JPH085173A - Pulse tube refrigerator - Google Patents

Pulse tube refrigerator

Info

Publication number
JPH085173A
JPH085173A JP15805294A JP15805294A JPH085173A JP H085173 A JPH085173 A JP H085173A JP 15805294 A JP15805294 A JP 15805294A JP 15805294 A JP15805294 A JP 15805294A JP H085173 A JPH085173 A JP H085173A
Authority
JP
Japan
Prior art keywords
pressure vessel
pressure
heat
side pressure
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15805294A
Other languages
Japanese (ja)
Other versions
JP3604733B2 (en
Inventor
Takashi Ishige
隆 石毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Hoxan Inc
Original Assignee
Daido Hoxan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Hoxan Inc filed Critical Daido Hoxan Inc
Priority to JP15805294A priority Critical patent/JP3604733B2/en
Publication of JPH085173A publication Critical patent/JPH085173A/en
Application granted granted Critical
Publication of JP3604733B2 publication Critical patent/JP3604733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir

Abstract

PURPOSE:To improve the refrigerating efficiency by taking out energy by reusing a pressure difference between a recovery side provided at a pulse tube and pressure vessels of exhaust side and returning it to the input energy of a compressing mechanism in a pulse tube refrigerator in which hydrogen gas, etc., is adiabatically expanded to obtain a low temperature. CONSTITUTION:The high pressure side of a compressing mechanism 3 is connected by a high-pressure side pressure vessel 4a and a high-pressure switching valve 5a and the low pressure side is connected by a low-pressure side pressure vessel 4b and a low-pressure switching valve 5b to a cold thermal storage unit 2 contained in a regenerative heat exchanger 1. A work recovering mechanism 10 is operated according to a pressure difference between a recovery side pressure vessel 9a connected via a recovery control valve 8a and an exhaust side pressure vessel 9b connected via an exhaust control valve 8b to a pulse tube 7 communicating with the unit 2, the energy such as electricity, etc., obtained here is fed back as an input source to drive the mechanism 3, thereby enhancing the efficiency of the refrigerating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ヘリウム、水素、空気
等のガスを、ガス圧力源により断熱膨張させることで、
超電導体の冷却に供し得る極低温領域から、冷蔵、冷房
等の零度付近の温度領域にわたる広範囲の需要に供し得
て簡潔構造である所謂パルスチューブ冷凍機の改良に関
する。
BACKGROUND OF THE INVENTION The present invention uses a gas pressure source to adiabatically expand gases such as helium, hydrogen and air.
The present invention relates to an improvement of a so-called pulse tube refrigerator, which has a simple structure and can be used for a wide range of demands from an extremely low temperature range that can be used for cooling a superconductor to a temperature range near zero degrees such as refrigeration and cooling.

【0002】[0002]

【従来の技術】既知の通りパルスチューブ冷凍機は、従
来からあるスターリング冷凍機におけるピストンを、ガ
スで置換するようにしたもので、近年冷凍効率の向上と
最低到達温度の低下が実現されつつあることから、注目
を集めるようになって来ている。ここで、上記スターリ
ング冷凍機なるものは、図6の(A)に例示する如き構
成を有し、モータ駆動部Aによって圧縮ピストンBを稼
動し、これにより室温空間Cを圧縮することで全体の圧
力が上昇し、この時発生する熱は室温空間Cの冷却によ
って、外部へ放出される(圧縮プロセス)ことになる。
2. Description of the Related Art As is well known, a pulse tube refrigerator is a conventional Stirling refrigerator in which a piston is replaced with a gas. In recent years, improvement in refrigeration efficiency and reduction in minimum temperature have been realized. Therefore, it is getting more and more attention. Here, the Stirling refrigerator has a configuration as illustrated in FIG. 6A, and the compression piston B is operated by the motor drive unit A, whereby the room temperature space C is compressed, and The pressure rises, and the heat generated at this time is released to the outside by the cooling of the room temperature space C (compression process).

【0003】さらに、膨張ピストンDが、外部である仕
事回収部Eへ仕事を行いながら、冷却空間Fを増加させ
る事により、全体の圧力が低下し、これにより低温空間
Fの温度が下降する(膨張プロセス)のであり、次い
で、膨張ピストンDが低温空間Fの冷却ガスを、再生熱
交換器G(金網、金属粒等)を通して、室温空間C側へ
追い出し、同時に圧縮ピストンBも動くため、圧力は一
定のままで熱の発生はなく、発生した上記の冷熱は。再
生熱交換器Gに蓄えられて、次のプロセスにおけるガス
の冷却に用いられる(移動プロセス)のである。
Further, the expansion piston D increases the cooling space F while performing work to the work recovery section E which is the outside, so that the overall pressure is lowered, whereby the temperature of the low temperature space F is lowered ( (Expansion process), and then the expansion piston D drives the cooling gas in the low temperature space F through the regenerative heat exchanger G (wire mesh, metal particles, etc.) to the room temperature space C side, and at the same time, the compression piston B also moves, Is constant, no heat is generated, and the generated cold heat is. It is stored in the regenerative heat exchanger G and used for cooling the gas in the next process (transfer process).

【0004】このスターリング冷凍機に対し、パルスチ
ューブ冷凍機としては、ピストン型パルスチューブ冷凍
機(図6(B))、バルブ型パルスチューブ冷凍機(図
6(C))、オリフィス型パルスチューブ冷凍機(図
7)が知られており、上記ピストン型パルスチューブ冷
凍機は、前記スターリング冷凍機における膨張ピストン
Dの大部分が、ガスピストンHに置換されたもので、こ
れによるときは、ガスピストンHが圧力に応じて伸縮す
るため、スターリング冷凍機より効率が低下するもの
の、膨張ピストンD1 がDよりも軽量化されると共に、
低温で動作する部分がなくなることから、高速運転も可
能となる。
In contrast to this Stirling refrigerator, as a pulse tube refrigerator, a piston type pulse tube refrigerator (FIG. 6 (B)), a valve type pulse tube refrigerator (FIG. 6 (C)), an orifice type pulse tube refrigerator. In the piston type pulse tube refrigerator, most of the expansion piston D in the Stirling refrigerator is replaced with a gas piston H. Since H expands and contracts according to the pressure, the efficiency is lower than that of the Stirling refrigerator, but the expansion piston D 1 is made lighter than D, and
Since there is no part that operates at low temperature, high speed operation is possible.

【0005】次に、上記のバルブ型パルスチューブ冷凍
機は、スターリング冷凍機のモータ駆動部Aと圧縮ピス
トンB、膨張ピストンDと仕事回収部Eを、夫々高圧ガ
スI1 の流入側バルブJ1 と低圧ガスI2 の流出側バル
ブJ2 と、低圧ガスK1 の流出側バルブL1 と高圧ガス
2 の流入側バルブL2 とに置換してしまうことによ
り、すべての駆動部分を排除可能としたものであるが、
スターリング冷凍機のように膨張ピストンDによる仕事
の回収が無いために効率は低下する欠陥がある。
[0005] Next, the above-mentioned valve pulse tube refrigerator, a motor drive unit A and the compression piston B of the Stirling refrigerator, the expansion piston D and Job recovery unit E, respectively the inflow side valve J 1 of the high-pressure gas I 1 and the outflow side valve J 2 of the low-pressure gas I 2, by thus replaced with an inflow side valve L 2 of the outlet-side valve L 1 and the high-pressure gas K 2 of the low-pressure gas K 1, can eliminate all the drive parts Although,
Since there is no work recovery by the expansion piston D as in the Stirling refrigerator, there is a defect that efficiency is reduced.

【0006】また、前記のオリフィス型パルスチューブ
冷凍機は、図7の如くパルス管M側における前記の流出
側バルブL1 と流入側バルブL2 を、オリフィスバルブ
NとバッファタンクOに置換したことで、装置全体の簡
略化が図られているが、効率の向上は期待できないもの
となっている。ここで図中Pは圧縮機で、Q1 とQ2
夫々高圧側圧力容器と低圧側圧力容器を示し、R1 、R
2 は冷却水による熱交換器で、Sは低温部、Tは低温側
熱交換器である。
In the orifice type pulse tube refrigerator, the outlet valve L 1 and the inlet valve L 2 on the pulse tube M side are replaced with an orifice valve N and a buffer tank O as shown in FIG. Therefore, although the entire device has been simplified, improvement in efficiency cannot be expected. Here in the figure P is compressor, Q 1, Q 2 represents a high side pressure container and the low side pressure vessel 's respectively, R 1, R
2 is a heat exchanger using cooling water, S is a low temperature part, and T is a low temperature side heat exchanger.

【0007】さらに、図8に示した従来のパルスチュー
ブ冷凍機にあっては、シリンダP1とピストンP2 とに
より圧縮機Pに、放熱部Uを介して蓄冷材である再生熱
交換器Gを具備した蓄冷器Vが連設され、蓄冷器Vに低
温部Sを介して連設のパルス管Mが連設されている構成
は、前記の従来例と同様であるが、このパルス管Mに
は、その高温端部M1 から小容器Wを連設し、当該小容
器Wの上端開口部に、順次平板状フィルタXを介して、
水素吸蔵合金Yを添設するようにしたものも知られてい
る。しかし、これは当該水素吸蔵合金Yを小容器Wに付
設して、パルス管Mから流入する水素ガスを吸蔵するこ
とで、バッファ容積を大きくしただけのものに過ぎな
い。また、このような水素吸蔵合金を蓄冷器Vの前段に
配設し、これに吸蔵されている水素ガスを、加温により
蓄冷器V内に圧送する圧縮器として使用することも知ら
れている。
Further, in the conventional pulse tube refrigerator shown in FIG. 8, a regenerative heat exchanger G, which is a regenerator material, is connected to a compressor P by a cylinder P 1 and a piston P 2 via a heat radiating section U. The regenerator V equipped with the regenerator V is continuously connected to the regenerator V via the low temperature portion S, and the pulse tube M is continuously connected to the regenerator V. , A small container W is continuously provided from the high temperature end M 1, and the small container W is sequentially connected to the upper end opening of the small container W through a flat plate filter X.
It is also known that a hydrogen storage alloy Y is additionally provided. However, this is merely to increase the buffer volume by attaching the hydrogen storage alloy Y to the small container W and storing the hydrogen gas flowing in from the pulse tube M. It is also known that such a hydrogen storage alloy is arranged in the preceding stage of the regenerator V, and the hydrogen gas stored therein is used as a compressor for pumping it into the regenerator V by heating. .

【0008】[0008]

【発明が解決しようとする課題】上記のように構成され
ているパルスチューブ冷凍機によるときは、確かに次の
ような利点が存する。すなわち、バルブ以外に動作する
部分がないため、長期の信頼性を有し、ピストンを用い
ないので精密加工の要なく低コストの製造が可能であ
る、また、バルブ、再生熱交換器、パルス管等の機器構
成が簡潔であるため超小型から大型まで、あらゆるサイ
ズが可能であり、種々のガス圧力源であるHe、H2
空気等に対し、低圧力比(圧力比で2以下)にて冷熱の
発生が可能となる。
When using the pulse tube refrigerator constructed as described above, there are certainly the following advantages. That is, since there is no part that operates other than the valve, it has long-term reliability, and since it does not use a piston, it can be manufactured at low cost without the need for precision machining. Since the equipment configuration is simple, it can be used in all sizes from ultra-compact to large, and various gas pressure sources such as He, H 2 ,
With respect to air or the like, cold heat can be generated at a low pressure ratio (pressure ratio of 2 or less).

【0009】しかし、上記の如き従来のパルスチューブ
冷凍機にあっては、パルス管側にあって仕事を回収する
こと、それ自体が困難であるだけでなく、その回収につ
き考慮が充分払われなかったことから、その効率が低
く、この結果、仕事を回収して入力エネルギに戻すため
の複雑な機構をもったピストンタイプの冷凍機に比し、
可成り効率の点で劣ることとなる。
However, in the conventional pulse tube refrigerator as described above, it is not only difficult to recover the work on the pulse tube side, but also the recovery is not sufficiently taken into consideration. Therefore, its efficiency is low, and as a result, compared to a piston type refrigerator with a complicated mechanism for recovering work and returning to input energy,
It is considerably inferior in efficiency.

【0010】本発明は、上記の如きパルスチューブ冷凍
機に関し、前記従来例の欠陥を解消しようとするもの
で、請求項1によるときは、圧縮機構により生じた高圧
側圧力源と低圧側圧力源とを用いるようにしたパルスチ
ューブ冷凍機にあって、パルス管室温部に回収用制御バ
ルブを介して回収側圧力容器を設けると共に、排出用制
御バルブを介して排出側圧力容器を設けるようにし、当
該両圧力容器の圧力差を利用して機械式膨張機等による
発電を行うといった手段でエネルギを導出し、当該エネ
ルギを前掲圧縮機構の入力側に戻すことにより、前記パ
ルスチューブ冷凍機の各種長所を損なうことなしに、効
率を高めようとするのが、その目的である。
The present invention relates to a pulse tube refrigerator as described above, which is intended to eliminate the deficiency of the conventional example. According to claim 1, a high pressure side pressure source and a low pressure side pressure source generated by a compression mechanism. In the pulse tube refrigerator configured to use and, a recovery side pressure vessel is provided in the room temperature portion of the pulse tube through a recovery control valve, and a discharge side pressure vessel is provided through a discharge control valve. Various advantages of the pulse tube refrigerator are obtained by deriving energy by means of generating power by a mechanical expander or the like using the pressure difference between the pressure vessels and returning the energy to the input side of the compression mechanism. The purpose is to try to increase efficiency without compromising the efficiency.

【0011】次に請求項2にあっては、前記の従来例に
あっても用いられている水素吸蔵合金を利用するのであ
るが、当該水素吸蔵合金に加えられた熱エネルギによっ
て発生する水素ガス圧力源を用いるように、しかも、パ
ルス管室温部に、回収用制御バルブを介して水素吸蔵合
金を封入の回収側圧力容器と、排出用制御バルブを介し
て、これまた水素吸蔵合金を封入の排出側圧力容器とを
設けるようにし、上記の回収側圧力容器内における水素
吸蔵合金の発熱エネルギに着目し、これを前記水素ガス
圧力源に対する入力熱エネルギに戻すことで、請求項1
と同じく冷凍効率を向上しようとしている。
Next, in claim 2, the hydrogen storage alloy used in the above-mentioned conventional example is utilized. Hydrogen gas generated by the thermal energy applied to the hydrogen storage alloy is used. In addition to using a pressure source, the room temperature part of the pulse tube is filled with a hydrogen storage alloy via a recovery control valve and a recovery side pressure container, and the exhaust control valve is also filled with a hydrogen storage alloy. A discharge side pressure vessel is provided, focusing attention on the heat generation energy of the hydrogen storage alloy in the recovery side pressure vessel, and returning this to the input heat energy to the hydrogen gas pressure source.
Like trying to improve the refrigeration efficiency.

【0012】請求項3のパルスチューブ冷凍機にあって
は、上記の請求項2の機構に加えて、前記水素発生源側
である蓄冷器に低圧切替バルブを介して水素吸蔵合金を
封入した低圧側圧力容器における発熱エネルギを、前記
の排出側圧力容器における水素吸蔵合金の水素ガス排出
用に供与可能とすることで、さらに、当該冷凍機の効率
をよくしようとしている。
In the pulse tube refrigerator of claim 3, in addition to the mechanism of claim 2, a low pressure in which a hydrogen storage alloy is sealed in a regenerator on the side of the hydrogen generation source via a low pressure switching valve. By making it possible to provide the heat generation energy in the side pressure vessel for discharging the hydrogen gas of the hydrogen storage alloy in the discharge side pressure vessel, the efficiency of the refrigerator is further improved.

【0013】請求項4におけるパルスチューブ冷凍機で
は、上記請求項3における高圧側圧力容器の水素吸蔵合
金を温水により加温し、当該温水を更に回収側圧力容器
に送流して、ここで当該水素吸蔵合金の発熱エネルギを
吸熱し、さらに吸熱温水を入力熱エネルギ源となるよう
循環温水路を構成すると共に、冷水供給用配管を設ける
ことで、これを流れる冷却水により、低圧側圧力容器の
水素吸蔵合金を冷却し、これにより昇温した冷却水を、
そのまま排出してしまうことなしに、排出側圧力容器の
水素吸蔵合金を加温することに消費することによって、
前記請求項3の目的を達成しようとしている。
In the pulse tube refrigerator according to claim 4, the hydrogen storage alloy of the high pressure side pressure vessel according to claim 3 is heated by hot water, and the hot water is further sent to the recovery side pressure vessel, where the hydrogen is stored. The circulation hot water channel is configured to absorb the heat energy of the storage alloy, and the endothermic hot water serves as the input heat energy source. The storage alloy is cooled, and the cooling water heated by this is
By consuming it for heating the hydrogen storage alloy in the discharge side pressure vessel without discharging it as it is,
The object of claim 3 is to be achieved.

【0014】そして、更に請求項4の第2の目的は、前
記の循環温水路から並列に分岐した切替用循環水路と、
前記冷水供給用配管とは別に切替用冷水供給用配管を配
設することによって、上記切替用循環水路の温水によっ
て、低圧側圧力容器と排出側圧力容器との水素ガス吸蔵
量が限界に達した水素吸蔵合金を過熱することで、これ
を再生可能にすると共に、上記切替用冷水供給管の冷却
水によって、高圧側圧力容器と回収側圧力容器との水素
ガス放出量が限界に達した水素吸蔵合金を冷却すること
で、水素ガスの吸蔵状態に復原し、これまた再度冷凍機
としての使用が可能となるようにすることである。
A second object of the present invention is to provide a switching circulating water channel branched in parallel from the circulating hot water channel.
By arranging the switching cold water supply pipe separately from the cold water supply pipe, the hydrogen gas storage amount of the low pressure side pressure vessel and the discharge side pressure vessel reached the limit due to the hot water of the switching circulation water passage. By overheating the hydrogen storage alloy, it can be regenerated, and the amount of hydrogen gas released from the high pressure side pressure vessel and the recovery side pressure vessel has reached the limit due to the cooling water in the switching cold water supply pipe. By cooling the alloy, the hydrogen gas is restored to the occlusion state and can be used again as a refrigerator.

【0015】[0015]

【課題を解決するための手段】本発明は、上記の目的を
達成するため、請求項1にあっては、再生熱交換器を内
蔵した蓄冷器には、圧縮機構により生ずる高圧側圧力源
を、順次連設の高圧側圧力容器と高圧切替バルブを介
し、上記圧縮機構により生ずる低圧側圧力源を、順次連
設の低圧側圧力容器と低圧切替バルブを介して夫々連設
し、当該蓄冷器に低温部を介して連通のパルス管におけ
るパルス管室温部には、夫々回収用制御バルブを介して
回収側圧力容器と、排出用制御バルブを介して排出側圧
力容器とを夫々連設し、上記の回収側圧力容器と排出側
圧力容器との間に、仕事回収機構を連設することによ
り、当該両圧力容器の圧力差によって上記の仕事回収機
構を稼動させ、当該稼動により得られたエネルギ源を、
前記の圧縮機構を稼動する入力エネルギとして帰還させ
るようにしたことを特徴とするパルスチューブ冷凍機を
提供しようとしている。
In order to achieve the above object, the present invention provides a regenerator having a regenerative heat exchanger in which a high pressure side pressure source generated by a compression mechanism is provided. , The low-pressure side pressure source generated by the compression mechanism is sequentially connected through the high-pressure side pressure container and the high-pressure switching valve, which are sequentially connected, and the low-pressure side pressure container and the low-pressure switching valve, which are sequentially connected, respectively, to provide the regenerator. In the pulse tube room temperature portion in the pulse tube communicating through the low temperature section, the recovery side pressure vessel via the recovery control valve and the discharge side pressure vessel via the discharge control valve, respectively, are connected in series. By connecting a work recovery mechanism between the recovery side pressure vessel and the discharge side pressure vessel, the work recovery mechanism is operated by the pressure difference between the two pressure vessels, and the energy obtained by the operation is obtained. Source
An attempt is made to provide a pulse tube refrigerator characterized in that the compression mechanism is fed back as operating energy input.

【0016】請求項2では、再生熱交換器を内蔵した蓄
冷器には、高圧切替バルブを介して、熱入力により吸蔵
水素ガスを放出する水素吸蔵合金の封入された高圧側圧
力容器と、低圧切替バルブを介して、放熱により蓄冷器
から流入の水素ガスを吸蔵する水素吸蔵合金の封入され
た低圧側圧力容器とを夫々連設し、当該蓄冷器に低温部
を介して連通のパルス管におけるパルス管室温部には、
夫々回収用制御バルブを介して、上記パルス管から流入
の高温高圧水素ガスを、放熱により吸蔵する水素吸蔵合
金の封入された回収側圧力容器と、排出用制御バルブを
介して、吸熱により吸蔵水素ガスを放出する水素吸蔵合
金の封入された排出側圧力容器とを夫々連設し、上記回
収側圧力容器における水素吸蔵合金に、前記高温高圧ガ
スが吸蔵される際に発生の熱エネルギを、前記した高圧
側圧力容器に付与される熱入力として帰還させるように
したことを特徴とするパルスチューブ冷凍機を、その内
容としている。
According to a second aspect of the present invention, in the regenerator having a built-in regenerative heat exchanger, a high-pressure side pressure vessel in which a hydrogen-absorbing alloy that releases stored hydrogen gas by heat input through a high-pressure switching valve is enclosed, and a low-pressure side. Via a switching valve, a low pressure side pressure vessel filled with a hydrogen storage alloy that stores hydrogen gas flowing from the regenerator by heat dissipation is connected in series, respectively, and a pulse tube in communication with the regenerator via a low temperature section is connected. In the pulse tube room temperature part,
Recovery-side pressure vessels filled with hydrogen-absorbing alloy that absorbs the high-temperature high-pressure hydrogen gas flowing in from the above-mentioned pulse tubes by heat dissipation through the recovery control valves, respectively, and absorption-absorbed hydrogen through the discharge control valve. A discharge-side pressure vessel filled with a hydrogen-absorbing alloy that releases gas is provided in series, and the hydrogen-absorbing alloy in the recovery-side pressure vessel has thermal energy generated when the high-temperature high-pressure gas is stored, The pulse tube refrigerator is characterized in that it is returned as heat input applied to the high pressure side pressure vessel.

【0017】請求項3では、上記の請求項2における構
成に加えて、低圧側圧力容器の水素吸蔵合金からの放熱
による熱エネルギを、冷水による低圧側熱交換部により
熱交換させ、これによる加温冷水を、前記排水側圧力容
器の排水側熱交換部に供与することで、当該排水側圧力
容器内の水素吸蔵合金から水素ガスを放出する熱エネル
ギが供与されるようにしたことを、その内容としてい
る。
According to a third aspect of the present invention, in addition to the structure of the second aspect, heat energy due to heat radiation from the hydrogen storage alloy of the low pressure side pressure vessel is heat-exchanged by the low pressure side heat exchange section of cold water, and the heat energy is added. By supplying hot and cold water to the drainage side heat exchange section of the drainage side pressure vessel, thermal energy for releasing hydrogen gas from the hydrogen storage alloy in the drainage side pressure vessel is provided. It has contents.

【0018】さらに、請求項4にあっては、上記請求項
3における熱入力を高圧側圧力容器内の水素吸蔵合金に
付与するため加熱放出熱回収用加温装置を設けるが、当
該装置の構成が、熱入力用熱交換部とポンプとを備えた
循環温水路と、冷水供給用配管とを有し、当該循環温水
路には、高圧側圧力容器に内設した高圧側熱交換部と、
回収側圧力容器に内設した回収側熱交換部とが直列に連
結されると共に、冷水供給用配管には、低圧側圧力容器
に内設の低圧側熱交換部と、排出側圧力容器に内設の排
出側熱交換部とが直列に連結されていると共に、上記加
熱放出熱回収用加温装置における熱入力用熱交換部とポ
ンプの各外側端にあって、前記循環温水路に設けた第
1、第2切替バルブ間には、切替用循環水路を並列に分
岐して、当該切替用循環水路には、低圧側圧力容器に内
設の低圧側切替熱交換部と、排出側圧力容器に内設の排
出側切替熱交換部とを直列に連設し、かつ、切替用冷水
供給配管には、高圧側圧力容器に内設の高圧側切替熱交
換部と、回収側圧力容器に内設の回収側切替熱交換部と
を直列に連結するようにしたことを、その内容としてい
る。
Further, according to claim 4, a heating device for recovering heat released by heat is provided to apply the heat input according to claim 3 to the hydrogen storage alloy in the pressure vessel on the high pressure side. The circulating hot water passage having a heat input heat exchange unit and a pump, and a cold water supply pipe, the circulating hot water passage, the high pressure side heat exchange unit installed in the high pressure side pressure vessel,
The recovery-side heat exchange section installed inside the recovery-side pressure vessel is connected in series, and the cold water supply pipe is connected to the low-pressure side heat exchange section inside the low-pressure side pressure vessel and the discharge-side pressure vessel. The discharge side heat exchange section is installed in series, and is provided in the circulating hot water channel at each of the heat input heat exchange section and the pump outer side end in the heating and release heat recovery heating device. A switching circulating water channel is branched in parallel between the first and second switching valves, and the switching circulating water channel has a low-pressure side switching heat exchange section internally provided in the low-pressure side pressure vessel and a discharge-side pressure vessel. Is connected in series with the internal discharge side switching heat exchange section, and the switching chilled water supply pipe is connected to the high pressure side switching heat exchange section internal to the high pressure side pressure vessel and the recovery side pressure vessel. The content is that the recovery side switching heat exchange section of the equipment is connected in series.

【0019】[0019]

【実施例】本発明を図示の実施例によって説示すれば、
請求項1に係るパルスチューブ冷凍機は、図1に示され
ている通りで、基本的には、図6の(C)による従来例
として説示したものと共通した構成を有し、金網等によ
る再生熱交換器1を内蔵した蓄冷器2には、機械式圧縮
機等による圧縮機構3により生ずる高圧側圧力源3a
を、順次高圧側圧力容器4aと高圧切替バルブ5aを介
してパイプにより連設すると共に、当該圧縮機構3によ
って生ずる低圧側圧力源3bは、順次低圧側圧力容器4
bと低圧切替バルブ5bを介して、パイプにより連設さ
れている。
EXAMPLES The present invention will be described with reference to the illustrated examples.
The pulse tube refrigerator according to claim 1 is basically the same as that shown in FIG. 1 and basically has the same configuration as that described as the conventional example shown in FIG. The regenerator 2 containing the regenerative heat exchanger 1 has a high pressure side pressure source 3a generated by a compression mechanism 3 such as a mechanical compressor.
Are sequentially connected to the high-pressure side pressure vessel 4a via a high-pressure switching valve 5a by a pipe, and the low-pressure side pressure source 3b generated by the compression mechanism 3 is sequentially connected to the low-pressure side pressure vessel 4a.
It is connected by a pipe via b and the low pressure switching valve 5b.

【0020】本発明では、上記の蓄冷器2に低温部6を
介して連通のパルス管7にあって、そのパルス管室温部
7aに、回収用制御バルブ8aを介して、回収側圧力容
器9aが連設されているだけでなく、同上パルス管室温
部7aに、排出用制御バルブ8bを介して、排出側圧力
容器9bが連設され、さらに、この排出側圧力容器9b
と、上記の回収側圧力容器9aとの間に、例えば機械的
膨張機による発電装置などによる仕事回収機構10を連
設するのであり、この仕事回収機構10は、後に詳記す
る通り、回収側圧力容器9a内におけるガスの圧力が、
排出側圧力容器9bにおけるガスの圧力より大となるこ
とを利用し、当該圧力差によって稼動させるのである。
In the present invention, the pulse tube 7 is in communication with the regenerator 2 via the low temperature section 6, and the pulse tube room temperature section 7a is connected to the recovery side pressure vessel 9a via the recovery control valve 8a. In addition to the above, the discharge-side pressure vessel 9b is connected in series to the pulse tube room temperature portion 7a via the discharge control valve 8b.
And a recovery side pressure vessel 9a, a work recovery mechanism 10 including, for example, a power generator using a mechanical expander is continuously provided. The work recovery mechanism 10 is, as will be described later in detail, a recovery side. The gas pressure in the pressure vessel 9a is
By utilizing the fact that the pressure of the gas in the discharge side pressure vessel 9b is higher than that of the gas, the operation is performed by the pressure difference.

【0021】本発明では、さらに、上記のようにして導
出された仕事回収機構10の稼動により得られた電気等
のエネルギ源を、前掲圧縮機構3を稼動させるための入
力エネルギとして帰還させることであり、このようにし
て得られたエネルギ源の活用により、パルスチューブ冷
凍機としての冷凍効率を向上させ得るようにしている。
図1にあって11aは、圧縮機構3からのヘリウム、水
素、空気等によるガスが、高圧側圧力容器4aに流入す
る際、当該高圧ガスを冷却水によって冷却するための高
圧側冷却熱交換部、11bは回収側圧力容器9a内のガ
スを冷却水により冷却するための回収側冷却熱交換部、
11cはパルス管室温部7aを、冷却水により冷却する
ためのパルス管冷却熱交換部にして、12は、前記低温
部6における冷熱により冷却される低温側熱交換部を示
している。
In the present invention, further, the energy source such as electricity obtained by the operation of the work recovery mechanism 10 derived as described above is fed back as the input energy for operating the compression mechanism 3. By utilizing the energy source obtained in this way, the refrigeration efficiency of the pulse tube refrigerator can be improved.
In FIG. 1, 11a is a high-pressure side cooling heat exchange section for cooling the high-pressure gas with cooling water when a gas such as helium, hydrogen, or air from the compression mechanism 3 flows into the high-pressure side pressure vessel 4a. , 11b are recovery side cooling heat exchange parts for cooling the gas in the recovery side pressure vessel 9a with cooling water,
Reference numeral 11c is a pulse tube cooling heat exchange section for cooling the pulse tube room temperature section 7a with cooling water, and 12 is a low temperature side heat exchange section cooled by cold heat in the low temperature section 6.

【0022】そこで、上記の実施例の冷凍機を稼動させ
るには、前記従来例の説示からも理解されるように、高
圧切替バルブ5aを開くことで、再生熱交換器1を通過
してパルス管7における低温部6に、圧縮機構3より高
圧側圧力容器4aに圧入された高圧ガスが充填され、こ
のことで、パルス管7内における残留ガスは、上方へ向
かって圧縮されることで、ガスピストン7bが形成さ
れ、温度上昇を伴ってパルス管室温部7aにて高温とな
り、この際、前記の回収側冷却熱交換部11bに供給さ
れる冷却水により冷温化される。
Therefore, in order to operate the refrigerator of the above embodiment, as can be understood from the explanation of the conventional example, the high pressure switching valve 5a is opened to pass the pulse through the regenerative heat exchanger 1. The low temperature portion 6 of the tube 7 is filled with the high-pressure gas that is pressed into the high-pressure side pressure vessel 4a from the compression mechanism 3, whereby the residual gas in the pulse tube 7 is compressed upward, The gas piston 7b is formed and becomes high in temperature in the pulse tube room temperature portion 7a as the temperature rises, and at this time, it is cooled by the cooling water supplied to the recovery side cooling heat exchange portion 11b.

【0023】回収用制御バルブ8aを開くことにより、
パルス管7の低温部6における高圧ガスが断熱膨張によ
り、その温度が低下する。この際、もちろんパルス管7
内のガスも膨張して、温度が降下しながら、パルス管室
温部7a側へと移動し、さらに、当該パルス管室温部7
aにあった高温ガスは、回収側圧力容器9a内に取り込
まれ、ここで外部からの冷却水により、回収側冷却熱交
換部11bにより冷却される。
By opening the recovery control valve 8a,
Adiabatic expansion of the high pressure gas in the low temperature portion 6 of the pulse tube 7 lowers its temperature. At this time, of course, the pulse tube 7
The gas inside also expands and moves to the pulse tube room temperature part 7a side while the temperature drops, and further the pulse tube room temperature part 7a.
The high-temperature gas in a is taken into the recovery-side pressure vessel 9a, where it is cooled by cooling water from the outside by the recovery-side cooling heat exchange section 11b.

【0024】次に、低圧切替バルブ5bを開くと、パル
ス管室温部7aのガスは、さらに膨張して、温度を低下
しながら再生熱交換部1を冷却して、低圧側圧力源3b
へ吸入され、このとき、パルス管7内部の残留ガスも、
低温部6へ吸入されてパルス管7内部の残留ガスも、低
温部6に向かって膨張することにより温度は降下する。
Next, when the low pressure switching valve 5b is opened, the gas in the pulse tube room temperature portion 7a further expands to cool the regenerative heat exchange portion 1 while lowering the temperature, and the low pressure side pressure source 3b.
Into the pulse tube 7, and the residual gas inside the pulse tube 7
The residual gas sucked into the low temperature portion 6 and remaining in the pulse tube 7 also expands toward the low temperature portion 6 to lower the temperature.

【0025】次に排出用制御バルブ8bを開くと、パル
ス管7の低温部6におけるガスは、排出側圧力容器9b
のガス圧によって、再生熱交換器1側へ移動しながら等
温的に圧縮され、この際、パルス管7内のガスも圧縮さ
れて温度上昇しながら、低温部6側へ移動することとな
る。以上のようなプロセスを繰り返すことによって、パ
ルス管7の低温部6におけるガスは、再生熱交換器1に
蓄えた寒冷分により低温になって行き、一方パルス管7
内部の残留ガスは、圧縮による温度上昇と膨張による温
度降下とを、1サイクルの中で行うため、それほど大き
な熱の移動を生ずる事はない。
Next, when the discharge control valve 8b is opened, the gas in the low temperature portion 6 of the pulse tube 7 is discharged into the discharge side pressure vessel 9b.
By the gas pressure of 1, the gas is moved isothermally while moving to the regenerator 1 side, and at this time, the gas in the pulse tube 7 is also compressed and moves to the low temperature part 6 side while increasing the temperature. By repeating the above process, the temperature of the gas in the low temperature portion 6 of the pulse tube 7 becomes low due to the cold component stored in the regenerative heat exchanger 1, while the pulse tube 7
The internal residual gas does not cause such a large amount of heat transfer because the temperature increase due to compression and the temperature decrease due to expansion are performed in one cycle.

【0026】従って、上記の如き移動により、高圧側圧
力容器4a、低圧側圧力容器4b、回収側圧力容器9
a、排出側圧力容器9bの四圧力容器における圧力の大
きさ4aP、4bP、9aP、9bPには相差が生じ、 4aP>9aP>9bP>4bP のようになる。このため、前記の如く9aP>9bPの
圧力差により、回収側圧力容器9aと排出側圧力容器9
b間の前記仕事回収機構10が得たエネルギ源を、図中
破線で示す通り、圧縮機構3の入力エネルギとして使用
し得ることとなる。
Therefore, by the above movement, the high pressure side pressure vessel 4a, the low pressure side pressure vessel 4b, and the recovery side pressure vessel 9
a, a phase difference occurs in the pressure magnitudes 4aP, 4bP, 9aP, 9bP in the four pressure vessels of the discharge side pressure vessel 9b, and becomes 4aP>9aP>9bP> 4bP. Therefore, as described above, due to the pressure difference of 9aP> 9bP, the recovery side pressure vessel 9a and the discharge side pressure vessel 9a.
The energy source obtained by the work recovery mechanism 10 between b can be used as the input energy of the compression mechanism 3 as shown by the broken line in the figure.

【0027】次に、請求項2に係るパルスチューブ冷凍
機につき図2によって詳記すると、ここでは図1の場合
における冷凍機にあって、圧縮機構3や膨張機等による
仕事回収機構10を用いたのに対し、水素吸蔵合金を採
択するようにしてあり、高圧側圧力容器4a、低圧側圧
力容器4b、回収側圧力容器9aそして排出側圧力容器
9bには、加温によって吸蔵していた水素ガスを放出し
たり、発熱を伴って水素ガスを吸蔵することのできる水
素吸蔵合金が封入されている。
Next, the pulse tube refrigerator according to claim 2 will be described in detail with reference to FIG. 2. Here, in the refrigerator in the case of FIG. 1, the work recovery mechanism 10 including a compression mechanism 3 and an expander is used. On the other hand, the hydrogen storage alloy is adopted, and the high pressure side pressure vessel 4a, the low pressure side pressure vessel 4b, the recovery side pressure vessel 9a and the discharge side pressure vessel 9b store the hydrogen stored by heating. It is filled with a hydrogen storage alloy capable of releasing gas and storing hydrogen gas with heat generation.

【0028】そして、図1と同じく再生熱交換器1をも
つ蓄冷器2に、高圧切替バルブ5aを介して、図示の熱
入力13が供給される高圧側熱交換部14aにより、水
素吸蔵合金から吸蔵されていた水素ガスが放出されるこ
ととなる高圧側圧力容器14aが連設されていると共
に、低圧切替バルブ5bを介して、放熱により、蓄冷器
2から流入の水素ガスを吸蔵する水素吸蔵合金の封入さ
れた低圧側圧力容器4bとが、夫々連設されている。
As shown in FIG. 1, the regenerator 2 having the regenerative heat exchanger 1 is supplied with the illustrated heat input 13 via the high pressure switching valve 5a, and the high pressure side heat exchange section 14a supplies the hydrogen storage alloy The high-pressure side pressure vessel 14a, which releases the stored hydrogen gas, is connected in series, and the hydrogen storage device stores the inflowing hydrogen gas from the regenerator 2 by radiating heat through the low-pressure switching valve 5b. The low-pressure side pressure vessel 4b in which the alloy is enclosed is connected in series.

【0029】また、前図と同じパルス管7におけるパル
ス管室温部7aには、回収用制御バルブ8aを介して、
パルス管7から流入して来る高温高圧水素ガスを、放熱
を伴って吸蔵する前記水素吸蔵合金が封入されている回
収側圧力容器9aと、排出用制御バルブ8bを介して、
吸熱により吸蔵水素ガスを放出する水素吸蔵合金が封入
の排出側圧力容器9bとが、夫々連設されており、上記
回収側圧力容器9aには、その水素吸蔵合金の放熱を受
容する回収側熱交換部14bが設けられており、ここで
得られた熱エネルギを前記の熱入力13に帰還させるよ
うにしてある。
The pulse tube room temperature portion 7a in the same pulse tube 7 as in the previous figure is connected via a recovery control valve 8a.
Through the recovery-side pressure vessel 9a in which the hydrogen storage alloy that stores the high-temperature high-pressure hydrogen gas flowing in from the pulse tube 7 with heat dissipation is enclosed, and the discharge control valve 8b,
A discharge side pressure vessel 9b enclosing a hydrogen storage alloy that releases stored hydrogen gas by heat absorption is connected in series, and the recovery side pressure vessel 9a receives the heat release of the hydrogen storage alloy. An exchange section 14b is provided so that the heat energy obtained here is returned to the heat input 13.

【0030】そこで、上記の冷凍機を稼動させるため、
高圧切替バルブ5aを開き、熱入力13により高圧側圧
力容器4aに熱を加えれば、その水素吸蔵合金から放出
の高圧水素ガスが、高圧側冷却熱交換部11dの冷却水
により冷却されて室温状態となった後、再生熱交換器1
を通過してパルス管7の低温部6に充填される。このと
き前記の如くパルス管7内の残留ガスは、上方へ向かっ
て圧縮され、温度上昇しながらパルス管室温部7aで高
温となる。
Therefore, in order to operate the above refrigerator,
When the high-pressure switching valve 5a is opened and heat is applied to the high-pressure side pressure vessel 4a by the heat input 13, the high-pressure hydrogen gas released from the hydrogen storage alloy is cooled by the cooling water of the high-pressure side cooling heat exchange section 11d and kept at room temperature. After that, the regenerative heat exchanger 1
And is filled in the low temperature portion 6 of the pulse tube 7. At this time, as described above, the residual gas in the pulse tube 7 is compressed upward and becomes high in temperature in the pulse tube room temperature portion 7a while the temperature rises.

【0031】次に、回収用制御バルブ8aを開くと、こ
れまた前同様にしてパルス管7内のガスも膨張し、これ
により温度降下しながらパルス管室温部7a側へ移動
し、さらに当該室温部7aにあった高温高圧ガスは、回
収側圧力容器9a内に取り込まれ、ここで水素吸蔵合金
と吸蔵反応を起こして熱を発生する。従って、この熱
は、前記の回収側熱交換部14bを介して、熱入力13
に帰還され、この結果、当該熱エネルギは高圧側圧力容
器4aへの入力熱エネルギとして使用されるのであり、
実際上は温水等の加温によって、熱エネルギの回収を行
うようにする。図2にあって、11e、11f、11g
は夫々低圧側冷却熱交換部、回収側冷却熱交換部、排出
側冷却熱交換部を示している。
Next, when the recovery control valve 8a is opened, the gas in the pulse tube 7 also expands in the same manner as before, and the temperature of the gas in the pulse tube 7 drops and moves toward the room temperature portion 7a of the pulse tube. The high-temperature high-pressure gas in the portion 7a is taken into the recovery side pressure vessel 9a, where it causes an occlusion reaction with the hydrogen occlusion alloy to generate heat. Therefore, this heat is transferred to the heat input 13 via the recovery side heat exchange section 14b.
And as a result, the heat energy is used as input heat energy to the high pressure side pressure vessel 4a.
In practice, heat energy is recovered by heating hot water or the like. In FIG. 2, 11e, 11f, 11g
Indicate a low-pressure side cooling heat exchange section, a recovery side cooling heat exchange section, and a discharge side cooling heat exchange section, respectively.

【0032】さらに、低圧切替バルブ5bを開くと、パ
ルス管7の低温部6は、さらに膨張して温度が低下しな
がら再生熱交換器1を冷却し、低圧側圧力容器4bの水
素吸蔵合金に吸蔵され、またパルス管7の内部における
残留ガスも、低温部6に向かって膨張することにより降
温することになる。次に、排出用制御バルブ8bを開け
ば、室温に維持された排出側圧力容器9b内の水素吸蔵
合金から放出された水素ガスによって、パルス管7の低
温部6の水素ガスは、再生熱交換器1側へ移動しながら
等温的に圧縮されるが、この際、パルス管7内の水素ガ
スも圧縮され温度上昇しながら、低温部6側へ移動す
る。このようなプロセスを繰り返すことによって、前説
の如くパルス管7の低温部6の水素ガスが、再生熱交換
器1に蓄えた寒冷分をより低温化して行くのであり、一
方パルス管7内の残留ガスは、圧縮より温度上昇と、膨
張による温度降下を1サイクルの中で行うため、それほ
ど大きな熱の移動を生ずることがない。
Further, when the low pressure switching valve 5b is opened, the low temperature portion 6 of the pulse tube 7 further expands to cool the regenerative heat exchanger 1 while the temperature decreases, and the low pressure side pressure vessel 4b becomes a hydrogen storage alloy. The residual gas that has been occluded and that remains inside the pulse tube 7 also expands toward the low temperature portion 6 to lower the temperature. Next, when the discharge control valve 8b is opened, the hydrogen gas released from the hydrogen storage alloy in the discharge side pressure vessel 9b maintained at room temperature causes the hydrogen gas in the low temperature portion 6 of the pulse tube 7 to regenerate heat exchange. Although it is isothermally compressed while moving to the vessel 1, the hydrogen gas in the pulse tube 7 is also compressed at this time and moves to the low temperature portion 6 side while increasing the temperature. By repeating such a process, the hydrogen gas in the low temperature portion 6 of the pulse tube 7 further lowers the cold component stored in the regenerative heat exchanger 1 as described above, while the residual gas in the pulse tube 7 remains. Since the gas temperature rises more than compression and the temperature drops due to expansion in one cycle, a large amount of heat transfer does not occur.

【0033】請求項3にあっては、上記の請求項2より
も、さらに冷凍機の効率を向上させるため、図2明示の
通り低圧側圧力容器4bに低圧側熱交換部15aを、そ
して排出側圧力容器9bに排出側熱交換部15bを設
け、これらを直列に連結した配管に、冷却水を流過させ
るようにしてある。このようにすることで、低圧側圧力
容器4bの水素吸蔵合金から放熱された熱エネルギは、
当該冷却水により低圧側熱交換部15aにて熱交換さ
れ、このことによる加温冷却水は、上記の排出側熱交換
部15bに供与されることから、この排出側圧力容器9
bにおける水素吸蔵合金から水素ガスを放出するため
に、必要となる熱エネルギが供給されるようになり、熱
の有効な利用が加重されることになる。
According to claim 3, in order to further improve the efficiency of the refrigerator as compared with the above-mentioned claim 2, the low pressure side heat exchange portion 15a is discharged to the low pressure side pressure vessel 4b and discharged as shown in FIG. The side pressure vessel 9b is provided with the discharge side heat exchange section 15b, and the cooling water is caused to flow through the pipe connecting these in series. By doing so, the thermal energy radiated from the hydrogen storage alloy of the low pressure side pressure vessel 4b is
The cooling water is heat-exchanged in the low-pressure side heat exchange section 15a, and the heated cooling water is supplied to the discharge-side heat exchange section 15b.
In order to release hydrogen gas from the hydrogen storage alloy in b, necessary heat energy is supplied, and effective use of heat is weighted.

【0034】次に、請求項4に係るパルスチューブ冷凍
機につき、図3を参照してこれを詳記すると、これまた
請求項2と請求項3における同様に、水素吸蔵合金を使
用するのであるが、これに使用する熱入力により加温さ
れた温水を用いることで、冷凍機の効用を果たす配管系
統に特徴を有し、これにより効率を向上させるだけでな
く、水素吸蔵合金の吸蔵能力が飽和して限界に達した
り、逆に吸蔵していた水素ガスが放出され尽してしまっ
た際、これを再生するのに用いて好適な配管系統をも具
備している。
Next, the pulse tube refrigerator according to the fourth aspect will be described in detail with reference to FIG. 3, and similarly to the second and third aspects, the hydrogen storage alloy is used. However, by using hot water heated by the heat input used for this, there is a feature in the piping system that fulfills the effect of the refrigerator, which not only improves efficiency, but also increases the storage capacity of the hydrogen storage alloy. When the hydrogen gas is saturated and reaches the limit, or conversely, when the hydrogen gas that has been stored is exhausted, it is equipped with a piping system suitable for regenerating the hydrogen gas.

【0035】上記請求項4につき以下詳記すると、前記
請求項2と請求項3の内容と、その基本的構成は同じで
あるが、ここでは前記の熱入力3を高圧側圧力容器4a
の水素吸蔵合金に付与するための加熱放出熱回収用加温
装置16が配設されている。これは熱入力用熱交換部1
6aとポンプ16bとを備えた循環温水路16cと、冷
水供給用配管16dとを有し、当該循環温水路16cに
は、高圧側圧力容器4aに内設した前記の高圧側熱交換
部14aと、回収側圧力容器9aに内設した前記回収側
熱交換部14bとが直列に連結され、前掲冷水供給用配
管16dには、低圧側圧力容器4bに内設した低圧側熱
交換部15aと、排出側圧力容器9bに内設の排出側熱
交換部15bとが、直列に連結されている。
When the above-mentioned claim 4 is described in detail below, the contents of the above-mentioned claims 2 and 3 and the basic constitution thereof are the same, but here, the heat input 3 is connected to the high-pressure side pressure vessel 4a.
The heating and releasing heat recovery warming device 16 for applying to the hydrogen storage alloy is provided. This is the heat input heat exchange section 1
6a and a pump 16b are provided in a circulating hot water passage 16c and a cold water supply pipe 16d, and the circulating hot water passage 16c is provided with the high pressure side heat exchange section 14a provided inside the high pressure side pressure vessel 4a. The recovery-side heat exchange section 14b provided in the recovery-side pressure vessel 9a is connected in series, and the low-pressure side heat exchange section 15a provided in the low-pressure side pressure vessel 4b is connected to the cold water supply pipe 16d. The discharge-side pressure vessel 9b is internally connected to the discharge-side heat exchange section 15b, which is internally provided.

【0036】さらに、上記の加熱放出熱回収用加温装置
16における熱入力用熱交換部16aとポンプ16bの
各外側端にあって、前記の循環温水路16cに設けた第
1、第2切替バルブ16e、16f間には、切替用循環
水路17が並列に分岐されている。この切替用循環水路
17には、低圧側圧力容器4bに内設の低圧側切替熱交
換部17aと、排出側圧力容器9bに内設の排出側切替
熱交換部17bとを直列に連設してある。さらに、これ
とは別に切替用冷水供給配管18が設けられており、こ
れには高圧側圧力容器4aに内設の高圧側切替熱交換部
18aと、回収側圧力容器9aに内設の回収側切替熱交
換部18bとを直列に連結するようにしてある。
Further, the first and second switching provided on the circulating hot water channel 16c at the outer ends of the heat input heat exchange section 16a and the pump 16b in the heating / releasing heat recovery warming device 16 described above. A switching circulating water passage 17 is branched in parallel between the valves 16e and 16f. In the switching circulating water passage 17, a low pressure side switching heat exchange section 17a internally provided in the low pressure side pressure vessel 4b and a discharge side switching heat exchange section 17b internally provided in the discharge side pressure vessel 9b are connected in series. There is. Further, a switching cold water supply pipe 18 is provided separately from this, and includes a high pressure side switching heat exchange section 18a internally provided in the high pressure side pressure vessel 4a and a recovery side internally provided in the recovery side pressure vessel 9a. The switching heat exchange section 18b is connected in series.

【0037】上記の如き切替用循環水路17と、切替用
冷水供給配管18を具備させるようにしたので、高圧側
圧力容器4aにおける水素吸蔵合金の放出量、低圧側圧
力容器4bにおける水素吸蔵合金の吸蔵量が、限界に達
した時点において、これを原状に復するため、それまで
温水を供給していたところに冷却水を、冷却水を供給し
ていたところには温水を供給することになる。換言すれ
ば、加熱部と放熱部が入れ替わり、高圧側と低圧側そし
て回収用と排出用が、夫々入れ替わることになる。ま
た、この際、切り替わり時の温度が安定するまで運転停
止状態となるが、これを回避するためには、後述の如き
バッチ式運転を行うことも考えられる。
Since the switching circulating water passage 17 and the switching cold water supply pipe 18 are provided as described above, the release amount of hydrogen storage alloy in the high pressure side pressure vessel 4a and the hydrogen storage alloy in the low pressure side pressure vessel 4b are controlled. When the storage amount reaches the limit, it will be restored to the original state, so cooling water will be supplied where hot water was previously supplied, and hot water will be supplied where cooling water was being supplied. . In other words, the heating unit and the heat radiating unit are exchanged, and the high pressure side and the low pressure side, and the recovering and discharging ones are interchanged. Further, at this time, the operation is stopped until the temperature at the time of switching is stabilized, but in order to avoid this, it is conceivable to perform a batch operation as described later.

【0038】すなわち、図3における復帰の操作は、第
1、第2切替バルブ16e、16fの切り替えにより行
われ、これにより、熱入力13よりの熱エネルギによっ
て熱入力用熱交換部16aを介し得られた温水は、切替
用循環水路17に流入し、低圧側圧力容器4bと排出側
圧力容器9bにおける夫々の低圧側切替熱交換部17
a、排出側切替熱交換部17bに、当該温水が循環す
る。このことで、それまで、20℃といった冷却水を受
けていた低圧側圧力容器4bに、90℃程度の温水が供
給され、当該水素吸蔵合金の水素ガスは加熱放出される
と共に、排出側圧力容器9bには、80℃程度に降温さ
れた温水が供与されることで、その水素吸蔵合金が水素
ガスを吸蔵し、この結果82℃程度に昇温した温水が、
ポンプ16bに帰還される。
That is, the return operation in FIG. 3 is performed by switching the first and second switching valves 16e and 16f, whereby the heat energy from the heat input 13 can be passed through the heat input heat exchange section 16a. The hot water thus obtained flows into the switching circulation water passage 17, and the low-pressure side switching heat exchange parts 17 in the low-pressure side pressure vessel 4b and the discharge-side pressure vessel 9b, respectively.
a, the hot water circulates in the discharge side switching heat exchange section 17b. As a result, the low pressure side pressure vessel 4b, which has been receiving cooling water of 20 degrees Celsius until then, is supplied with hot water of about 90 degrees Celsius, the hydrogen gas of the hydrogen storage alloy is heated and released, and the discharge side pressure vessel 9b is supplied with warm water whose temperature has been lowered to about 80 ° C., so that the hydrogen storage alloy occludes hydrogen gas, and as a result, the warm water heated to about 82 ° C.
It is returned to the pump 16b.

【0039】一方、高圧側圧力容器4aには、20℃程
度の冷却水が送られ、それまで90℃程度の温水を受け
ていた当該水素吸蔵合金が冷却されるので、水素ガスが
吸蔵されると共に、回収側圧力容器9aにも、25℃程
度に昇温の冷却水が供給されることとなる。この結果、
それまで80℃程度の温水を受けていた当該回収側圧力
容器9aの水素吸蔵合金は、その水素ガスを放出するこ
とになり、ここからは流出する冷却水は24℃程度とな
り、このようにして水素吸蔵合金は、水素ガスにつき原
状に復帰するに至る。
On the other hand, cooling water of about 20 ° C. is sent to the high pressure side pressure vessel 4a, and the hydrogen storage alloy that has been receiving hot water of about 90 ° C. is cooled, so that hydrogen gas is stored. At the same time, the cooling water having a temperature raised to about 25 ° C. is also supplied to the recovery side pressure vessel 9a. As a result,
The hydrogen storage alloy of the recovery side pressure vessel 9a, which had been receiving hot water of about 80 ° C. until that time, releases the hydrogen gas, and the cooling water flowing out from here becomes about 24 ° C. The hydrogen storage alloy returns to its original state due to hydrogen gas.

【0040】上記のような復帰操作を行っている間は、
もちろん当該冷凍機の運転を停止しなければならない
が、この停止状態を回避する必要があるときは、当然の
ことながら、図4と図5に例示されるように、本発明に
つき上記した水素吸蔵合金使用の構成を複数ユニットだ
け設けるようにしておき、一方のユニットが稼動中に、
他方のユニットにつき前記の復帰操作が実施されるよう
にし、一方のユニットが水素ガスにつき吸蔵量、放出量
が限界に達したならば、その稼動を停止し、他方のユニ
ットを稼動させるようにすればよい。
While performing the above-described return operation,
Of course, the operation of the refrigerator must be stopped, but when it is necessary to avoid this stopped state, as a matter of course, as described in FIGS. Make sure to provide only multiple units using alloy, and when one unit is in operation,
If the other unit is made to perform the above-mentioned return operation and one unit has reached the limit of the storage amount and the release amount of hydrogen gas, stop the operation of the other unit and operate the other unit. Good.

【0041】すなわち、図5に示すように、上記の通り
蓄冷器2に、高圧切替バルブ5a−高圧側圧力容器4a
と、低圧切替バルブ5b−低圧側圧力容器4bを、そし
てパルス管7に、回収用制御バルブ8a−回収側圧力容
器9aと、排出用制御バルブ8b−排出側圧力容器9b
を夫々設けるだけでなく、別ユニットとして、当該蓄冷
器2にバッチ操作高圧切替バルブ5A−バッチ操作高圧
側圧力容器4Aと、バッチ操作低圧切替バルブ5B−バ
ッチ操作低圧側圧力容器4Bを、そして、パルス管7に
は、バッチ操作回収用制御バルブ8A−バッチ操作回収
側圧力容器9Aと、バッチ操作排出用制御バルブ8B−
バッチ操作排出側圧力容器9Bが夫々増設されている。
That is, as shown in FIG. 5, in the regenerator 2 as described above, the high pressure switching valve 5a and the high pressure side pressure vessel 4a are provided.
A low pressure switching valve 5b-a low pressure side pressure vessel 4b, and a pulse tube 7, a recovery control valve 8a-a recovery side pressure vessel 9a, a discharge control valve 8b-a discharge side pressure vessel 9b.
In addition to each of the above, as a separate unit, a batch operation high pressure switching valve 5A-batch operation high pressure side pressure vessel 4A, a batch operation low pressure switching valve 5B-batch operation low pressure side pressure vessel 4B are provided in the regenerator 2, and The pulse tube 7 includes a batch operation recovery control valve 8A, a batch operation recovery side pressure vessel 9A, and a batch operation discharge control valve 8B.
The batch operation discharge side pressure vessels 9B are added respectively.

【0042】このように二組のユニットを設けること
で、図4に示す通り、例えば、5a、5b、8a、8b
が開成されて、高圧側圧力容器4aが90℃で加熱、低
圧側圧力容器4bが20℃で冷却、回収側圧力容器9a
が80℃で加熱、排出側圧力容器9bが25℃で冷却さ
れることで運転状態にあるときには、5A、5B、8
A、8Bは閉成状態とし、バッチ操作高圧側圧力容器4
Aは、20℃から90℃に加熱し、バッチ操作低圧側圧
力容器4Bは90℃から20℃に冷却し、バッチ操作回
収側圧力容器9Aは25℃から80℃へ加熱すると共に
バッチ操作排出側圧力容器9Bは80℃から25℃まで
冷却することにより運転可能状態にしておくのである。
By providing two sets of units in this way, as shown in FIG. 4, for example, 5a, 5b, 8a, 8b.
Is opened, the high pressure side pressure vessel 4a is heated at 90 ° C., the low pressure side pressure vessel 4b is cooled at 20 ° C., the recovery side pressure vessel 9a.
Is in operation by heating at 80 ° C. and cooling the discharge side pressure vessel 9 b at 25 ° C., 5A, 5B, 8
A and 8B are closed, and batch operation high pressure side pressure vessel 4
A is heated from 20 ° C to 90 ° C, batch operation low pressure side pressure vessel 4B is cooled from 90 ° C to 20 ° C, batch operation recovery side pressure vessel 9A is heated from 25 ° C to 80 ° C and batch operation discharge side The pressure vessel 9B is made operable by cooling from 80 ° C to 25 ° C.

【0043】次いで5a、5b,8a、8bを閉じて、
5A、5B、8A、8Bのバルブ操作により冷凍機とし
ての運転を行い、これと併行して、高圧側圧力容器4a
を90℃から20℃に冷却、低圧側圧力容器4bを20
℃から90℃に加熱、回収側圧力容器9aを80℃から
25℃に冷却し、そして排出側圧力容器9bを25℃か
ら80℃に加熱することで、これまた次の運転可能状態
を得るようにするのである。
Then, 5a, 5b, 8a and 8b are closed,
Operation as a refrigerator is performed by operating valves 5A, 5B, 8A, and 8B, and in parallel with this, the high-pressure side pressure vessel 4a.
Is cooled from 90 ° C to 20 ° C, and the low pressure side pressure vessel 4b is set to 20 ° C.
In order to obtain the next operable state, by heating from 90 ° C to 90 ° C, cooling the recovery side pressure vessel 9a from 80 ° C to 25 ° C, and heating the discharge side pressure vessel 9b from 25 ° C to 80 ° C. To do.

【0044】[0044]

【発明の効果】本発明は以上のように構成されたもので
あるから、請求項1のパルスチューブ冷凍機によるとき
は、圧縮機構を用いて高圧側圧力源と低圧側圧力源を用
いたものにおいて、回収用圧力容器と排出側圧力容器と
の間に生ずるガスの圧力差を利用して仕事回収機構を稼
動し、これにより得られたエネルギを、圧縮機構の入力
エネルギに戻すことができるため、冷凍効率の向上を図
ることができる。
Since the present invention is configured as described above, when the pulse tube refrigerator according to claim 1 is used, a high pressure side pressure source and a low pressure side pressure source are used by using a compression mechanism. In the above, since the work recovery mechanism is operated by utilizing the pressure difference of the gas generated between the recovery pressure container and the discharge side pressure container, the energy obtained by this can be returned to the input energy of the compression mechanism. Therefore, the refrigeration efficiency can be improved.

【0045】請求項2では、水素吸蔵合金に加えられた
熱エネルギにより発生するガス圧力源を利用したパルス
チューブ冷凍機に関し、回収側高圧容器における水素吸
蔵合金の発熱エネルギを、高圧側圧力容器における水素
吸蔵合金への入力エネルギとして帰還させ得るようにし
たことで、これまた冷凍効率の向上を実現することがで
きる。
According to a second aspect of the present invention, there is provided a pulse tube refrigerator utilizing a gas pressure source generated by the thermal energy applied to the hydrogen storage alloy, wherein the heat generation energy of the hydrogen storage alloy in the recovery side high pressure vessel is converted into the high pressure side pressure vessel. Since the energy can be fed back to the hydrogen storage alloy as input energy, the refrigeration efficiency can be improved.

【0046】請求項3の場合には、請求項2の効果に加
えて、さらに、低圧側高圧容器から冷却水が収受した熱
エネルギを、排出側高圧容器における水素吸蔵合金に対
する熱エネルギとして供与するようにしたので、それだ
け当該冷凍機の効率を上げることができる。
In the case of claim 3, in addition to the effect of claim 2, the thermal energy received by the cooling water from the low pressure side high pressure vessel is further donated as the thermal energy to the hydrogen storage alloy in the discharge side high pressure vessel. As a result, the efficiency of the refrigerator can be improved.

【0047】そして、請求項4によるときは、適切に構
成の配管により、熱エネルギの媒体として温水や冷却水
を適切に活用し得るようにしたので、上記請求項3と同
等の冷凍効率向上を期待し得るだけでなく、切替用循環
水路と、切替用冷却供給管の増設によって、水素吸蔵合
金の吸蔵量や放出量が限界に達した際にあって、これを
原状に復帰させて再生を可能とすることができる。
Further, according to claim 4, since the hot water or the cooling water can be appropriately utilized as the medium of the heat energy by the pipe having the proper structure, the refrigerating efficiency can be improved equivalent to that of the above-mentioned claim 3. Not only can it be expected, but when the amount of hydrogen storage alloy storage and release has reached the limit due to the addition of a switching circulating water channel and a switching cooling supply pipe, the hydrogen storage alloy is restored to its original state for regeneration. It can be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るパルスチューブ冷凍機に関し、請
求項1に係る一実施例を示した一部切欠の全体構成配管
図である。
FIG. 1 is a partially cutout overall configuration piping diagram showing an embodiment according to claim 1 of a pulse tube refrigerator according to the present invention.

【図2】本発明の他実施例を示した請求項2と請求項3
に係る冷凍機の一部切欠による全体構成配管説明図であ
る。
FIG. 2 is a second embodiment showing another embodiment of the present invention.
FIG. 5 is an explanatory diagram of the overall configuration of the refrigerator according to FIG.

【図3】本発明の請求項4に係る一実施例を示した一部
切欠の全体構成配管図である。
FIG. 3 is a partially cutaway overall configuration piping diagram showing an embodiment according to claim 4 of the present invention.

【図4】請求項2と請求項3に係るパルスチューブ冷凍
機にあって、これをバッチ式に運転可能とするため、二
つのユニットを構成部材として付設するようにした一方
のユニット稼動状態を示す要部構成説明図である。
FIG. 4 is a pulse tube refrigerator according to claim 2 and claim 3, wherein two units are attached as constituent members in order to enable the batch tube refrigerator to be operated, It is a principal part structure explanatory view shown.

【図5】図4のパルスチューブ冷凍機における他方のユ
ニット稼動状態を示している要部構成説明図である。
FIG. 5 is an explanatory diagram of a main part configuration showing the other unit operating state in the pulse tube refrigerator of FIG. 4;

【図6】従来の冷凍機を示し、(A)はスターリング冷
凍機、(B)はピストン型パルスチューブ冷凍機、
(C)はバルブ型パルスチューブ冷凍機の各縦断全体構
成説明図である。
FIG. 6 shows a conventional refrigerator, (A) is a Stirling refrigerator, (B) is a piston type pulse tube refrigerator,
(C) is an explanatory view of the overall configuration of each vertical section of the valve type pulse tube refrigerator.

【図7】従来のオリフィス型パルスチューブ冷凍機を示
す一部切欠の全体構成配管図である。
FIG. 7 is a partial cutaway overall configuration piping diagram showing a conventional orifice type pulse tube refrigerator.

【図8】従来のパルスチューブ冷凍機に係る他の例を示
した一部切欠の全体構成配管図である。
FIG. 8 is a partially cutout overall configuration piping diagram showing another example of a conventional pulse tube refrigerator.

【符号の説明】[Explanation of symbols]

1 再生熱交換器 2 蓄冷器 3 圧縮機構 3a 高圧側圧力源 3b 低圧側圧力源 4a 高圧側圧力容器 4b 低圧側圧力容器 5a 高圧切替バルブ 5b 低圧切替バルブ 6 低温部 7 パルス管 7a パルス管室温部 8a 回収用制御バルブ 8b 排出用制御バルブ 9a 回収側圧力容器 9b 排出側圧力容器 10 仕事回収機構 13 熱入力 14a 高圧側熱交換部 14b 回収側熱交換部 15a 低圧側熱交換部 15b 排出側熱交換部 16 加熱放出熱回収用加温装置 16a 熱入力用熱交換部 16b ポンプ 16c 循環温水路 16d 冷水供給用配管 16e 第1切替バルブ 16f 第2切替バルブ 17 切替用循環水路 17a 低圧側切替熱交換部 17b 排出側切替熱交換部 18 切替用冷水供給配管 18a 高圧側切替熱交換部 18b 回収側切替熱交換部 1 Regenerative heat exchanger 2 Regenerator 3 Compression mechanism 3a High pressure side pressure source 3b Low pressure side pressure source 4a High pressure side pressure vessel 4b Low pressure side pressure vessel 5a High pressure switching valve 5b Low pressure switching valve 6 Low temperature section 7 Pulse tube 7a Pulse tube room temperature section 8a Recovery control valve 8b Discharge control valve 9a Recovery side pressure vessel 9b Discharge side pressure vessel 10 Work recovery mechanism 13 Heat input 14a High pressure side heat exchange section 14b Recovery side heat exchange section 15a Low pressure side heat exchange section 15b Discharge side heat exchange Part 16 Heating device for recovering heat released heat 16a Heat exchange part for heat input 16b Pump 16c Circulating hot water channel 16d Cold water supply pipe 16e First switching valve 16f Second switching valve 17 Switching circulating water channel 17a Low pressure side switching heat exchange part 17b Discharge side switching heat exchange section 18 Switching cold water supply pipe 18a High pressure side switching heat exchange section 18b Recovery side switching Exchange unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 再生熱交換器を内蔵した蓄冷器には、圧
縮機構により生ずる高圧側圧力源を、順次連設の高圧側
圧力容器と高圧切替バルブを介し、上記圧縮機構により
生ずる低圧側圧力源を、順次連設の低圧側圧力容器と低
圧切替バルブを介して夫々連設し、当該蓄冷器に低温部
を介して連通のパルス管におけるパルス管室温部には、
夫々回収用制御バルブを介して回収側圧力容器と、排出
用制御バルブを介して排出側圧力容器とを夫々連設し、
上記の回収側圧力容器と排出側圧力容器との間に、仕事
回収機構を連設することにより、当該両圧力容器の圧力
差によって上記の仕事回収機構を稼動させ、当該稼動に
より得られたエネルギ源を、前記の圧縮機構を稼動する
入力エネルギとして帰還させるようにしたことを特徴と
するパルスチューブ冷凍機。
1. A regenerator having a built-in regenerative heat exchanger, a high pressure side pressure source generated by a compression mechanism, a low pressure side pressure generated by the compression mechanism through a high pressure side pressure vessel and a high pressure switching valve, which are successively connected. The sources are sequentially connected through the low-pressure side pressure vessel and the low-pressure switching valve that are sequentially connected, respectively, and the pulse tube room temperature portion in the pulse tube that is in communication with the regenerator through the low temperature portion,
A recovery-side pressure vessel and a discharge-side pressure vessel are connected in series via the recovery control valve and the discharge control valve, respectively.
By connecting a work recovery mechanism between the recovery side pressure vessel and the discharge side pressure vessel, the work recovery mechanism is operated by the pressure difference between the two pressure vessels, and the energy obtained by the operation is obtained. A pulse tube refrigerator in which a source is returned as input energy for operating the compression mechanism.
【請求項2】 再生熱交換器を内蔵した蓄冷器には、高
圧切替バルブを介して、熱入力により吸蔵水素ガスを放
出する水素吸蔵合金の封入された高圧側圧力容器と、低
圧切替バルブを介して、放熱により蓄冷器から流入の水
素ガスを吸蔵する水素吸蔵合金の封入された低圧側圧力
容器とを夫々連設し、当該蓄冷器に低温部を介して連通
のパルス管におけるパルス管室温部には、夫々回収用制
御バルブを介して、上記パルス管から流入の高温高圧水
素ガスを、放熱により吸蔵する水素吸蔵合金の封入され
た回収側圧力容器と、排出用制御バルブを介して、吸熱
により吸蔵水素ガスを放出する水素吸蔵合金の封入され
た排出側圧力容器とを夫々連設し、上記回収側圧力容器
における水素吸蔵合金に、前記高温高圧ガスが吸蔵され
る際に発生の熱エネルギを、前記した高圧側圧力容器に
付与される熱入力として帰還させるようにしたことを特
徴とするパルスチューブ冷凍機。
2. A regenerator with a built-in regenerative heat exchanger is provided with a high-pressure side pressure vessel filled with a hydrogen-absorbing alloy that releases stored hydrogen gas by heat input via a high-pressure switching valve, and a low-pressure switching valve. Through a low pressure side pressure vessel filled with a hydrogen storage alloy that stores the hydrogen gas flowing in from the regenerator through heat dissipation, and the pulse tube room temperature in the pulse tube in communication with the regenerator through the low temperature section. In the section, through the recovery control valve, respectively, the high-temperature high-pressure hydrogen gas flowing in from the pulse tube, the recovery-side pressure vessel filled with the hydrogen-absorbing alloy that absorbs heat by heat dissipation, and the exhaust control valve, A discharge side pressure vessel filled with a hydrogen storage alloy that releases a stored hydrogen gas by heat absorption is connected respectively, and the heat generated when the high temperature high pressure gas is stored in the hydrogen storage alloy in the recovery side pressure vessel. Energy A pulse tube refrigerator in which Rugi is returned as a heat input applied to the high-pressure side pressure vessel.
【請求項3】 再生熱交換器を内蔵した蓄冷器には、高
圧切替バルブを介して、熱入力により吸蔵水素ガスを放
出する水素吸蔵合金の封入された高圧側圧力容器と、低
圧切替バルブを介して、放熱により蓄冷器から流入の水
素ガスを吸蔵する水素吸蔵合金の封入された低圧側圧力
容器とを夫々連設し、当該蓄冷器に低温部を介して連通
のパルス管におけるパルス管室温部には、夫々回収用制
御バルブを介して、上記パルス管から流入の高温高圧水
素ガスを、放熱により吸蔵する水素吸蔵合金の封入され
た回収側圧力容器と、排出用制御バルブを介して、吸熱
により吸蔵水素ガスを放出する水素吸蔵合金の封入され
た排出側圧力容器とを夫々連設し、上記回収側圧力容器
における水素吸蔵合金に、前記高温高圧ガスが吸蔵され
る際に発生の熱エネルギを、前記した高圧側圧力容器に
付与される熱入力として帰還させると共に、前記低圧側
圧力容器の水素吸蔵合金からの放熱による熱エネルギ
を、冷却水による低圧側熱交換部により熱交換させ、こ
れによる加温冷水を、前記排水側出力容器の排出側熱交
換部に供与することで、当該排水側圧力容器内の水素吸
蔵合金から水素ガスを放出する熱エネルギが供与される
ようにしたことを特徴とするパルスチューブ冷凍機。
3. A regenerator with a built-in regenerative heat exchanger is provided with a high-pressure side pressure vessel in which a hydrogen-absorbing alloy that releases stored hydrogen gas by heat input through a high-pressure switching valve is enclosed, and a low-pressure switching valve. Through a low pressure side pressure vessel filled with a hydrogen storage alloy that stores the hydrogen gas flowing in from the regenerator through heat dissipation, and the pulse tube room temperature in the pulse tube in communication with the regenerator through the low temperature section. In the section, through the recovery control valve, respectively, the high-temperature high-pressure hydrogen gas flowing in from the pulse tube, the recovery-side pressure vessel filled with the hydrogen-absorbing alloy that absorbs heat by heat dissipation, and the exhaust control valve, A discharge side pressure vessel filled with a hydrogen storage alloy that releases a stored hydrogen gas by heat absorption is connected respectively, and the heat generated when the high temperature high pressure gas is stored in the hydrogen storage alloy in the recovery side pressure vessel. Energy Rugi is returned as a heat input applied to the high pressure side pressure vessel described above, and heat energy due to heat radiation from the hydrogen storage alloy of the low pressure side pressure vessel is heat-exchanged by the low pressure side heat exchange section by cooling water, By supplying the heated and cooled water to the discharge side heat exchange section of the drainage side output container, thermal energy for releasing hydrogen gas from the hydrogen storage alloy in the drainage side pressure container is provided. A pulse tube refrigerator.
【請求項4】 再生熱交換器を内蔵した蓄冷器には、高
圧切替バルブを介して、熱入力により吸蔵水素ガスを放
出する水素吸蔵合金の封入された高圧側圧力容器と、低
圧切替バルブを介して、放熱により蓄冷器から流入の水
素ガスを吸蔵する水素吸蔵合金の封入された低圧側圧力
容器とを夫々連設し、当該蓄冷器に低温部を介して連通
のパルス管におけるパルス管室温部には、夫々回収用制
御バルブを介して、上記パルス管から流入の高温高圧水
素ガスを、放熱により吸蔵する水素吸蔵合金の封入され
た回収側圧力容器と、排出用制御バルブを介して、吸熱
により吸蔵水素ガスを放出する水素吸蔵合金の封入され
た排出側圧力容器とを夫々連設し、前記した熱入力を、
高圧側圧力容器内の水素吸蔵合金に付与するための加熱
放出熱回収用加温装置は、熱入力用熱交換部とポンプと
を備えた循環温水路と、冷水供給用配管とを有し、当該
循環温水路には、高圧側圧力容器に内設した高圧側熱交
換部と、回収側圧力容器に内設した回収側熱交換部とが
直列に連結されると共に、冷水供給用配管には、低圧側
圧力容器に内設の低圧側熱交換部と、排出側圧力容器に
内設の排出側熱交換部とが直列に連結されていると共
に、上記加熱放出熱回収用加温装置における熱入力用熱
交換部とポンプの各外側端にあって、前記循環温水路に
設けた第1、第2切替バルブ間には切替用循環水路を並
列に分岐して、当該切替用循環水路には、低圧側圧力容
器に内設の低圧側切替熱交換部と、排出側圧力容器に内
設の排出側切替熱交換部とを直列に連設し、かつ、切替
用冷水供給配管には、高圧側圧力容器に内設の高圧側切
替熱交換部と、回収側圧力容器に内設の回収側切替熱交
換部とを直列に連結するようにしたことを特徴とするパ
ルスチューブ冷凍機。
4. A regenerator with a built-in regenerative heat exchanger is provided with a high-pressure side pressure vessel filled with a hydrogen storage alloy that releases stored hydrogen gas by heat input via a high-pressure switching valve, and a low-pressure switching valve. Through a low pressure side pressure vessel filled with a hydrogen storage alloy that stores the hydrogen gas flowing in from the regenerator through heat dissipation, and the pulse tube room temperature in the pulse tube in communication with the regenerator through the low temperature section. In the section, through the recovery control valve, respectively, the high-temperature high-pressure hydrogen gas flowing in from the pulse tube, the recovery-side pressure vessel filled with the hydrogen-absorbing alloy that absorbs heat by heat dissipation, and the exhaust control valve, A discharge side pressure vessel filled with a hydrogen storage alloy that releases stored hydrogen gas by heat absorption is provided in series, and the heat input is
The heating device for heating and releasing heat recovery for imparting to the hydrogen storage alloy in the high pressure side pressure vessel has a circulating hot water channel having a heat input heat exchange section and a pump, and a cold water supply pipe. The circulation hot water passage is connected in series with a high pressure side heat exchange section provided in the high pressure side pressure vessel and a recovery side heat exchange section provided in the recovery side pressure vessel, and is connected to a cold water supply pipe. , The low-pressure side heat exchange section internally provided in the low-pressure side pressure vessel and the discharge-side heat exchange section internally provided in the discharge-side pressure vessel are connected in series, and the heat in the heating device for heat release heat recovery is At each outer end of the input heat exchange unit and the pump, a switching circulation water channel is branched in parallel between the first and second switching valves provided in the circulation warm water channel, and the switching circulation water channel is connected to the switching circulation water channel. , The low-pressure side switching heat exchange section inside the low-pressure side pressure vessel and the discharge-side switching heat exchange inside the discharge-side pressure vessel And a cooling-side supply pipe for switching, a high-pressure side switching heat exchange section internally provided in the high-pressure side pressure vessel and a recovery-side switching heat exchange section internally provided in the recovery-side pressure vessel. A pulse tube refrigerator characterized in that the two are connected in series.
JP15805294A 1994-06-16 1994-06-16 Pulse tube refrigerator Expired - Fee Related JP3604733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15805294A JP3604733B2 (en) 1994-06-16 1994-06-16 Pulse tube refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15805294A JP3604733B2 (en) 1994-06-16 1994-06-16 Pulse tube refrigerator

Publications (2)

Publication Number Publication Date
JPH085173A true JPH085173A (en) 1996-01-12
JP3604733B2 JP3604733B2 (en) 2004-12-22

Family

ID=15663246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15805294A Expired - Fee Related JP3604733B2 (en) 1994-06-16 1994-06-16 Pulse tube refrigerator

Country Status (1)

Country Link
JP (1) JP3604733B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1733172A2 (en) * 2005-03-10 2006-12-20 Praxair Technology, Inc. Low frequency pulse tube with oil-free drive
CN103206802A (en) * 2013-02-25 2013-07-17 朱绍伟 Pulse tube expansion machine
CN103675542A (en) * 2013-12-06 2014-03-26 四川长虹电器股份有限公司 Automatic detection system of electric changeover valve of refrigerator
CN106813412A (en) * 2015-10-23 2017-06-09 住友重机械工业株式会社 GM refrigeration machines

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1733172A2 (en) * 2005-03-10 2006-12-20 Praxair Technology, Inc. Low frequency pulse tube with oil-free drive
EP1733172A4 (en) * 2005-03-10 2009-03-04 Praxair Technology Inc Low frequency pulse tube with oil-free drive
CN103206802A (en) * 2013-02-25 2013-07-17 朱绍伟 Pulse tube expansion machine
CN103675542A (en) * 2013-12-06 2014-03-26 四川长虹电器股份有限公司 Automatic detection system of electric changeover valve of refrigerator
CN106813412A (en) * 2015-10-23 2017-06-09 住友重机械工业株式会社 GM refrigeration machines
CN106813412B (en) * 2015-10-23 2019-08-16 住友重机械工业株式会社 GM refrigeration machine

Also Published As

Publication number Publication date
JP3604733B2 (en) 2004-12-22

Similar Documents

Publication Publication Date Title
JP4824256B2 (en) Apparatus and method for obtaining temperature stability in a two-stage cryocooler
JPH046357A (en) Operation method of heat utilizing apparatus using hydrogen-occlusion alloy
EP2391846A1 (en) Continuously-operated metal hydride hydrogen compressor, and method of operating the same
JPH085173A (en) Pulse tube refrigerator
EP0388132A1 (en) Thermal utilization system using hydrogen absorbing alloys
RU2131987C1 (en) Hear-transfer apparatus using stirling-cycle principle
US5048299A (en) Air conditioner for an automobile
JP3126086B2 (en) Compression metal hydride heat pump
JPH02130360A (en) Cooling and heating apparatus utilizing metal hydride
JPH0814678A (en) Pulse tube freezer machine with liquid piston
JP2525269B2 (en) Refrigeration system
JP3133442B2 (en) Heat driven cold heat generation method and apparatus using metal hydride
JP2000121197A (en) Heat pump and operation thereof
JP2000346483A (en) Heat pump
JPH06147686A (en) Low temperature generator using metal hydride
JP2703360B2 (en) Heat-driven chiller using metal hydride
JPH02110263A (en) Heat-utilizing system utilizing hydrogen storage alloy and operation thereof
JP2000018765A (en) Air conditioner
JPH04165271A (en) Cold-heat generating system
JPH0735427A (en) Pulse tube refrigerating machine
JP2002168541A (en) Heat utilizing system employing hydrogen occlusion material
JPH10122695A (en) Heat storage system using hydrogen storage alloy
JP3583185B2 (en) Cold heat generator using hydrogen storage alloy
JPH03105172A (en) Cooling device utilizing metal hydride
JPS6329184B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Effective date: 20040930

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20071008

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20101008

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees