動させ、または反応に供される。反応器1
は、反応塔または熱交換器、加熱炉等である。
In FIG. 1, the fluid flowing according to arrow 4 is a gaseous substance containing water vapor or a reactant, and is heated or preheated in the reactor 1, and thereafter, is operated in a turbine, an engine, a regiator, or is subjected to a reaction. It Reactor 1
Is a reaction tower, a heat exchanger, a heating furnace, or the like.

また、該反応器1には、化学蓄熱材6の再生用熱源とし
て排熱導管、太陽集熱器、電気炉、高周波加熱機、赤外
線発熱ランプ、ヒートポンプとして直接、または熱風用
導管として連結されている。熱源が距離的に隔れている
場合には、反応終了後の化学蓄熱カプセル3を反応器1
から抜き出し、熱源により再生し、その後反応器1に充
填し使用してもよい。
Further, the reactor 1 is directly connected as an exhaust heat conduit, a solar collector, an electric furnace, a high frequency heater, an infrared heating lamp, a heat pump as a heat source for regenerating the chemical heat storage material 6, or as a conduit for hot air. There is. When the heat sources are separated from each other by distance, the chemical heat storage capsule 3 after completion of the reaction is placed in the reactor 1
It may be extracted from the reactor, regenerated by a heat source, and then charged into the reactor 1 for use.

また、耐熱性多孔質体の筒状体は、その他の粉体、例え
ば金属水素化物の凝集体も同様に2つの状態間の反応系
の粒子系の細かい方が通過しない範囲において反応器と
して使用可能である。
Further, the cylindrical body of the heat-resistant porous material is also used as a reactor for other powders, for example, agglomerates of metal hydrides in a range where the finer particle system of the reaction system between the two states does not pass through. It is possible.

(作用) 第1図において、矢印4方向に流れるガス状体は、反応
器(反応塔)1において化学蓄熱材6の発熱による熱で
加熱されその後タービン等を作動させる仕事または熱源
に供される。また、発熱反応終了後の化学蓄熱材6は、
排ガスの熱等により再生され、再び発熱反応に供され
る。化学蓄熱カプセルを使用した装置により、排熱等を
簡単な方法により蓄熱し、直ちにあるいは長期間保存
後、発熱反応を起こされることにより熱利用の向上を図
ることができる (実施例) 以下、第3図に基づいてこの発明について更に詳しく説
明する。第3図はこの発明の蓄熱装置の1実施例の概略
図である。
(Operation) In FIG. 1, the gaseous substance flowing in the direction of the arrow 4 is heated by the heat generated by the chemical heat storage material 6 in the reactor (reaction tower) 1 and then supplied to the work or heat source for operating the turbine or the like. . The chemical heat storage material 6 after the exothermic reaction is
It is regenerated by the heat of exhaust gas, etc. and is again subjected to an exothermic reaction. By using a device using a chemical heat storage capsule, it is possible to improve the utilization of heat by storing waste heat by a simple method and causing an exothermic reaction immediately or after long-term storage (Example) The present invention will be described in more detail with reference to FIG. FIG. 3 is a schematic view of one embodiment of the heat storage device of the present invention.

第3図において、8,9,10,11は流路方向切換三方弁、12
A、12Bは蓄熱装置、13は化学蓄熱材、14は熱供給装置、
15はスチーム発生装置、16はタービンである。
In FIG. 3, 8, 9, 10, and 11 are flow path direction switching three-way valves, and 12
A and 12B are heat storage devices, 13 is a chemical heat storage material, 14 is a heat supply device,
15 is a steam generator, 16 is a turbine.

スチーム発生装置15で発生した水蒸気は三方弁8を経て
蓄熱装置12B入る(12Aには流れない)。蓄熱装置12B内
において、水蒸気と化学蓄熱材との反応により発生した
熱により加熱された蒸気は、三方弁9を経てタービン16
に向い仕事をする。この場合、タービンの外仕事をする
対象は何であってもかまわず、例えばその他スチームエ
ンジン、ラジエータであってもよい。
The steam generated by the steam generator 15 enters the heat storage device 12B via the three-way valve 8 (does not flow to 12A). In the heat storage device 12B, the steam heated by the heat generated by the reaction between the steam and the chemical heat storage material passes through the three-way valve 9 and the turbine 16
Work for. In this case, it does not matter what the outside work of the turbine is, and may be other steam engine or radiator, for example.

仕事を終った水蒸気は、必要により加熱後、三方弁8に
向う。蓄熱装置12A、12Bの入口部および出口部には温度
計(図示せず)が取り付けられており、化学蓄熱材13の
発熱反応の終了時点が検知される。蓄熱装置12B内に化
学蓄熱材13の必要な発熱反応が終了すると三方弁8,9を
切換えて水蒸気を蓄熱装置12Aに向わせ、水蒸気を連続
して加熱できる。
The steam that has finished its work goes to the three-way valve 8 after being heated if necessary. Thermometers (not shown) are attached to the inlets and outlets of the heat storage devices 12A and 12B, and the end point of the exothermic reaction of the chemical heat storage material 13 is detected. When the necessary exothermic reaction of the chemical heat storage material 13 is completed in the heat storage device 12B, the three-way valves 8 and 9 are switched to direct the steam toward the heat storage device 12A, and the steam can be continuously heated.

次に化学蓄熱材の再生について説明する。Next, the regeneration of the chemical heat storage material will be described.

蓄熱装置12B内の化学蓄熱材の発熱反応が終了すると弁
8,9が切換えられると同時に弁10,11も手動また自動的に
切換えられる。すなわち蓄熱装置12Aが化学蓄熱材の発
熱反応状態においては、他の蓄熱装置12Bは再生されて
いる。すなわち一方の蓄熱装置では発熱反応が、その際
他の蓄熱装置では再生が行なわれる。再生は熱供給装
置、例えば排ガスの熱等が利用される。また化学蓄熱材
の再生は、工業的規模のエネルギーシステム(工業群を
とりまく地域冷暖房に応用することを含む)プラント向
けのヒートポンプと組み合わせたり、自然な太陽光集熱
器と組み合わせたり排ガスと組み合わせることにより行
なわれ、夏冬、昼夜等の時間的隔たりをもって、種々の
企業相互の地理的空間的な壁を取り去りまたは各圧力、
各温度条件の組み合わせにより行なわれる。
When the exothermic reaction of the chemical heat storage material in the heat storage device 12B ends, the valve
At the same time as 8, 9 are switched, valves 10, 11 are also switched manually or automatically. That is, when the heat storage device 12A is in the exothermic reaction state of the chemical heat storage material, the other heat storage device 12B is regenerated. That is, an exothermic reaction takes place in one of the heat storage devices and a regeneration takes place in the other heat storage device. For the regeneration, a heat supply device, for example, heat of exhaust gas is used. Regeneration of chemical heat storage materials can be combined with heat pumps for industrial-scale energy system plants (including application to district heating and cooling surrounding industrial groups), natural solar collectors, and exhaust gas. By removing the geographical and spatial barriers between various companies at different times such as summer and winter, day and night, or pressure,
It is carried out by combining each temperature condition.

(発明の効果) 以上述べたごとく、この発明は内部の空間に対して10〜
60容量%の割合で粉体化学蓄熱材が収容される蓄熱カプ
セルを、少なくとも1以上充填した反応器または反応塔
と熱供給装置を連結したことを特徴とする蓄熱装置であ
り、該蓄熱カプセルが、細孔径が1〜10μmである耐熱
性多孔質体の筒状体内に粉体化学蓄熱材を充填したカプ
セルであるから、微細な化学蓄熱材が粉末化して気体と
ともに系外に排出されることなく耐熱性多孔質体の目詰
りを起こさずかつそれ自体が固化することなく繰り返し
再生使用に十分に耐え得る特性を有し、さらに省エネル
ギー的観点でエネルギー効率をあげ、適時余剰の熱源を
捕獲保存しまた各企業間内あるいは地域社会を含めた昼
夜の時間差、冬夏の季節差、空間の配置等を加味した総
合エネルギーコンビナート用の蓄熱発熱装置として使用
できる。
(Effects of the Invention) As described above, the present invention has 10 to 10
A heat storage device characterized in that a heat supply device is connected to a reactor or a reaction tower filled with at least one heat storage capsule containing a powder chemical heat storage material at a ratio of 60% by volume. Since it is a capsule in which a powdery chemical heat storage material is filled in a cylindrical body of a heat-resistant porous body having a pore size of 1 to 10 μm, the fine chemical heat storage material should be powdered and discharged out of the system together with gas. The heat-resistant porous material does not become clogged and has the property of being able to withstand repeated reuse without solidifying itself. Furthermore, energy efficiency is improved from the perspective of energy saving, and a surplus heat source is captured and stored in a timely manner. Also, it can be used as a heat storage and heat generation device for a comprehensive energy complex that takes into consideration the time difference between day and night within each company or including the local community, the seasonal difference in winter and summer, and the arrangement of spaces.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例を示す蓄熱装置の概略断面
図、第2図はこの発明に使用される化学蓄熱カプセルの
一部破断斜視図、第3図はこの発明の一実施例の概略図
である。 1……蓄熱装置、2……反応器、 3……化学蓄熱カプセル、6……化学蓄熱材、 7……耐熱性多孔質体の筒状体。
1 is a schematic sectional view of a heat storage device showing an embodiment of the present invention, FIG. 2 is a partially cutaway perspective view of a chemical heat storage capsule used in the present invention, and FIG. 3 is a view of an embodiment of the present invention. It is a schematic diagram. 1 ... Heat storage device, 2 ... Reactor, 3 ... Chemical heat storage capsule, 6 ... Chemical heat storage material, 7 ... Heat-resistant porous tubular body.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】内部の空間に対して10〜60容量%の割合で
粉体化学蓄熱材が収容される蓄熱カプセルを、少なくと
も1以上充填した反応器または反応塔と熱供給装置とを
連結したことを特徴とする蓄熱装置。
1. A reactor or reaction tower filled with at least one heat storage capsule containing a powder chemical heat storage material at a rate of 10 to 60% by volume with respect to an internal space, and a heat supply device are connected to each other. A heat storage device characterized by the above.
【請求項2】該蓄熱カプセルが、細孔径が1〜10μmで
ある耐熱性多孔質体の筒状体内に粉体化学蓄熱材を充填
したカプセルである特許請求の範囲第1項に記載の蓄熱
装置。
2. The heat storage capsule according to claim 1, wherein the heat storage capsule is a capsule in which a powder chemical heat storage material is filled in a cylindrical body of a heat-resistant porous body having a pore size of 1 to 10 μm. apparatus.
【請求項3】該熱供給装置は排熱導管、太陽集熱器、電
気炉、高周波加熱機、赤外線発熱ランプ、ヒートポンプ
から成る群の少なくとも1種以上のものである特許請求
の範囲第1項または第2項に記載の蓄熱装置。
3. The heat supply device is at least one member selected from the group consisting of an exhaust heat pipe, a solar collector, an electric furnace, a high frequency heater, an infrared heating lamp, and a heat pump. Alternatively, the heat storage device according to item 2.
JP61057670A 1986-03-14 1986-03-14 Heat storage device Expired - Lifetime JPH0680395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61057670A JPH0680395B2 (en) 1986-03-14 1986-03-14 Heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61057670A JPH0680395B2 (en) 1986-03-14 1986-03-14 Heat storage device

Publications (2)

Publication Number Publication Date
JPS62213690A JPS62213690A (en) 1987-09-19
JPH0680395B2 true JPH0680395B2 (en) 1994-10-12

Family

ID=13062342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61057670A Expired - Lifetime JPH0680395B2 (en) 1986-03-14 1986-03-14 Heat storage device

Country Status (1)

Country Link
JP (1) JPH0680395B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222273A (en) * 2008-03-14 2009-10-01 Toyota Central R&D Labs Inc Method of manufacturing chemical heat storage material molded product
JP2009257698A (en) * 2008-04-18 2009-11-05 Toyota Central R&D Labs Inc Chemical thermal storage medium composite and its manufacturing method
JP2010169297A (en) * 2009-01-21 2010-08-05 Toyota Central R&D Labs Inc Chemical heat storage device
JP2011027311A (en) * 2009-07-24 2011-02-10 Toyota Central R&D Labs Inc Chemical heat storage device
WO2012108288A1 (en) 2011-02-07 2012-08-16 株式会社豊田中央研究所 Heat storage device
WO2012128380A1 (en) 2011-03-18 2012-09-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Chemical heat accumulator and method for producing the same
WO2012128379A1 (en) 2011-03-18 2012-09-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Chemical heat accumulator and method for producing the same
US9074827B2 (en) 2007-11-30 2015-07-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat exchanger heat-utilization device and method of manufacturing the same
US9120959B2 (en) 2010-03-25 2015-09-01 Kabushiki Kaisha Toyota Chuo Kenkyusho Chemical thermal energy storage material structure, method of producing the same, and chemical heat accumulator
JP2016037553A (en) * 2014-08-07 2016-03-22 日本特殊陶業株式会社 Heat storage body, and manufacturing method of the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822383B2 (en) * 1990-11-30 1996-03-06 有限会社桐山製作所 Non-flammable stopper
JP4938323B2 (en) * 2006-03-14 2012-05-23 大阪瓦斯株式会社 Method for producing heat exchange reactor
JP4830623B2 (en) * 2006-05-15 2011-12-07 日産自動車株式会社 Absorbing and dissipating material, manufacturing method of absorbing and dissipating material, and chemical heat pump system using this absorbing and dissipating material
JP5231076B2 (en) * 2008-04-18 2013-07-10 株式会社豊田中央研究所 Chemical heat storage system
JP5609004B2 (en) * 2009-04-15 2014-10-22 株式会社デンソー Heat storage device
JP2013517451A (en) * 2010-01-12 2013-05-16 シルバン ソース, インコーポレイテッド Heat transfer interface
JP5719649B2 (en) * 2011-03-18 2015-05-20 株式会社豊田中央研究所 Chemical regenerator and manufacturing method thereof
JP5719660B2 (en) * 2011-03-30 2015-05-20 株式会社豊田中央研究所 Chemical regenerator and manufacturing method thereof
JP6153748B2 (en) * 2013-03-21 2017-06-28 株式会社豊田中央研究所 Chemical heat storage reactor and chemical heat storage system
JP6026469B2 (en) * 2014-08-01 2016-11-16 古河電気工業株式会社 Flat heat accumulator, heat accumulator unit with flat heat accumulator and heat accumulator with heat accumulator unit
KR102224887B1 (en) * 2019-08-23 2021-03-05 현대제철 주식회사 Steelmaking waste heat recovery apparatus and method using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178057U (en) * 1985-04-24 1986-11-06

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9074827B2 (en) 2007-11-30 2015-07-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat exchanger heat-utilization device and method of manufacturing the same
JP2009222273A (en) * 2008-03-14 2009-10-01 Toyota Central R&D Labs Inc Method of manufacturing chemical heat storage material molded product
JP2009257698A (en) * 2008-04-18 2009-11-05 Toyota Central R&D Labs Inc Chemical thermal storage medium composite and its manufacturing method
JP2010169297A (en) * 2009-01-21 2010-08-05 Toyota Central R&D Labs Inc Chemical heat storage device
JP2011027311A (en) * 2009-07-24 2011-02-10 Toyota Central R&D Labs Inc Chemical heat storage device
US9120959B2 (en) 2010-03-25 2015-09-01 Kabushiki Kaisha Toyota Chuo Kenkyusho Chemical thermal energy storage material structure, method of producing the same, and chemical heat accumulator
WO2012108288A1 (en) 2011-02-07 2012-08-16 株式会社豊田中央研究所 Heat storage device
WO2012128380A1 (en) 2011-03-18 2012-09-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Chemical heat accumulator and method for producing the same
WO2012128379A1 (en) 2011-03-18 2012-09-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Chemical heat accumulator and method for producing the same
JP2016037553A (en) * 2014-08-07 2016-03-22 日本特殊陶業株式会社 Heat storage body, and manufacturing method of the same

Also Published As

Publication number Publication date
JPS62213690A (en) 1987-09-19

Similar Documents

Publication Publication Date Title
JPH0680395B2 (en) Heat storage device
Chang et al. Review on ceramic-based composite phase change materials: Preparation, characterization and application
CN101738120B (en) Sensible heat-latent heat compound thermal storage device
US4286141A (en) Thermal storage method and system utilizing an anhydrous sodium sulfate pebble bed providing high-temperature capability
CN101128394B (en) High density storage of ammonia
JPH0680394B2 (en) Chemical heat storage capsule
JP2746943B2 (en) Regenerator
US4512388A (en) High-temperature direct-contact thermal energy storage using phase-change media
Funayama et al. Thermochemical storage performance of a packed bed of calcium hydroxide composite with a silicon-based ceramic honeycomb support
US20140238634A1 (en) Reversible metal hydride thermal energy storage systems, devices, and process for high temperature applications
GB2067983A (en) Metal hydride/metal matrix compacts
JP2011027311A (en) Chemical heat storage device
CN104654863A (en) Container type mobile solid particle block heat accumulator and heat accumulating vehicle
CN104654845A (en) Solid particle block gravity heat tube heat accumulator
CN104650821A (en) Solid particle blocks for chemical heat storage
CN104654869A (en) Concrete heat storage device and heat storage vehicle
CN104654864A (en) Honeycomb block for chemical heat storage
CN104654871A (en) Solid particle block circulation heat pipe heat accumulator
CN210374744U (en) Solar photo-thermal power generation system based on metal oxide thermochemical energy storage system
RU164881U1 (en) METAL HYDROGEN STORAGE AND HYDROGEN PURIFICATION REACTOR
JPS62131101A (en) Steam generator
JP2001232148A (en) Carbon dioxide absorbent and its manufacturing method
JPH05295356A (en) Particulate heat-storage material using heat of fusion of substance
CN115287043B (en) Composite phase-change heat storage material taking sludge water pyrolysis residues as carriers and preparation method thereof
JPH059129B2 (en)