JPS6131355B2 - - Google Patents

Info

Publication number
JPS6131355B2
JPS6131355B2 JP6697578A JP6697578A JPS6131355B2 JP S6131355 B2 JPS6131355 B2 JP S6131355B2 JP 6697578 A JP6697578 A JP 6697578A JP 6697578 A JP6697578 A JP 6697578A JP S6131355 B2 JPS6131355 B2 JP S6131355B2
Authority
JP
Japan
Prior art keywords
gas
fluid
filling container
pipe
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6697578A
Other languages
Japanese (ja)
Other versions
JPS54125183A (en
Inventor
Keido Yoshida
Senji Kimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP6697578A priority Critical patent/JPS54125183A/en
Publication of JPS54125183A publication Critical patent/JPS54125183A/en
Publication of JPS6131355B2 publication Critical patent/JPS6131355B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【発明の詳細な説明】 この発明は個体を媒体として気体を物理的又は
化学的に結合させて吸蔵させる吸蔵装置を構成す
る吸蔵エレメントに関するもので、個々の吸蔵エ
レメントに於いて気体の吸蔵と放出とを兼用させ
ると共に充填層に於ける熱伝導を良くし、気体の
吸蔵作用並びに放出作用を容易に制御し得る様に
なすと共にこれらの多連制御を行ない、気体の吸
蔵と放出とを同時に行なわせ、更に充填物の老朽
化に伴う取替えに際して、一部のみ取替え可能と
なし、作業性を向上せしめることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an occlusion element that constitutes an occlusion device that physically or chemically combines and occludes gas using a solid as a medium. In addition, it improves heat conduction in the packed bed, makes it possible to easily control gas occlusion and release actions, and performs multiple control of these to simultaneously perform gas occlusion and release. Furthermore, when replacing the filling material as it ages, it is possible to replace only a portion of the filling material, thereby improving workability.

一般に気体を貯蔵させるにはコンプレツサーで
圧縮させて貯蔵させる圧縮貯蔵、液体窒素や液体
酸素の様に液化して貯蔵する液化貯蔵、ドライア
イスの様に固形化して貯蔵する固化貯蔵、更には
固体を媒体として吸着、化合或は吸収等により吸
蔵する固体吸蔵等がある。ここで問題とするのは
固体吸蔵で、吸着とは活性炭、合成ゼオライト、
活性アルミナ、シリカゲル等に気体を吸着させる
もので、複合気体中の特定気体を分離する場合に
用いられる。吸収とはアセトンを用いてアセチレ
ンを吸収させるように固体(オガクズ等)に吸収
液を浸透させて気体を吸収させるものである。化
合とは金属に気体を接触させて化学反応を生ぜし
め気体と金属との化合物を作つて吸蔵させるもの
である。前記固体吸蔵の利用法としては例えば容
器内に充填した5A型合成ゼオライトの充填層に
空気を送入し、空気中の窒素、炭酸ガス、水分等
を5A型合成ゼオライトに吸着させ、残りの酸素
を多く含んだ(含有量約99.6%)気体を得る方法
がある。そして吸着された窒素等は充填物の加熱
並びに真空吸引により5A型合成ゼオライト中か
ら放出され、再び酸素の製造に供される。又他に
水素ガスを高圧下で冷却し乍らマグネシウム、鉄
チタン、ランタンニツケル等の特殊金属に接触さ
せ、両者間で化学反応を生ぜしめ水素と金属とを
結合させて金属水素化物となし金属中に水素を吸
蔵させる場合がある。この反応は可逆反応で圧力
を下げ、温度を上げると水素は金属中から放出さ
れる。
In general, gases can be stored by compression storage, which is compressed with a compressor and stored, liquefaction storage, which is liquefied and stored like liquid nitrogen or liquid oxygen, and solidification storage, which is solidified and stored like dry ice. As a medium, there are solid occlusions that occlude by adsorption, combination, absorption, etc. The issue here is solid occlusion, and adsorption refers to activated carbon, synthetic zeolite,
It adsorbs gas onto activated alumina, silica gel, etc., and is used to separate specific gases from composite gases. Absorption is the process of infiltrating a solid (sawdust, etc.) with an absorbing liquid to absorb a gas, similar to how acetylene is absorbed using acetone. Combination is the process of bringing a gas into contact with a metal to cause a chemical reaction, creating a compound of the gas and metal, which is then absorbed. One way to utilize the solid storage is, for example, by introducing air into a packed bed of 5A type synthetic zeolite filled in a container, allowing the 5A type synthetic zeolite to adsorb nitrogen, carbon dioxide, moisture, etc. in the air, and removing the remaining oxygen. There is a method to obtain a gas containing a large amount of (99.6% content). Then, the adsorbed nitrogen and the like are released from the 5A type synthetic zeolite by heating the packed material and vacuum suction, and are used again to produce oxygen. In addition, hydrogen gas is cooled under high pressure and brought into contact with special metals such as magnesium, iron titanium, and lanthanum nickel, causing a chemical reaction between the two and combining hydrogen and metal to form a metal hydride. Hydrogen may be stored inside. This reaction is reversible, and when the pressure is lowered and the temperature raised, hydrogen is released from the metal.

ところで上記操作を行なう装置として第1図に
示す様に円筒形の筒体1内に気体を吸蔵する固体
2を充填し、筒体1の下部に吸入口3を設け、上
部に排出口4を設け、更に固体2内に熱交換用パ
イプ5を蛇形に配し、両端を筒体1の側壁より突
出させた構造になしてある。尚、気体自身を吸蔵
する場合は排出口4を設ける必要はない。この様
になした筒体1内へ吸入口3より気体を供給し、
固体2間に拡散させ、吸蔵させると共にパイプ5
内に冷却水を導通させて吸蔵時の発熱する固体2
を冷却させる。吸蔵されなかつた残りの気体は排
出口4より排出される。気体の放出時は筒体1内
の圧力を下げ、パイプ5内に高温流体を導通さ
せ、固体2を加熱して行なう。そして上記吸蔵
時、筒体1内の圧力損失をできるだけ防止する為
に気体の供給速度を遅くしている。ところが充填
される固体2は多孔質で熱伝導率が低く、更に気
体との接触面積を多くするために粒状物で充填さ
れることが多く、全体の熱伝導が悪く、為に従来
の様に固体2の充填層を大きくすると、充填層の
温度制御が困難となり、気体の吸蔵量及び吸蔵速
度や放出速度が低下する。即ち、気体と固体2と
の反応は瞬間的に行なわれ、吸蔵時は発熱し、放
出時は吸熱するのであるが、吸蔵時パイプ5内を
流れる冷却水との熱交換による充填層の冷却が発
熱より遅れ、充填物の発熱の除去が遅れると、気
体が加熱されて膨張し、圧力が上昇して送入気体
との圧力差のバランスが狂い、気体の送入量が低
下する。又温度が上昇し過ぎると圧力と温度の
(吸蔵)平衡が崩れ、逆反応を生じて吸蔵された
気体が固体2から放出されてしまう。従つて気体
の吸蔵量及び吸蔵速度が大幅に低下する。又、放
出時にパイプ5内を流れる高温流体の熱が十分に
伝達されないと、充填層自体の保有熱を取り乍ら
気体を放出するので、充填層の温度が低下し、放
出される気体の温度も下がり、容積も収縮し、圧
力も下がり、放出量及び放出速度が低下するとい
つた問題があつた。又、充填物の老朽化に伴ない
取り替えを必要とするが一部の取り替えが困難で
全体を取り替える必要があり、新たに気体を吸蔵
させねばならず、作業能率が悪く、不経済であ
る。
By the way, as shown in FIG. 1, a device for carrying out the above operation is a cylindrical body 1 filled with a solid 2 that absorbs gas, an inlet 3 provided at the bottom of the body 1, and an outlet 4 provided at the top. Furthermore, a heat exchange pipe 5 is arranged in a snake shape inside the solid body 2, and has a structure in which both ends protrude from the side wall of the cylindrical body 1. Note that when the gas itself is occluded, it is not necessary to provide the outlet 4. Gas is supplied from the suction port 3 into the cylindrical body 1 made in this way,
It is diffused between the solids 2 and occluded, and the pipe 5
Solid that generates heat during occlusion by conducting cooling water inside 2
Allow to cool. The remaining gas that has not been occluded is discharged from the discharge port 4. When releasing the gas, the pressure inside the cylinder 1 is lowered, high-temperature fluid is passed through the pipe 5, and the solid 2 is heated. During the storage, the gas supply rate is slowed down to prevent pressure loss within the cylinder 1 as much as possible. However, the solid 2 to be filled is porous and has low thermal conductivity, and is often filled with granular materials to increase the contact area with gas, resulting in poor overall heat conduction. When the packed bed of the solid 2 is made large, it becomes difficult to control the temperature of the packed bed, and the amount of gas absorbed, the absorption rate, and the release rate decrease. In other words, the reaction between the gas and the solid 2 occurs instantaneously, generating heat during storage and absorbing heat during release. If the removal of heat from the filling lags behind the heat generation, the gas will be heated and expand, the pressure will rise, the balance of the pressure difference with the gas to be fed will be disturbed, and the amount of gas to be fed will decrease. Furthermore, if the temperature rises too much, the (occlusion) equilibrium between pressure and temperature will be disrupted, a reverse reaction will occur, and the occluded gas will be released from the solid 2. Therefore, the amount and rate of gas occlusion are significantly reduced. Furthermore, if the heat of the high-temperature fluid flowing through the pipe 5 is not sufficiently transferred during discharge, the gas will be discharged while removing the heat retained in the packed bed itself, resulting in a decrease in the temperature of the packed bed and the temperature of the discharged gas. The problem was that the volume decreased, the volume contracted, the pressure decreased, and the amount and rate of release decreased. In addition, as the packing ages, it becomes necessary to replace it, but it is difficult to replace a part of the filling, so the whole must be replaced, and new gas must be stored, which is inefficient and uneconomical.

この発明は上記従来の欠点に鑑み、これを改良
除去したもので、気体を吸蔵又は放出する固定を
充填する充填層と、気体を充填層へ案内する気体
流通路と、充填層を加熱或いは冷却する流体を流
す流体流通路とを多数層状に形成する吸蔵装置に
使用するものであつて、厚みを薄くした充填とこ
れに全面で接触する気体流通路及び流体流通路を
少なくとも一個組合せてユニツト化した吸蔵エレ
メントを構成し、充填層における熱伝導を良く
し、気体の吸蔵量及びその吸蔵速度や放出速度の
低下を防止すると共に個々の吸蔵エレメントにつ
いて制御を行い得るようになしたものである。以
下この発明の構成を図面に示す実施例に従つて説
明すると次の通りである。
In view of the above-mentioned conventional drawbacks, this invention improves and eliminates them, and includes a packed bed filled with fixings that occlude or release gas, a gas flow path that guides gas to the packed bed, and a gas flow path for heating or cooling the packed bed. This device is used in storage devices that form multiple layers of fluid flow passages through which fluid flows, and is formed into a unit by combining a thin filling and at least one gas flow passage and one fluid flow passage that are in full contact with the filling. This structure improves heat conduction in the packed bed, prevents a decrease in the amount of gas stored, and its storage rate and release rate, and allows control of each individual storage element. The structure of the present invention will be described below with reference to embodiments shown in the drawings.

第2図及び第3図は吸蔵エレメントAを示す図
面で、同図に於いて、6は厚みを薄くし、且つ幅
広に形成した中空の充填容器で、熱伝導性の良い
部材で形成され、気体を吸蔵或は放出する固体
(充填物)7を充填する。8は充填容器6内の中
央部に配され、中央部に気体流通路Gを形成する
と共に充填容器6内を二室に分割し、気体流通路
Gの前後に充填層S,Sを形成する気体流通管
で、充填層S,S全面に気体を供給する。この気
体流通管8は内外への気体の流出入が容易なる様
に小孔を多数穿設したパンチングメタルや、微小
孔を多数有する素焼きの陶器や、金網を多重に巻
き付けた筒体、更には焼結金属の筒体等で形成
し、且つ気体の流出方向に対して直交方向に広幅
の偏平断面に形成し、充填層S,Sと全面で接す
る様になしてある。9は気体流通管8の上部一部
に連設した気体流入管で、充填容器6の上壁10
より突出させてある。11,12は充填容器6の
幅広の側壁13,14の外側に固着したジヤケツ
トで、プレス成形によりその全域に亘て蛇行する
一連の凸部15,16を形成してあり、この凸部
15,16にて流体流通路Lを構成している。こ
の流体流通路Lは気体流通路Gと同様に側壁1
3,14を介して充填層Sの略全面に接触させる
ことにより流体流通路L内を流れる熱交換用流体
と充填層Sとの間で全体に亘つて同時に熱交換を
行なわせて作用を促進させる。尚、ジヤケツト1
1,12に代えて側壁13,14全面に中空パイ
プを蛇行させて取付けても良い。17,18はジ
ヤケツト11,12の凸部15,16の上端に一
体に取付けた流体供給管、19,20は凸部1
5,16の下端に取付けた流体排出管である。2
1,22は充填容器6の上壁10に設けたガス抜
き兼充填物装入管である。23は気体流通管8と
側壁13,14との間に設けた補強枠である。
FIGS. 2 and 3 are drawings showing the storage element A, and in the same figure, 6 is a hollow filling container formed with a thinner thickness and a wider width, and is made of a material with good thermal conductivity. A solid (filler) 7 that absorbs or releases gas is filled. 8 is arranged at the center of the filling container 6, forms a gas flow path G in the center, divides the inside of the filling container 6 into two chambers, and forms packed layers S, S before and after the gas flow path G. Gas is supplied to the entire surface of the packed beds S and S using a gas flow pipe. The gas flow pipe 8 may be made of punched metal with many small holes to facilitate gas flow in and out, unglazed ceramics with many small holes, a cylinder wrapped with wire mesh multiple times, or It is formed of a sintered metal cylinder or the like, and has a wide flat cross section in a direction perpendicular to the gas outflow direction, so that it is in contact with the filled layers S, S on its entire surface. Reference numeral 9 denotes a gas inflow pipe connected to a part of the upper part of the gas flow pipe 8, and is connected to the upper wall 10 of the filling container 6.
It is made to stand out more. Reference numerals 11 and 12 denote jackets fixed to the outside of the wide side walls 13 and 14 of the filling container 6, and are press-molded to form a series of protrusions 15 and 16 that meander over the entire area. 16 constitutes a fluid flow path L. This fluid flow path L has a side wall 1 similar to the gas flow path G.
3 and 14, the heat exchange fluid flowing in the fluid flow path L and the packed bed S simultaneously perform heat exchange throughout the entire body to promote the action. let In addition, jacket 1
Instead of 1 and 12, hollow pipes may be attached to the entire side walls 13 and 14 in a meandering manner. 17, 18 are fluid supply pipes integrally attached to the upper ends of the protrusions 15, 16 of the jackets 11, 12; 19, 20 are the fluid supply pipes attached to the protrusions 1
5, 16 is a fluid discharge pipe attached to the lower end. 2
Reference numerals 1 and 22 designate gas venting/filling material charging pipes provided on the upper wall 10 of the filling container 6. 23 is a reinforcing frame provided between the gas flow pipe 8 and the side walls 13 and 14.

上記構成の吸蔵エレメントAに気体を吸蔵させ
るには、先ずガス抜き兼充填物装入管21,22
より充填容器6内の空気を真空ポンプ等で抜き取
り、充填容器6内を負圧にした状態で次にガス抜
き兼充填物装入管21,22より充填層S,Sへ
気体を吸蔵できる様に活性化した状態の金属粒を
装入し、充填する。そして充填容器6を密閉して
充填層S,Sに於ける圧力を高めて所定の吸蔵圧
力となし、ジヤケツト11,12の上部に設けた
流体供給管17,18より冷却流体を供給し、下
部の流体供給管19,20より排出させ、流体流
通路L内に冷却流体を導通させて充填層S,Sを
冷却し、充填した金属粒7が所定の温度になる
と、気体流入管9より吸蔵させる気体を気体流通
管8へ供給し、気体流通路G内へ気体を充満させ
る。すると気体は気体流通管8の全面から流出し
て充填層S,S内に入り、金属粒7と反応して化
合物となり、発熱し乍ら気体は金属中に吸蔵され
る。この反応時の発熱は流体通路L内を流れる冷
却流体と熱交換され、順次除去される。この様に
して充填層S,S全域に亘つて気体が吸蔵される
と気体流入管9からの気体の供給を停止し、同時
に流体流通路L内の冷却流体の導通を停止させ
る。上記の様に金属粒7内に吸蔵された気体を放
出させるには、充填容器6内に於ける充填層S,
Sの圧力を下げて所定の圧力となし、気体流入管
9を開放し、流体供給管17,18より蒸気、温
水、或は燃焼ガス等の高温流体を供給し、流体排
出管19,20より排出させ、流体流通路L内に
高温流体を導通させて充填層S,Sに熱を伝達
し、化合物を加熱して所定の放出温度以上にな
す。すると充填層S,S内の化合物は熱を吸収し
乍ら分解し、気体を放出する。放出された気体は
気体流通管8内へ流入し、気体流通路Gを経て気
体流入管9から放出される。この様にして吸蔵さ
れていた気体が完全に放出されると、流体流通路
L内の高温流体の導通を停止させる。
In order to store gas in the storage element A having the above configuration, first, the gas venting/filling material charging pipes 21 and 22 are
Then, the air inside the filling container 6 is extracted with a vacuum pump or the like, and with the inside of the filling container 6 under negative pressure, gas can be occluded into the filling beds S, S from the degassing/filling material charging pipes 21 and 22. Activated metal particles are charged into the container and filled. Then, the filling container 6 is sealed, the pressure in the filling beds S and S is increased to a predetermined storage pressure, cooling fluid is supplied from the fluid supply pipes 17 and 18 provided at the upper part of the jackets 11 and 12, and the cooling fluid is supplied to the lower part. is discharged from the fluid supply pipes 19 and 20, and the cooling fluid is conducted into the fluid flow path L to cool the packed beds S and S. When the filled metal particles 7 reach a predetermined temperature, the gas is occluded from the gas inflow pipe 9. Gas is supplied to the gas flow pipe 8 to fill the gas flow path G with the gas. Then, the gas flows out from the entire surface of the gas flow pipe 8 and enters the packed beds S, S, reacts with the metal particles 7 to form a compound, and while generating heat, the gas is occluded in the metal. The heat generated during this reaction is heat exchanged with the cooling fluid flowing in the fluid passage L, and is sequentially removed. When gas is occluded throughout the packed beds S, S in this manner, the supply of gas from the gas inflow pipe 9 is stopped, and at the same time, the conduction of the cooling fluid in the fluid flow path L is stopped. In order to release the gas occluded in the metal grains 7 as described above, the filling layer S in the filling container 6,
The pressure of S is lowered to a predetermined pressure, the gas inflow pipe 9 is opened, and high-temperature fluid such as steam, hot water, or combustion gas is supplied from the fluid supply pipes 17 and 18, and the fluid is supplied from the fluid discharge pipes 19 and 20. The compound is discharged, and the high-temperature fluid is passed through the fluid flow path L to transfer heat to the packed beds S and S, thereby heating the compound to a predetermined discharge temperature or higher. Then, the compounds in the packed beds S, S decompose while absorbing heat and release gas. The released gas flows into the gas flow pipe 8, passes through the gas flow path G, and is released from the gas inflow pipe 9. When the occluded gas is completely released in this way, the conduction of the high temperature fluid in the fluid flow path L is stopped.

上記動作時、充填容器6内に於ける充填層Sは
厚みが薄く、且つ面積が広くその全面で気体流通
路Gと接しているので層全体への気体の流入が早
く、スムーズになされ、しかも流体流通路Lとの
接触面積も大きいために充填層S,Sと流体流通
路Lとの間で熱交換が同時に幅広くなされ、層全
体への熱の伝達もスムーズで、気体の吸蔵時は反
応熱を十分に除去することができ、放出時には必
要な吸熱量を与えることができ、吸蔵及び放出を
迅速且つ確実に行なうことができる。又流体流通
路L内を導通する流体の温度及び流量を制御し、
熱の伝達速度を変えることにより吸蔵速度及び放
出速度を容易に制御することができる。
During the above operation, the filled layer S in the filled container 6 is thin and has a large area, and its entire surface is in contact with the gas flow passage G, so that the gas flows into the entire layer quickly and smoothly. Since the contact area with the fluid flow path L is also large, heat exchange is widely performed simultaneously between the packed beds S, S and the fluid flow path L, and heat transfer to the entire bed is smooth, and reaction occurs when gas is occluded. Heat can be sufficiently removed, the necessary amount of heat absorption can be given at the time of release, and storage and release can be performed quickly and reliably. Also, controlling the temperature and flow rate of the fluid flowing through the fluid flow path L,
By varying the rate of heat transfer, the absorption and release rates can be easily controlled.

この様に一個の吸蔵エレメントAでもつて気体
の吸蔵及び放出を行なうことができ、多量の気体
を吸蔵或は放出させるには例えば第4図に示す様
に吸蔵エレメントAを複数個同方向に並べて配列
し、その一方端に固定フレーム24を装着し、他
方端に移動フレーム25を装着して両者間を緊締
して一体結合させ、各吸蔵エレメントAの気体流
入管9にヘツダー26を接続し、流体供給管1
7,18に供給本管27を接続し、流体排出管1
9,20に排出本管28を接続すれば、複数個の
吸蔵エレメントAを同時に操作することができ、
多量の気体を吸蔵又は放出せることができる。
又、個々の吸蔵エレメントAは独立して作用を行
なうので特定の吸蔵エレメントAのみ吸蔵或は放
出させることができ、同時に行なわせることもで
きる。更に充填層S内の充填物7の老朽化に伴な
う取替えに際しても吸蔵エレメントA毎に取替え
ればよく、他の吸蔵エレメントの動作の妨げとな
らず、連続して動作させることができ、作業性が
向上する。
In this way, a single storage element A can store and release gas, and in order to store or release a large amount of gas, for example, multiple storage elements A can be arranged in the same direction as shown in Figure 4. A fixed frame 24 is attached to one end of the storage element A, a movable frame 25 is attached to the other end of the storage element A, and the two are tightened to be integrally connected, and a header 26 is connected to the gas inflow pipe 9 of each storage element A. Fluid supply pipe 1
7, 18, connect the supply main pipe 27 to the fluid discharge pipe 1
By connecting the discharge main pipe 28 to 9 and 20, multiple storage elements A can be operated simultaneously.
A large amount of gas can be occluded or released.
Furthermore, since each occluding element A operates independently, only a specific occluding element A can be occluded or ejected, or can be made to do so at the same time. Furthermore, when replacing the filling 7 in the packed bed S due to aging, it is sufficient to replace each storage element A, and the operation of other storage elements is not hindered and can be operated continuously. Improves work efficiency.

以上説明した様にこの発明は厚みを薄くし、且
つ幅広に形成した中空の充填容器の中心部に、充
填容器を二室に仕切るよう幅広に形成された通気
性を有する気体流通管を内蔵し、充填容器の幅広
の両側面全面に、プレス成形により蛇行する一連
の凸部を形成したジヤケツト若しくは蛇行させた
中空パイプを取付固定し、充填層の両側にこれと
全面で接する気体流通路と流体流通路を構成した
吸蔵エレメントであつて、この吸蔵エレメントを
多数組合せることにより大容量の吸蔵装置を簡単
に製作できると共に各充填層の両側にこれと全面
で接する気体流通路と流体流通路とを確実に形成
できる。また各吸蔵エレメントにおいては、充填
層が薄く、しかも充填層と気体流通路及び流体流
通路との接触面積が大きいので気体の充填層全域
への流出入が容易となり、しかも充填層全域にお
ける伝熱性も良好で、吸蔵時の化学反応に伴う発
熱を十分に除去し、放出時に気体の解離に必要な
熱を十分に与えることがき、吸蔵及び放出を確実
に効率よく行うことができ、同時に流体の温度及
び流量を制御することにより吸蔵量及び放出量を
任意に制御できる。
As explained above, the present invention has a thin and wide hollow filling container with a built-in gas flow pipe in the center of the filling container, which is wide and has air permeability so as to partition the filling container into two chambers. A jacket or a meandering hollow pipe, which has a series of meandering protrusions formed by press molding, is attached and fixed to the entire width of both sides of the filling container, and gas flow passages and fluid It is a storage element that constitutes a flow passage, and by combining a large number of these storage elements, a large-capacity storage device can be easily manufactured. can be formed reliably. In addition, in each storage element, the packed bed is thin and the contact area between the packed bed and the gas flow path and the fluid flow path is large, so gas can easily flow in and out of the packed bed, and the heat transfer throughout the packed bed is The heat generation associated with the chemical reaction during occlusion can be sufficiently removed, and the heat necessary for gas dissociation during desorption can be sufficiently provided, ensuring efficient occlusion and desorption. By controlling the temperature and flow rate, the amount of storage and release can be arbitrarily controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の一般的な吸蔵装置の構造を示す
概略図第2図は本発明に係かる吸蔵エレメントの
縦断側面図、第3図はその正面図、第4図は吸蔵
エレメントの使用例を示す側面図である。 A……吸蔵エレメント、6……充填容器、7…
…充填物、8……気体流通管、11,12……ジ
ヤケツト、S……充填層、G……気体流通路、L
……流体流通路。
Fig. 1 is a schematic diagram showing the structure of a conventional general storage device; Fig. 2 is a longitudinal cross-sectional side view of the storage element according to the present invention; Fig. 3 is a front view thereof; and Fig. 4 is an example of the use of the storage element. FIG. A...Storage element, 6...Filling container, 7...
...Filling material, 8... Gas flow pipe, 11, 12... Jacket, S... Filled bed, G... Gas flow path, L
...Fluid flow path.

Claims (1)

【特許請求の範囲】[Claims] 1 厚みを薄くし、且つ幅広に形成した中空の充
填容器の中心部に充填容器を二室に仕切るよう幅
広に形成された通気性を有する気体流通管を内蔵
し、充填容器の幅広の両側面全面に、プレス成形
により蛇行する一連の凸部を形成したジヤケツト
若しくは蛇行させた中空パイプを取付固定し、充
填層の両側にこれと全面で接する気体流通路と流
体流通路を構成したことを特徴とする気体の吸蔵
エレメント。
1. A hollow filling container with a thinner thickness and a wider width has a built-in gas flow pipe with air permeability formed wide in the center of the filling container to divide the filling container into two chambers, and both wide sides of the filling container A jacket or a meandering hollow pipe having a series of meandering protrusions formed by press molding is attached and fixed to the entire surface, and gas flow passages and fluid flow passages are formed on both sides of the packed bed, which are in full contact with the jacket. A storage element for gas.
JP6697578A 1978-06-02 1978-06-02 Gas occluding element Granted JPS54125183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6697578A JPS54125183A (en) 1978-06-02 1978-06-02 Gas occluding element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6697578A JPS54125183A (en) 1978-06-02 1978-06-02 Gas occluding element

Publications (2)

Publication Number Publication Date
JPS54125183A JPS54125183A (en) 1979-09-28
JPS6131355B2 true JPS6131355B2 (en) 1986-07-19

Family

ID=13331524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6697578A Granted JPS54125183A (en) 1978-06-02 1978-06-02 Gas occluding element

Country Status (1)

Country Link
JP (1) JPS54125183A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218324A (en) * 1989-02-20 1990-08-31 Ayano Aida Sponge for washing tableware

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192200A (en) * 1984-03-14 1985-09-30 Matsushita Electric Ind Co Ltd Hydrogen storing receptacle
US5165247A (en) * 1991-02-11 1992-11-24 Rocky Research Refrigerant recycling system
CN102188876B (en) * 2011-03-25 2013-02-27 天津赛智科技发展有限公司 High-efficiency energy-saving adsorption system for industrial volatile organic pollutants

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218324A (en) * 1989-02-20 1990-08-31 Ayano Aida Sponge for washing tableware

Also Published As

Publication number Publication date
JPS54125183A (en) 1979-09-28

Similar Documents

Publication Publication Date Title
KR0153434B1 (en) Low temperature pressure swing absorption with refrigeration
US5661986A (en) Chemical reactor, refrigerating machine and container provided therewith and reagent cartridge therefor
JP2012183533A (en) Method and apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption
JPS6341611B2 (en)
US20070261552A1 (en) Direct gas recirculation heater for optimal desorption of gases in cryogenic gas storage containers
JPH0694969B2 (en) Heat exchanger using hydrogen storage alloy
US9878277B2 (en) Regeneration of a hydrogen impurity trap using the heat exiting a hydride tank
JPS6131355B2 (en)
JPS6131356B2 (en)
KR19990063031A (en) Pressure swing adsorption type air prepurifier and prepurification method
JPS6131354B2 (en)
JP2012172901A (en) Chemical heat storage heat transfer device and heat exchanger type reactor
JPS63140200A (en) Storage device for hydrogen absorbing alloy
JP2607677B2 (en) Generator hydrogen purity maintenance device by metal hydride
JP3181687B2 (en) Hydrogen recovery / purification apparatus and operation method thereof
CN117225141A (en) Carbon dioxide capturing device and working method thereof
JPH0253362B2 (en)
JPH0650499A (en) Hydrogen storage alloy holding container
JP4271284B2 (en) Sensible heat recovery device and sensible heat recovery method in heat transfer system using gas absorption / desorption reaction
JPS6244973Y2 (en)
JPS6126718Y2 (en)
SU944621A1 (en) Apparatus for purifying hydrogen
JPS61175283A (en) Adsorption compressor
JPH0120978Y2 (en)
JPS6250173B2 (en)