JPS6246481B2 - - Google Patents

Info

Publication number
JPS6246481B2
JPS6246481B2 JP58023340A JP2334083A JPS6246481B2 JP S6246481 B2 JPS6246481 B2 JP S6246481B2 JP 58023340 A JP58023340 A JP 58023340A JP 2334083 A JP2334083 A JP 2334083A JP S6246481 B2 JPS6246481 B2 JP S6246481B2
Authority
JP
Japan
Prior art keywords
hydrogen
storage alloy
hydrogen storage
container
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58023340A
Other languages
Japanese (ja)
Other versions
JPS59152202A (en
Inventor
Tetsuo Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Aluminium Co Ltd
Original Assignee
Nippon Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Aluminium Co Ltd filed Critical Nippon Aluminium Co Ltd
Priority to JP58023340A priority Critical patent/JPS59152202A/en
Publication of JPS59152202A publication Critical patent/JPS59152202A/en
Publication of JPS6246481B2 publication Critical patent/JPS6246481B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Description

【発明の詳細な説明】 本発明は水素の貯蔵方法に関するものである。[Detailed description of the invention] The present invention relates to a method for storing hydrogen.

水素は各産業分野で広く利用されており、水素
の貯蔵・輸送が効率的で安全且つ容易なことが求
められている。従来、水素の貯蔵・輸送は高圧水
素ガスあるいは液体水素として容器に収容して行
つていたが、高圧あるいは超低温にするためには
多大なエネルギーを要すること等もあつて、最近
は水素吸蔵合金を用いる試みが盛んに検討されて
いる。
Hydrogen is widely used in various industrial fields, and there is a need for efficient, safe, and easy storage and transportation of hydrogen. Traditionally, hydrogen has been stored and transported in containers as high-pressure hydrogen gas or liquid hydrogen, but because it requires a large amount of energy to achieve high pressure or ultra-low temperature, recently hydrogen storage alloys have been used. Attempts to use are being actively considered.

水素吸蔵合金とは水素H2を吸蔵する能力のあ
る合金のことで、既に知られた種々の水素吸蔵合
金があるが、加圧水素と接触して水素を吸蔵して
金属水素化物となつて発熱し、金属水素化物を減
圧・加熱すると水素を放出すると共に吸熱する。
なお、水素吸蔵合金を加圧水素と接触させると水
素を吸蔵して金属水素化物となる。通常、水素吸
蔵合金に水素を吸蔵させるには常温下で高圧の水
素を接触させればよく、また金属水素化物から水
素を放出させるには金属水素化物間を湯水等の熱
媒を通過させる。
Hydrogen storage alloys are alloys that have the ability to store hydrogen H2.There are various hydrogen storage alloys that are already known, but when they come into contact with pressurized hydrogen, they store hydrogen and become metal hydrides, which generate heat. However, when a metal hydride is depressurized and heated, it releases hydrogen and absorbs heat.
Note that when the hydrogen storage alloy is brought into contact with pressurized hydrogen, it absorbs hydrogen and becomes a metal hydride. Usually, to make a hydrogen storage alloy absorb hydrogen, it is sufficient to contact it with high-pressure hydrogen at room temperature, and to release hydrogen from a metal hydride, a heat medium such as hot water is passed between the metal hydrides.

現在までに検討された水素吸蔵合金による水素
の貯蔵方法には次のようなものがある。
The methods of storing hydrogen using hydrogen storage alloys that have been studied to date include the following.

水素吸蔵合金を水素と十分に接触させるために
金網、パンチングメタル、発泡メタル等の多孔質
金属収納体内に収容し、この多孔質金属収納体の
複数個を所定間隔隔てて容器内に配置するので容
器内には多くの空隙が存し、金属収納体そのもの
により容器内のスペースが減じられている。水素
吸蔵合金は水素を吸蔵すると体積が約30%程度膨
張するのでその容器には空隙率50〜40%が必要と
されている。また、水素吸蔵時に高圧を必要とす
るため高圧容器が用いられている。さらに、水素
吸蔵合金で水素の吸蔵・放出を繰り返すことによ
り塊状の水素吸蔵合金が微粉末化し、多孔質金属
収納体の水素の通過孔が目詰りを生じ、吸蔵時の
発生熱により微粉末体の焼結による固化が起り、
反応効率の低下を招いている。
In order to bring the hydrogen storage alloy into sufficient contact with hydrogen, it is housed in a porous metal container such as a wire mesh, punched metal, or foamed metal, and a plurality of these porous metal containers are arranged at predetermined intervals in the container. There are many voids within the container, and the space within the container is reduced by the metal enclosure itself. When a hydrogen storage alloy absorbs hydrogen, its volume expands by about 30%, so the container needs to have a porosity of 50 to 40%. Furthermore, since high pressure is required when storing hydrogen, a high-pressure container is used. Furthermore, by repeatedly absorbing and desorbing hydrogen in the hydrogen storage alloy, the bulk hydrogen storage alloy becomes fine powder, and the hydrogen passage holes in the porous metal container become clogged, and the heat generated during storage causes the hydrogen storage alloy to become fine powder. Solidification occurs due to sintering,
This results in a decrease in reaction efficiency.

そこで、本発明は上記の事情に鑑み水素吸蔵合
金の固結化を防ぎ、さらに実用的に使用できるよ
うに吸蔵速度を速めるべく、水素吸蔵合金をキヤ
リヤガスに水素Hを用いて容器内に搬送し、配管
内で水素吸蔵合金に水素を接触させて水素を吸蔵
する反応を完了させてしまうようにしたものであ
る。
In view of the above circumstances, the present invention aims to prevent the hydrogen storage alloy from solidifying and to increase the storage speed for practical use by transporting the hydrogen storage alloy into a container using hydrogen H as a carrier gas. , the hydrogen storage alloy is brought into contact with hydrogen in the pipe to complete the hydrogen storage reaction.

以下、本発明を添付する図面に示す実施例に基
づいて詳細に説明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.

第1図では高位置タンク1の下部と低位置タン
ク2の上部とがバルブ3を介し、また高位置タン
ク1の上側部と低位置タンク2の下側部とがバル
ブ4を介してそれぞれ配管接続し、高位置タンク
1の上部はフイルター5を介しコンプレツサー6
に、低位置タンク2の上側部とコンプレツサー6
はそれぞれ配管接続してある。コンプレツサー6
により水素が低位置タンク2、バルブ4、高位置
タンク1、フイルター5を経て循環して圧送され
るが、ある特定の水素吸蔵合金を選ぶとその圧力
は高位置タンク1で7〜8Kg/cm2、低位置タンク
2で9〜10Kg/cm2程度にすることができる。
In FIG. 1, the lower part of the high-position tank 1 and the upper part of the low-position tank 2 are connected through a valve 3, and the upper part of the high-position tank 1 and the lower part of the low-position tank 2 are connected through a valve 4. The upper part of the high position tank 1 is connected to the compressor 6 through the filter 5.
, the upper part of the low-position tank 2 and the compressor 6
are connected to each other by piping. Compressor 6
Hydrogen is circulated and pumped through the low-position tank 2, valve 4, high-position tank 1, and filter 5, but if a certain hydrogen storage alloy is selected, the pressure in the high-position tank 1 will be 7 to 8 kg/cm. 2. With the low tank 2, the weight can be reduced to about 9 to 10 kg/cm 2 .

バルブ3を閉じバルブ4を開き水素吸蔵合金A
が収容された低位置タンク2に水素を送入すると
この水素が水素吸蔵合金Aを圧送しバルブ4を経
て高位置タンク1に移動させる。水素吸蔵合金A
は移動中水素と接触して水素を吸蔵し金属水素化
物となる。この際、例えば配管の外周に配置した
螺旋管等の冷却装置に冷却水を通し水素吸蔵反応
時の生成熱を積極的に除去してやれば、水素吸蔵
反応は促進される。水素吸蔵合金Aを高位置タン
ク1に搬送した水素はフイルター5を経てコンプ
レツサー6に復帰する。
Close valve 3 and open valve 4 Hydrogen storage alloy A
When hydrogen is fed into the low-position tank 2 containing the hydrogen storage alloy A, this hydrogen pressure-feeds the hydrogen storage alloy A and moves it to the high-position tank 1 via the valve 4. Hydrogen storage alloy A
comes into contact with hydrogen during movement, absorbs hydrogen, and becomes a metal hydride. At this time, the hydrogen storage reaction can be accelerated by actively removing the heat generated during the hydrogen storage reaction by passing cooling water through a cooling device such as a spiral tube placed around the outer periphery of the pipe. The hydrogen that has transported the hydrogen storage alloy A to the high-position tank 1 returns to the compressor 6 via the filter 5.

次に、バルブ4を閉じバルブ3を開き水素吸蔵
合金Aを落下させ、水素を搬入すると水素は低位
置タンク2、バルブ3、高位置タンク1、フイル
ター5を経て流れ、水素吸蔵合金Aは落下移動す
る際水素と接触して水素を吸蔵する。
Next, close valve 4, open valve 3, and drop hydrogen storage alloy A. When hydrogen is brought in, the hydrogen flows through low position tank 2, valve 3, high position tank 1, and filter 5, and hydrogen storage alloy A falls. When moving, it comes into contact with hydrogen and absorbs it.

上記のバルブ操作を繰り返すと水素吸蔵合金A
は低位置タンク2、バルブ4、高位置タンク1、
バルブ3間を循環移動する。
When the above valve operation is repeated, hydrogen storage alloy A
are low position tank 2, valve 4, high position tank 1,
It circulates between valves 3.

第2図はサイクロン7を用いた例で、サイクロ
ン7の下部と容器8の上部とをバルブ9を介して
配管接続し、容器8の下部をロータリーバルブあ
るいはエジエクター10を介してコンプレツサー
6に配管接続し、サイクロン7の上部をコンプレ
ツサー6と、サイクロン7の上側部を前記ロータ
リーバルブあるいはエジエクター10とそれぞれ
配管接続する。コンプレツサー6により圧送され
た循環する水素の圧力はある特定の水素吸蔵合金
を選ぶとサイクロン7で7〜8Kg/cm2、ロータリ
ーバルブあるいはエジエクター10で9〜10Kg/
cm2程度である。
Figure 2 shows an example using a cyclone 7, in which the lower part of the cyclone 7 and the upper part of the container 8 are connected via a valve 9, and the lower part of the container 8 is connected to the compressor 6 via a rotary valve or ejector 10. The upper part of the cyclone 7 is connected to the compressor 6, and the upper part of the cyclone 7 is connected to the rotary valve or ejector 10, respectively. The pressure of the circulating hydrogen compressed by the compressor 6 is 7 to 8 kg/cm 2 in the cyclone 7 and 9 to 10 kg/cm 2 in the rotary valve or ejector 10 if a certain hydrogen storage alloy is selected.
It is about cm2 .

ここで、バルブ9を閉じた状態でコンプレツサ
ー6により水素を圧送すると、容器8内の水素吸
蔵合金Aがロータリーバルブあるいはエジエクタ
ー10を経てサイクロン7の上側部に移動し、こ
の水素により移動する間に水素吸蔵合金Aは水素
を吸蔵し金属水素化物となりサイクロン7に至
る。水素吸蔵合金Aをサイクロン7に搬送した水
素はサイクロン7の上部よりコンプレツサー6に
復帰し、水素吸蔵合金Aはサイクロン7の底部に
留まる。
Here, when hydrogen is pumped by the compressor 6 with the valve 9 closed, the hydrogen storage alloy A in the container 8 moves to the upper side of the cyclone 7 via the rotary valve or the ejector 10, and while being moved by this hydrogen. Hydrogen storage alloy A stores hydrogen and becomes a metal hydride, which leads to cyclone 7. The hydrogen that has transported the hydrogen storage alloy A to the cyclone 7 returns to the compressor 6 from the top of the cyclone 7, and the hydrogen storage alloy A remains at the bottom of the cyclone 7.

次に、バルブ9を開くと水素吸蔵合金Aが落下
して容器8内に収容される。以後、バルブ9を閉
じ水素を圧送すると前記のとおり水素吸蔵合金A
が移動する。水素吸蔵合金Aは容器8、ロータリ
ーバルブあるいはエジエクター10、サイクロン
7、バルブ9間を循環移動する。容器8は水素吸
蔵完了後、配管系統より外し、物流に供すること
ができる。
Next, when the valve 9 is opened, the hydrogen storage alloy A falls and is accommodated in the container 8. Thereafter, when the valve 9 is closed and hydrogen is pumped, the hydrogen storage alloy A is produced as described above.
moves. The hydrogen storage alloy A circulates between the container 8, the rotary valve or ejector 10, the cyclone 7, and the valve 9. After the hydrogen storage is completed, the container 8 can be removed from the piping system and used for distribution.

第3図も第2図と同様サイクロン7を用いた点
は同じであるが、移動容器11を用いた点が異な
る。すなわち、水素吸蔵合金Aを収容した定置容
器12の下部にロータリーバルブあるいはエジエ
クター10を接続し、またバルブ9下方に移動容
器11を位置させる。
FIG. 3 is the same as FIG. 2 in that the cyclone 7 is used, but the difference is that a moving container 11 is used. That is, the rotary valve or ejector 10 is connected to the lower part of the stationary container 12 containing the hydrogen storage alloy A, and the movable container 11 is positioned below the valve 9.

ここで、水素を圧送すると前記第2図の場合と
全く同様で水素吸蔵合金Aはサイクロン7に移動
し、その移動する間水素吸蔵合金Aは水素を吸蔵
し金属水素化物となり、金属水素化物はサイクロ
ン7の底部に留まり、水素はコンプレツサー6に
復帰する。バルブ9を開き金属水素化物を移動容
器11に収容し金属水素化物を輸送できる。
Here, when hydrogen is pumped, the hydrogen storage alloy A moves to the cyclone 7 in exactly the same way as in the case of FIG. The hydrogen remains at the bottom of the cyclone 7 and returns to the compressor 6. The metal hydride can be transported by opening the valve 9 and storing the metal hydride in the transfer container 11.

本発明は、上述のように、水素吸蔵合金をキヤ
リヤガスに水素Hを用いて容器内に搬送し、配管
内で水素吸蔵合金に水素を接触させて水素を吸蔵
する反応を完了させてしまうようにした水素を貯
蔵する方法であつて、水素吸蔵合金の固形化を防
止し、水素との接触面積を増し吸蔵速度を速め吸
蔵に要する時間を短縮でき実用的に使用できるよ
うになる。このように水素吸蔵合金の移動時に水
素を吸蔵させるから容器内に多孔質金属収納体等
を設ける必要がなく容器の構造が至極単純化され
量産が容易となる。
As described above, the present invention transports a hydrogen storage alloy into a container using hydrogen H as a carrier gas, and brings hydrogen into contact with the hydrogen storage alloy in a pipe to complete the hydrogen storage reaction. The present invention is a method for storing hydrogen that has been absorbed, and can be used practically by preventing solidification of the hydrogen storage alloy, increasing the contact area with hydrogen, accelerating the storage rate, and shortening the time required for storage. In this way, since hydrogen is stored during the movement of the hydrogen storage alloy, there is no need to provide a porous metal storage body or the like within the container, and the structure of the container is extremely simplified and mass production is facilitated.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例で、第1図,第2図およ
び第3図は水素を循環させ水素吸蔵合金を移動さ
せて水素を吸蔵させるシステム図で、第2,3図
はサイクロンを用いた例で、第3図はそこにさら
に移動容器を用いた例である。 A…水素吸蔵合金。
The drawings show examples of the present invention. Figures 1, 2, and 3 are system diagrams for storing hydrogen by circulating hydrogen and moving a hydrogen storage alloy. Figures 2 and 3 are system diagrams that use a cyclone. As an example, FIG. 3 shows an example in which a moving container is further used. A...Hydrogen storage alloy.

Claims (1)

【特許請求の範囲】[Claims] 1 水素吸蔵合金をキヤリヤガスに水素H2を用
いて容器内に搬送し、配管内で水素吸蔵合金に水
素を接触させて水素を吸蔵する反応を完了させて
しまうようにしたことを特徴とする水素の貯蔵方
法。
1. A hydrogen storage alloy characterized in that the hydrogen storage alloy is transported into a container using hydrogen H 2 as a carrier gas, and hydrogen is brought into contact with the hydrogen storage alloy in a pipe to complete the hydrogen storage reaction. storage method.
JP58023340A 1983-02-14 1983-02-14 Storage method of hydrogen Granted JPS59152202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58023340A JPS59152202A (en) 1983-02-14 1983-02-14 Storage method of hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58023340A JPS59152202A (en) 1983-02-14 1983-02-14 Storage method of hydrogen

Publications (2)

Publication Number Publication Date
JPS59152202A JPS59152202A (en) 1984-08-30
JPS6246481B2 true JPS6246481B2 (en) 1987-10-02

Family

ID=12107858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58023340A Granted JPS59152202A (en) 1983-02-14 1983-02-14 Storage method of hydrogen

Country Status (1)

Country Link
JP (1) JPS59152202A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314676A (en) * 1986-04-22 1994-05-24 Studiengesellschaft Kohle Mbh Intermetallic compounds hydrides
JP4658238B2 (en) * 2000-10-16 2011-03-23 株式会社豊田自動織機 Method for producing hydrogen storage alloy tank and method for storing hydrogen
CN115535961B (en) * 2022-10-24 2024-03-19 云南电网有限责任公司电力科学研究院 Hydrogen absorbing and releasing device for hydrogen storage alloy and preparation method thereof

Also Published As

Publication number Publication date
JPS59152202A (en) 1984-08-30

Similar Documents

Publication Publication Date Title
Bhattacharyya et al. Solid state storage of hydrogen and its isotopes: an engineering overview
US4859427A (en) Active metal bed
US8985319B2 (en) Hydrogen storage tank having metal hydrides
US4270360A (en) Device for storage of hydrogen
JPS6362254B2 (en)
JPS6246481B2 (en)
JPS6159241B2 (en)
JPS6052360B2 (en) hydrogen storage device
JPS5814361B2 (en) Method for manufacturing hydrogen storage materials
JPS59162103A (en) Preservation of hydrogen and device for preservation
JPS59212600A (en) Storing method of hydrogen
JPH01264901A (en) Storage vessel for hydrogen storage alloy
JPS6310081B2 (en)
JPS6126719Y2 (en)
Han et al. A study of the hydriding kinetics of Mg2Ni at the near isothermal condition
JPS6229446Y2 (en)
JPH0218281B2 (en)
JP2503472B2 (en) Hydrogen storage metal container
JPS6044699A (en) Hydrogen storing container
GB2123805A (en) Separating hydrogen isotopes
JPS62479Y2 (en)
JPS6033239B2 (en) Portable heating and cooling device
JPH0214600B2 (en)
JPH07252577A (en) Hydrogen occluding material
JPS5916705Y2 (en) heat exchange pipe