JPS6250173B2 - - Google Patents

Info

Publication number
JPS6250173B2
JPS6250173B2 JP54111141A JP11114179A JPS6250173B2 JP S6250173 B2 JPS6250173 B2 JP S6250173B2 JP 54111141 A JP54111141 A JP 54111141A JP 11114179 A JP11114179 A JP 11114179A JP S6250173 B2 JPS6250173 B2 JP S6250173B2
Authority
JP
Japan
Prior art keywords
heat exchange
exchange duct
gas
container
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54111141A
Other languages
Japanese (ja)
Other versions
JPS5637022A (en
Inventor
Keido Yoshida
Senji Kimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP11114179A priority Critical patent/JPS5637022A/en
Publication of JPS5637022A publication Critical patent/JPS5637022A/en
Publication of JPS6250173B2 publication Critical patent/JPS6250173B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

【発明の詳細な説明】 この発明は気体の吸蔵・排出可能な金属(固
体)を内部に充填し、これに加熱、冷却、加圧及
び減圧等の操作を行ない、気体を金属に物理的又
は化学的に結合させて吸蔵並びに排出を行なう気
体の吸蔵装置に関するもので、特に中・小型の縦
型容器を用い、気体を効率よく、しかも全体に均
一に吸蔵させ得る様になした装置を提供せんとす
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves filling the interior with a metal (solid) capable of absorbing and ejecting gas, and performing operations such as heating, cooling, pressurization, and depressurization on the metal to physically or This invention relates to a gas occlusion device that stores and discharges gases by chemically bonding them, and in particular provides a device that uses medium-sized and small-sized vertical containers to efficiently and uniformly store gases throughout. This is what I am trying to do.

ある特定の気体を貯蔵容器内に貯蔵させ、これ
を任意に取出して各種用途に使用することは周知
のことであるが、とりわけ気体の中でも水素は近
年エネルギー転換の視点から高発熱及び無公害の
エネルギーとして注目されつつあり、高い効率で
発電される燃料電池の発電源等への利用度が高
い。また水素は電気と違い貯蔵が可能で、長期に
亘つて溜めることができ、必要に応じて使用でき
ることが特徴である。この様な水素は簡単に製法
できるもので、例えば海水や塩水を電気分解して
得ることができ、夜間の余剰電力を利用して電気
分解させて水素を多量に得ることができる。
It is well known that certain gases are stored in storage containers and taken out at will for use in various applications. Among gases, hydrogen in particular has recently been developed as a high-heat-producing, non-polluting gas from the perspective of energy conversion. It is attracting attention as an energy source, and is often used as a power generation source for fuel cells that generate electricity with high efficiency. Additionally, unlike electricity, hydrogen can be stored, stored for a long period of time, and used as needed. Such hydrogen can be easily produced, for example, by electrolyzing seawater or salt water, and by electrolyzing it using surplus electricity at night, a large amount of hydrogen can be obtained.

ところで、上記の様に多量に得られる水素を出
来るだけ効率よく貯蔵させる必要がある。この様
な気体を貯蔵するには種々の方法があるが、その
多くはコンプレツサーにより気体を高圧で圧縮さ
せ、液化させて貯蔵する方法や冷却させ、液化さ
せて貯蔵する方法が用いられてきた。しかし乍ら
前者の場合、貯蔵容器は耐圧構造でなければなら
ず、且つ気密性を強固に保持する必要があり、更
にコンプレツサー等を設けねばならず、装置全体
が大型になり、貯蔵量が少いといつた欠点があつ
た。また後者の場合液化した気体を冷却状態に保
持せねばならず、冷凍機能を持たせる必要があ
り、更に気体を液化させる装置が必要で、大型で
あつても、貯蔵量が少いといつた欠点があつた。
また両者共に気体の使用量は貯蔵容器から直接取
出して使用することができず、一旦気化させねば
ならず、作業が面倒で、且つ装置全体も複雑にな
つていた。
By the way, as mentioned above, it is necessary to store hydrogen obtained in large quantities as efficiently as possible. There are various methods for storing such gases, but most of them have been to compress the gas at high pressure using a compressor, liquefy it and store it, or cool it and liquefy it for storage. However, in the former case, the storage container must have a pressure-resistant structure and must maintain strong airtightness, and a compressor etc. must also be installed, making the entire device large and reducing the amount of storage. It had some flaws. In the latter case, the liquefied gas must be kept in a cooled state, requiring a refrigeration function, and a device for liquefying the gas is also required, and even if it is large, the storage capacity is small. It was hot.
Further, in both cases, the amount of gas used cannot be directly taken out from the storage container and used, but must be vaporized once, which makes the work cumbersome and the entire device complicated.

そこで固体を媒体としてこれに物理的又は化学
的に気体を結合させて吸蔵させる方法が用いられ
る様になつた。例えば水素ではマグネシウム、鉄
チタン、及びランタンニツケル等の特殊金属を容
器内に充填させ、これに水素を吸蔵させ、必要に
応じて放出させる様になした固体吸蔵が提案され
た。この方法では低圧で気体を吸蔵させることが
でき、コンプレツサーを必要とせず、安全に多量
の気体を吸蔵でき、同時に気体の状態で放出で
き、作業性がよい。しかし乍ら特殊金属を使用し
て水素ガスを効率よく吸蔵(貯蔵)させるには、
動殊金属を間接的に加熱したり或は冷却したり、
また加圧や減圧を行なつたりする必要があり、こ
れら各作用をなす装置を最適位置に配置せねばな
らない。例えば水素の吸蔵に際しては両者の反応
は瞬間的に行なわれ、吸蔵時は発熱し、排出時は
吸熱するが、吸蔵時、金属の冷却率が低下する
と、吸蔵される水素が加熱されて膨張し、圧力が
上昇して送入水素との圧力差のバランスが狂い、
送入量が低下する。また温度が上昇し過ぎると、
圧力と温度との(吸蔵)平衡が崩れ、逆反応を生
じて霊吸蔵された気体が金属から排出され、吸蔵
量が大幅に低下する。また排出時に金属の加熱率
が低いと、金属の保有熱を取り乍ら水素を排出す
るので、金属充填層の温度が低下し、排出される
水素の温度も低下するので、圧力が下がり、水素
の排出量が大幅に低下する。また、特殊金属は吸
蔵・放出能力を持たせる為に活性化させる必要が
あるが、容器に充填したとき、全体的に充填率が
均一で、活性化が均一に行なわれるのがよく、ま
た、特殊金属は活性化に伴ない膨張して体積が大
きくなるのでこの点も考慮しないといけない。こ
の活性化を効率よく行い得る必要がある。
Therefore, a method of absorbing gas by physically or chemically bonding it to a solid medium has come to be used. For example, for hydrogen, a solid storage method has been proposed in which a container is filled with special metals such as magnesium, iron titanium, and lanthanum nickel, which stores hydrogen and releases it as needed. This method can store gas at low pressure, does not require a compressor, can safely store a large amount of gas, and can simultaneously release it in a gaseous state, resulting in good workability. However, in order to efficiently absorb (storage) hydrogen gas using special metals,
Indirectly heating or cooling moving metals,
It is also necessary to pressurize or depressurize, and the devices that perform these functions must be placed at optimal positions. For example, when absorbing hydrogen, the reaction between the two occurs instantaneously; heat is generated during storage, and heat is absorbed during exhaustion. However, when the cooling rate of the metal decreases during storage, the stored hydrogen heats up and expands. , the pressure increases and the pressure difference with the supplied hydrogen becomes unbalanced,
Feed amount decreases. Also, if the temperature rises too much,
The (occlusion) equilibrium between pressure and temperature is disrupted, a reverse reaction occurs and the occluded gas is expelled from the metal, resulting in a significant decrease in the amount of occluded gas. In addition, if the heating rate of the metal is low during discharge, hydrogen is discharged while removing the heat retained in the metal, which lowers the temperature of the metal packed bed and the temperature of the discharged hydrogen, which lowers the pressure and hydrogen. emissions will be significantly reduced. In addition, special metals need to be activated in order to have occlusion and desorption capabilities, but when filled into a container, it is best if the filling rate is uniform throughout and the activation is uniform. Special metals expand and increase in volume as they are activated, so this must be taken into consideration. It is necessary to be able to perform this activation efficiently.

この発明は上記問題点に鑑み、これを改良除去
したもので、特に中・小型の貯蔵装置に於いて、
気体の吸蔵・排出及び金属の活性化を全体に均一
に行い得るようになしたものであつて、以下この
発明の構成を図面に示す実施例に従つて説明する
と次の通りである。
In view of the above-mentioned problems, this invention improves and eliminates them, especially in small and medium-sized storage devices.
It is designed to uniformly absorb and discharge gas and to activate metal throughout the device.The structure of the present invention will be described below with reference to embodiments shown in the drawings.

第1図及び第2図に於いて、1は上端部を開口
させ、その開口部1aの周縁に結合フランジ2を
一体に形成した縦型の円筒状容器、3は下端部を
開口させ、その開口部3aの周縁に結合フランジ
4を一体に形成した蓋体で、両者を結合させて密
封容器を構成する。5は容器1内を中央部で二分
割する様に配された熱交換ダクトで、第3図に示
す様に中空の偏平断面に形成され、内部中央に底
面に達しない仕切6を設けてU型の流路7を形成
し、上端には夫々独立した開口部8a,8bを形
成してあり、蓋体3の内面中央に上端を固着させ
て吊下支持させ、夫々の開口部8a,8bを蓋体
1に設けた流体出入口管9a,9bと夫々連通さ
せてあり、一方の流体出入口管9aより熱交換流
体を供給し熱交換ダクト5のU型の流路7を流れ
て他方の流体路出入口管9bから排出させ、容器
1内に充填される特殊金属と熱交換させてこれを
冷却或は加熱する。10a,10bは熱交換ダク
ト5の周囲に上下方向に沿つて数段水平に棚状に
設けられる一対のプレートコイルで、中空の半円
形に形成され、第4図にも示す様に内部中央に内
部開口端側から仕切11を設けて流路12を形成
し、熱交換ダクト5の側面に形成した連通口13
a,13bと連通し、熱交換ダクト5内を流れる
流体をプレートコイル10a,10b内に流して
プレートコイル10a,10bに於いても特殊金
属と熱交換させると共に特殊金属の支持も兼用す
る。14は内部に気体を吸蔵させる特殊金属を保
持し、プレートコイル10a,10b上に載置固
定されるバスケツトで、第5図に示す様に内部に
充填した特殊金属への気体の供給が容易なる様に
小孔を多数穿設したパンチングメタルや、微小孔
を有する素焼きの陶器や、多重に巻き付けた金網
や、焼結金属等で上下のプレートコイル10a,
10aの高さhより若干低い高さh′で且つ半円形
状に形成してある。15は蓋体3に内部と連通さ
せて突設した気体流出入管で、容器1内に気体を
供給する。尚、上記熱交換ダクト5、プレートコ
イル10a,10b及びバスケツト14の外周面
と容器1の内周面との間、及びプレートコイル1
0a,10bの下面とバスケツト14の上面との
間に夫々所定の隙間16,17を設け、気体流出
入管15から容器1内へ供給された気体が隙間1
6,17を通つて全体に広がる様になす。
In Figures 1 and 2, 1 is a vertical cylindrical container with an open upper end and a connecting flange 2 integrally formed around the opening 1a; 3 is an open lower end; The lid has a connecting flange 4 integrally formed around the periphery of the opening 3a, and the two are combined to form a sealed container. Reference numeral 5 denotes a heat exchange duct arranged to divide the inside of the container 1 into two at the center, and as shown in FIG. A channel 7 of the mold is formed, and independent openings 8a and 8b are formed at the upper end, and the upper end is fixed to the center of the inner surface of the lid body 3 to suspend and support the openings 8a and 8b. are communicated with fluid inlet/outlet pipes 9a and 9b provided in the lid body 1, respectively, and the heat exchange fluid is supplied from one fluid inlet/outlet pipe 9a, flows through the U-shaped flow path 7 of the heat exchange duct 5, and is transferred to the other fluid. It is discharged from the inlet/outlet pipe 9b, and is cooled or heated by exchanging heat with the special metal filled in the container 1. Reference numerals 10a and 10b are a pair of plate coils installed horizontally in several stages along the vertical direction around the heat exchange duct 5, and are formed into a hollow semicircle, with a plate coil located at the center of the interior as shown in FIG. A partition 11 is provided from the internal opening end side to form a flow path 12, and a communication port 13 is formed on the side surface of the heat exchange duct 5.
a, 13b, the fluid flowing in the heat exchange duct 5 is made to flow into the plate coils 10a, 10b, and the plate coils 10a, 10b also exchange heat with the special metal, and also serve as support for the special metal. Reference numeral 14 denotes a basket which holds a special metal for storing gas inside, and is placed and fixed on the plate coils 10a and 10b, making it easy to supply gas to the special metal filled inside, as shown in Fig. 5. The upper and lower plate coils 10a,
It has a height h' slightly lower than the height h of 10a and is formed in a semicircular shape. Reference numeral 15 denotes a gas inflow/outflow pipe protruding from the lid 3 so as to communicate with the inside thereof, and supplies gas into the container 1 . Furthermore, between the heat exchange duct 5, the plate coils 10a and 10b, the outer peripheral surface of the basket 14 and the inner peripheral surface of the container 1, and the plate coil 1
Predetermined gaps 16 and 17 are provided between the lower surfaces of 0a and 10b and the upper surface of the basket 14, respectively, so that the gas supplied from the gas inflow and outflow pipe 15 into the container 1 is
6 and 17 so that it spreads throughout.

上記構成に於いて、特殊金属の活性化、及び気
体の吸蔵排出を行なうには、先ず容器1と蓋体3
とを分離させ、容器1内から蓋体3と一体の熱交
換ダクト5及びプレートコイル10a,10bを
取り出し、これの各プレートコイル10a,10
b上に予め特殊金属を気体吸蔵時の体積膨張分を
見込んで8分程度に充填させたバスケツト14を
載置固定し再び容器1内へ熱交換ダクト5及びプ
レートコイル10a,10b等を挿入し、容器1
と蓋体3とを結合フランジ2,4を介して、結合
させて密封する。この後気体流入管15を利用し
て真空ポンプ等により容器1内の空気を抜き取
り、容器1内を活性化に適する圧力に設定する。
この状態で気体流出入管15より容器1内へ水素
を供給し、バスケツト14内の充填金属内へ多量
に封入させた後、容器1内を徐々に減圧させ、金
属中の水素を排出させる。この操作を数回繰り返
して充填金属の活性化を行なう。尚、活性化の際
必要に応じて流体出入口管9aより冷却媒体を供
給し、金属を冷却させてもよい。金属の活性化が
終ると、一方の流体出入口管9aより冷却媒体を
供給し、熱交換ダクト5の流路7を流通させ、他
方の流体出入口管9aから流出させ、同時に熱交
換ダクト5に一体に取付けたプレートコイル10
a,10bの流路12にも冷却媒体を流通させ、
バスケツト14内の充填金属を三面から冷却さ
せ、所定の吸蔵温度に設定する。そして気体流出
入管15から水素を供給し、隙間16,17を介
して容器1内に充満させる。すると水素はバスケ
ツト14の壁面及び上面を通り、内部に入り、活
性化された金属と反応して金属水素化物となり、
発熱し乍ら水素は金属中に吸蔵される。この反応
時の熱は熱交換ダクト5及びプレートコイル10
a,10bを流れる冷却媒体と熱交換され、順次
除去される。こうして金属中に十分な水素が吸蔵
されると、気流出入管15からの気体の流通を停
止させ、同時に流体出入口管9aからの流体の供
給を停止する。吸蔵した水素を排出させるには、
容器1内の圧力を下げ、流体出入口管20aより
蒸気、温水、温風或は燃焼ガス等の加熱媒体を供
給し、熱交換ダクト5及びプレートコイル10
a,10b内を流通させ、容器1内を所定の排出
温度に設定する。すると、バスケツト14を介し
て充填された金属が熱交換され、加熱されて金属
水素化物が熱を吸収し乍ら分解し、水素を排出す
る。排出された水素はバスケツト14の壁面及び
上面を通り、容器1から気体流出入管15から外
部へ排出される。そして必要量の水素が排出され
ると、加熱媒体の供給を停止する。これら各動作
を繰り返して容器1内に水素を貯蔵し、必要時に
取り出す。そして充填金属の吸蔵能力が低下する
と、充填金属を取り替えて活性化を行ない、吸蔵
能力を復元させる。
In the above configuration, in order to activate the special metal and occlude and discharge gas, first, the container 1 and the lid 3 are
The heat exchange duct 5 and the plate coils 10a, 10b integrated with the lid body 3 are taken out from inside the container 1, and each of the plate coils 10a, 10 is removed from the container 1.
A basket 14, which has been filled with special metal for about 8 minutes in advance to account for the volumetric expansion during gas storage, is placed and fixed on the container 1, and the heat exchange duct 5, plate coils 10a, 10b, etc. are inserted into the container 1 again. , container 1
and the lid body 3 are combined and sealed via the connecting flanges 2 and 4. Thereafter, using the gas inflow pipe 15, the air inside the container 1 is removed by a vacuum pump or the like, and the pressure inside the container 1 is set to a pressure suitable for activation.
In this state, hydrogen is supplied into the container 1 through the gas inflow/outflow pipe 15, and after a large amount of hydrogen is sealed in the metal filling in the basket 14, the pressure inside the container 1 is gradually reduced to discharge the hydrogen in the metal. This operation is repeated several times to activate the filled metal. Note that during activation, if necessary, a cooling medium may be supplied from the fluid inlet/outlet pipe 9a to cool the metal. When the activation of the metal is completed, the cooling medium is supplied from one fluid inlet/outlet pipe 9a, flows through the flow path 7 of the heat exchange duct 5, flows out from the other fluid inlet/outlet pipe 9a, and is simultaneously integrated into the heat exchange duct 5. Plate coil 10 attached to
A cooling medium is also circulated through the channels 12 of a and 10b,
The metal filling in the basket 14 is cooled from three sides and set to a predetermined storage temperature. Then, hydrogen is supplied from the gas inflow/outflow pipe 15 to fill the container 1 through the gaps 16 and 17. Then, hydrogen passes through the walls and top surface of the basket 14, enters the inside, reacts with the activated metal, and becomes a metal hydride.
Hydrogen is occluded in the metal while generating heat. The heat during this reaction is transferred to the heat exchange duct 5 and the plate coil 10.
Heat is exchanged with the cooling medium flowing through a and 10b, and is sequentially removed. When sufficient hydrogen is stored in the metal in this way, the flow of gas from the air inflow/outflow pipe 15 is stopped, and at the same time, the supply of fluid from the fluid inlet/output pipe 9a is stopped. To discharge the stored hydrogen,
The pressure inside the container 1 is lowered, and a heating medium such as steam, hot water, hot air, or combustion gas is supplied from the fluid inlet/outlet pipe 20a, and the heat exchange duct 5 and plate coil 10 are
a, 10b, and the inside of the container 1 is set to a predetermined discharge temperature. Then, the metal filled through the basket 14 undergoes heat exchange and is heated so that the metal hydride absorbs heat and decomposes, releasing hydrogen. The discharged hydrogen passes through the wall and top surface of the basket 14 and is discharged from the container 1 to the outside through the gas inflow/outflow pipe 15. Then, when the required amount of hydrogen is exhausted, the supply of the heating medium is stopped. By repeating these operations, hydrogen is stored in the container 1 and taken out when necessary. When the storage capacity of the filling metal decreases, the filling metal is replaced and activated to restore the storage capacity.

上記構成であれば、容器1内が熱交換ダクト5
とプレートコイル10a,10bにより層状分割
されており、しかも充填金属はバスケツト14に
保持されるので、当該充填金属は小単位毎に分割
隔離される、それらの重量は各プレートコイル1
0a,10bにて支持され、下部においても充填
金属には負荷が作用せず、全体に充填率が均等に
なり、活性化を全体に均一に且つ迅速に行なうこ
とができる。また活性化及び気体の吸蔵に際して
充填金属は膨張するが、バスケツト14にて保持
されているので容器1が破損する様なことはな
い。更に気体(水素)の吸蔵時或は排出時に於い
ても、各バスケツト14保持された充填金属は、
熱交換ダクト5及びプレートコイル10a,10
bにて少なくとも三面で熱交換され、気体ともバ
スケツト14の周面及び上面から供給されるの
で、気体の供給が十分で、しかも吸蔵時は反応熱
が十分に除去され、排出時は熱量を十分に得るこ
とができ、気体の吸蔵及び排出を迅速に行なうこ
とができる。また熱交換ダクト1及びプレートコ
イル10a,10b内を流通する熱交換流体の温
度及び流体を制御し、熱の伝達速度を制御するこ
とにより、気体の吸蔵速度及び排出速度を制御で
きる。
With the above configuration, the inside of the container 1 is the heat exchange duct 5.
The filling metal is divided into layers by the plate coils 10a and 10b, and the filling metal is held in the basket 14, so the filling metal is divided into small units and separated, and their weight is equal to the weight of each plate coil 1.
0a and 10b, no load is applied to the filling metal even in the lower part, the filling rate becomes uniform throughout, and activation can be performed uniformly and quickly throughout. Although the filling metal expands upon activation and gas occlusion, the container 1 will not be damaged because it is held in the basket 14. Furthermore, even when storing or discharging gas (hydrogen), the filling metal held in each basket 14 is
Heat exchange duct 5 and plate coils 10a, 10
At b, heat is exchanged on at least three sides, and gas is supplied from the circumferential surface and the top surface of the basket 14, so that the gas supply is sufficient, and the heat of reaction is sufficiently removed during storage, and the amount of heat is sufficiently removed during discharge. gas can be obtained quickly, and gas can be stored and discharged quickly. Furthermore, by controlling the temperature and fluid of the heat exchange fluid flowing through the heat exchange duct 1 and the plate coils 10a and 10b, and controlling the heat transfer rate, it is possible to control the gas absorption rate and discharge rate.

また第6図は第2の発明に係かる吸蔵装置を示
す図面で、これは容器1の内面に沿つて外壁板1
8と内壁板19とで流体通路を構成した熱交換筒
20を挿入したもので、これを連なる流体入口管
21a及び流体出口管21bを容器1の底面より
下方へ突出させてある。尚、流体入口管21aは
熱交換筒20の上端へ連通させる。また内部は第
1の発明と同様蓋体3に連結された熱交換ダクト
5及びプレートコイル10a,10b等で構成す
る。
FIG. 6 is a diagram showing a storage device according to the second invention, in which an outer wall plate 1 is placed along the inner surface of the container 1.
8 and an inner wall plate 19 to form a fluid passage, and a fluid inlet pipe 21a and a fluid outlet pipe 21b which connect the heat exchange cylinder 20 are made to protrude downward from the bottom surface of the container 1. Note that the fluid inlet pipe 21a is communicated with the upper end of the heat exchange cylinder 20. Further, the inside is composed of a heat exchange duct 5 connected to a lid 3, plate coils 10a, 10b, etc., as in the first invention.

また第7図は第3の発明に係かる吸蔵装置を示
す図面で、これは容器1の内周面と内壁板22と
の間で熱交換流路23を形成したもので、内部は
第1の発明及び第2の発明と同様である。
FIG. 7 is a diagram showing a storage device according to the third invention, in which a heat exchange channel 23 is formed between the inner circumferential surface of the container 1 and the inner wall plate 22, and the inside has a first This invention is similar to the invention of the above and the second invention.

上記した第2の発明及び第3の発明の吸蔵装置
では、容器1の内周面に沿つて熱交換流路が形成
されるので、バスケツト14に充填された金属は
四面で熱交換されるので、熱交換率が高くなり、
より作業性が向上する。
In the storage devices of the second and third inventions described above, since the heat exchange flow path is formed along the inner peripheral surface of the container 1, the metal filled in the basket 14 is heat exchanged on all four sides. , the heat exchange rate increases,
Work efficiency is further improved.

また上記各実施例に於いてもバスケツト14は
外体に形成したが、第8図に示す様に熱交換ダク
ト5及びプレートコイル10a,10bを利用し
て一体にバスケツト24形成してもよい。但し、
この場合はバスケツト24の一部に開閉扉25を
設け、金属の充填時この開閉扉25を開放させて
金属を充填させる。
Further, in each of the above embodiments, the basket 14 is formed on the outer body, but as shown in FIG. 8, the basket 24 may be formed integrally using the heat exchange duct 5 and the plate coils 10a, 10b. however,
In this case, an opening/closing door 25 is provided in a part of the basket 24, and when filling with metal, the opening/closing door 25 is opened to allow the metal to be filled.

また上記熱交換ダクト5はU型の流路7を単独
に形成したものであるが、他に第9図及び第10
に示す様に複数のU型路26,26′,26″を組
合せて蛇行する流路を形成した熱交換ダクト27
を用いてもよく、同時にプレートコイル28も平
面部に蛇行する流路29を形成し、この流路29
の両端を熱交換ダクト27の両側の流路26,2
6″に連通させたものを使用すればよい。
Further, the heat exchange duct 5 has a single U-shaped flow path 7, but it also has a U-shaped flow path 7.
As shown in the figure, a heat exchange duct 27 has a meandering flow path formed by combining a plurality of U-shaped passages 26, 26', and 26''.
At the same time, the plate coil 28 also forms a meandering flow path 29 on the plane part, and this flow path 29
Both ends of the heat exchange duct 27 are connected to flow passages 26, 2 on both sides of the heat exchange duct 27.
6" may be used.

以上説明した様にこの発明は上部開口周縁に結
合フランジを有する円筒状容器と、下部開口周縁
に結合フランジを有する蓋体と、蓋体に取付けら
れた気体の流通管並びに流体出入口管と、中空の
偏平断面で内部中央にU型の流路を構成し、前記
蓋体の内面に固着され、上部開口部を前記流体出
入口管と夫々連通された熱交換ダクトと、熱交換
ダクトの周囲に等間隔に且つ水平状に装着され、
熱交換ダクトの流路と連通する流路を有するプレ
ートコイルと、通気性を有する部材で、半円形状
に形成し、内部に気体を吸蔵する固体を充填し、
前記プレートコイル上に載置されるバスケツトと
で構成したから、容器内が熱交換ダクトとプレー
トコイルにて層状分割されており、しかもバスケ
ツトにて充填空間を形成するので、充填金属は小
単位毎に隔離され、充填率が均一となり、活性化
も全体に均一に行なえる。またバスケツトは熱交
換ダクト及びプレートコイルにて熱交換され、少
くとも三面で熱交換されるので、熱交換率が高
く、気体の吸蔵及び排出を迅速に行なうことがで
きる。
As explained above, the present invention includes a cylindrical container having a connecting flange around the upper opening, a lid having a connecting flange around the lower opening, a gas flow pipe and a fluid inlet/outlet pipe attached to the lid, and a hollow A heat exchange duct, which has a flat cross section and a U-shaped flow path in the center thereof, is fixed to the inner surface of the lid body and whose upper openings are communicated with the fluid inlet and outlet pipes, and a heat exchange duct is formed around the heat exchange duct. installed horizontally at intervals,
It is formed into a semicircular shape with a plate coil having a flow path that communicates with the flow path of the heat exchange duct and a breathable member, and is filled with a solid that stores gas inside.
Since the container is constructed with a basket placed on the plate coil, the inside of the container is divided into layers by the heat exchange duct and the plate coil, and since the filling space is formed by the basket, the filling metal is divided into small units. The filling rate is uniform, and activation can be performed uniformly throughout. Further, since the basket exchanges heat with the heat exchange duct and the plate coil, and the heat exchange is performed on at least three sides, the heat exchange rate is high, and gas can be stored and discharged quickly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の発明に係かる吸蔵装置の構成を
示す断面図、第2図はその側面図、第3図は熱交
換ダクトとプレートコイルとの構造を示す要部斜
視図、第4図はその横断面図、第5図はバスケツ
トの斜視図、第6図は第2の発明に係かる吸蔵装
置の容器の断面図、第7図は第3の発明に係かる
吸蔵装置の容器の断面図、第8図はバスケツトの
他の実施例を示す要部断面図、第9図は熱交換ダ
クトの他の実施例を示す縦断面図、第10図はそ
の横断面図である。 1……容器、3……蓋体、5……熱交換ダク
ト、6……仕切、7……流路、9a,9b……流
体出入口管、10a,10b……プレートコイ
ル、14……バスケツト、15……気体流出入
管。
FIG. 1 is a cross-sectional view showing the structure of the storage device according to the first invention, FIG. 2 is a side view thereof, FIG. 3 is a perspective view of the main part showing the structure of a heat exchange duct and a plate coil, and FIG. 5 is a perspective view of the basket, FIG. 6 is a sectional view of the container of the storage device according to the second invention, and FIG. 7 is the container of the storage device according to the third invention. 8 is a sectional view of a main part showing another embodiment of the basket, FIG. 9 is a longitudinal sectional view showing another embodiment of the heat exchange duct, and FIG. 10 is a cross sectional view thereof. DESCRIPTION OF SYMBOLS 1... Container, 3... Lid, 5... Heat exchange duct, 6... Partition, 7... Channel, 9a, 9b... Fluid inlet/outlet pipe, 10a, 10b... Plate coil, 14... Basket , 15... Gas inflow and outflow pipe.

Claims (1)

【特許請求の範囲】 1 上部開口周縁に結合フランジを有する円筒状
容器と、下部開口周縁に結合フランジを有する蓋
体と、蓋体に取付けられた気体の流通管並びに流
体出入口管と、中空の偏平断面で内部中央にU型
の流路を構成し、前記蓋体の内面に固着され、上
部開口部を前記流体出入口管と夫々連通された熱
交換ダクトと、熱交換ダクトの周囲に等間隔に且
つ水平状に装着され、熱交換ダクトの流路を連通
する流路を有するプレートコイルと、通気性を有
する部材で、半円形状に形成し、内部に気体を吸
蔵する固体を充填し前記プレートコイル上に載置
されるバスケツトとで構成したことを特徴とする
気体の吸蔵装置。 2 上部開口周縁に結合フランジを有する円筒状
容器と、容器の内周面に沿つて挿入される外壁と
内壁とで流体通路を構成した熱交換筒と、下部開
口周縁に結合フランジを有する蓋体と、蓋体に取
付けられた気体の流通管並びに流体出入口管と、
中空の偏平断面で内部中央にU型の流路を構成
し、前記蓋体の内面に固着され、上部開口部を前
記流体出入口管と夫々連通された熱交換ダクト
と、熱交換ダクトの周囲に等間隔に且つ水平状に
装着され、熱交換ダクトの流路と連通する流路を
有するプレートコイルと、通気性を有する部材
で、半円形状に形成し、内部に気体に吸蔵する固
体を充填し前記プレートコイル上に載置されるバ
スケツトとで構成したことを特徴とする気体の吸
蔵装置。 3 上部開口周縁に結合フランジを有する円筒状
容器と、容器の内周面と内壁とで構成された熱交
換流路と、下部開口周縁に結合フランジを有する
蓋体と、蓋体に取付けられた気体の流通管並びに
流体出入口管と、中空の偏平断面で内部中央にU
型の流路を構成し、前記蓋体の内面に固着され、
上部開口部を前記流体出入口管と夫々連通された
熱交換ダクトと、熱交換ダクトの周囲に等間隔に
且つ水平状に装着され、熱交換ダクトの流路と連
通する流路を有するプレートコイルと、通気性を
有する部材で、半円形状に形成し、内部に気体を
吸蔵する固体を充填し前記プレートコイル上に載
置されるバスケツトとで構成したことを特徴とす
る気体の吸蔵装置。
[Claims] 1. A cylindrical container having a connecting flange around the upper opening, a lid having a connecting flange around the lower opening, a gas flow pipe and a fluid inlet/outlet pipe attached to the lid, and a hollow container having a connecting flange around the upper opening. A heat exchange duct having a flat cross section and a U-shaped flow path in the center thereof, fixed to the inner surface of the lid body and having upper openings communicated with the fluid inlet and outlet pipes, and a heat exchange duct arranged at regular intervals around the heat exchange duct. It is formed into a semicircular shape with a plate coil that is installed horizontally and has a flow path that communicates with the flow path of the heat exchange duct, and a member that has air permeability, and is filled with a solid that stores gas inside. 1. A gas storage device comprising a basket placed on a plate coil. 2. A cylindrical container having a connecting flange around the upper opening, a heat exchange cylinder having a fluid passage formed by an outer wall and an inner wall inserted along the inner peripheral surface of the container, and a lid having a connecting flange around the lower opening. and a gas flow pipe and a fluid inlet/outlet pipe attached to the lid body;
A heat exchange duct having a hollow flat cross section and a U-shaped flow path in the center thereof, fixed to the inner surface of the lid body and having upper openings communicated with the fluid inlet and outlet pipes, and a heat exchange duct around the heat exchange duct. It is formed into a semicircular shape with plate coils installed at equal intervals and horizontally, and has a flow path that communicates with the flow path of the heat exchange duct, and a breathable member, and the inside is filled with a solid that absorbs gas. and a basket placed on the plate coil. 3. A cylindrical container having a connecting flange around the upper opening, a heat exchange flow path composed of the inner peripheral surface and the inner wall of the container, a lid having a connecting flange around the lower opening, and a container attached to the lid. A gas flow pipe, a fluid inlet/outlet pipe, and a hollow flat section with a U in the center of the interior.
forming a flow path of the mold and being fixed to the inner surface of the lid,
a heat exchange duct whose upper openings are communicated with the fluid inlet and outlet pipes, and a plate coil installed horizontally at equal intervals around the heat exchange duct and having flow passages communicating with the flow passages of the heat exchange duct. 1. A gas occlusion device comprising: a basket made of an air permeable member, formed in a semicircular shape, filled with a solid that occludes gas, and placed on the plate coil.
JP11114179A 1979-08-30 1979-08-30 Occluding device for gas Granted JPS5637022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11114179A JPS5637022A (en) 1979-08-30 1979-08-30 Occluding device for gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11114179A JPS5637022A (en) 1979-08-30 1979-08-30 Occluding device for gas

Publications (2)

Publication Number Publication Date
JPS5637022A JPS5637022A (en) 1981-04-10
JPS6250173B2 true JPS6250173B2 (en) 1987-10-23

Family

ID=14553490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11114179A Granted JPS5637022A (en) 1979-08-30 1979-08-30 Occluding device for gas

Country Status (1)

Country Link
JP (1) JPS5637022A (en)

Also Published As

Publication number Publication date
JPS5637022A (en) 1981-04-10

Similar Documents

Publication Publication Date Title
US4422500A (en) Metal hydride heat pump
US5661986A (en) Chemical reactor, refrigerating machine and container provided therewith and reagent cartridge therefor
JPWO2008023732A1 (en) High pressure-resistant compact heat exchanger, hydrogen storage container, and manufacturing method thereof
US4409799A (en) Heat pump device
US5862855A (en) Hydride bed and heat pump
JPS6250173B2 (en)
JPS6116880B2 (en)
JPS63140200A (en) Storage device for hydrogen absorbing alloy
JP2008045648A (en) High pressure hydrogen storage container
JP6362566B2 (en) Hydrogen boosting storage system and hydrogen boosting storage system boosting method
JPS6131355B2 (en)
JPH085173A (en) Pulse tube refrigerator
JPS6131356B2 (en)
RU220568U1 (en) Reusable low pressure metal hydride hydrogen accumulator
JP3734960B2 (en) Heat utilization system using hydrogen storage alloy
JPS6131354B2 (en)
JPH0730878B2 (en) Container for hydrogen storage alloy
JP3734949B2 (en) Heat utilization system container using hydrogen storage alloy and method of filling hydrogen into the container
JPS6313080B2 (en)
JP3694575B2 (en) Heat utilization system using hydrogen storage alloy
JP3872913B2 (en) Heat utilization system using hydrogen storage alloy
CN115899542A (en) Hydrogen system that puts that low temperature high pressure is stored up
JPH0645180Y2 (en) Regenerator for low heat source
JPH01239001A (en) Reactor for hydrogen storage alloy
JP2004060815A (en) Hydrogen storage tank