JPH046357A - Operation method of heat utilizing apparatus using hydrogen-occlusion alloy - Google Patents
Operation method of heat utilizing apparatus using hydrogen-occlusion alloyInfo
- Publication number
- JPH046357A JPH046357A JP10517990A JP10517990A JPH046357A JP H046357 A JPH046357 A JP H046357A JP 10517990 A JP10517990 A JP 10517990A JP 10517990 A JP10517990 A JP 10517990A JP H046357 A JPH046357 A JP H046357A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- hydrogen
- hydrogen storage
- storage alloy
- heat medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 114
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 114
- 238000000034 method Methods 0.000 title claims abstract description 23
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 141
- 239000001257 hydrogen Substances 0.000 claims abstract description 141
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 126
- 238000011084 recovery Methods 0.000 claims abstract description 46
- 238000010438 heat treatment Methods 0.000 claims abstract description 31
- 150000002431 hydrogen Chemical class 0.000 claims description 15
- 239000006096 absorbing agent Substances 0.000 claims 1
- 230000003111 delayed effect Effects 0.000 abstract 1
- 238000001816 cooling Methods 0.000 description 19
- 239000000498 cooling water Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000011017 operating method Methods 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000002411 adverse Effects 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明は、水素吸蔵合金を利用した熱利用システム運転
方法に関し、特にヒートポンプ、熱輸送システム、冷熱
システムに応用して好適なるものである。[Detailed description of the invention] (a) Industrial application field The present invention relates to a method of operating a heat utilization system using a hydrogen storage alloy, and is particularly suitable for application to heat pumps, heat transport systems, and cooling and cooling systems. .
(ロ)従来の技術
水素吸蔵合金は一定の反応条件の下で、多量の水素を繰
り返し吸収、放出する特性を有し、と同時にこの吸収放
出時にかなりの反応熱を伴うことが知られている。(b) Conventional technology Hydrogen storage alloys have the property of repeatedly absorbing and releasing large amounts of hydrogen under certain reaction conditions, and at the same time, it is known that considerable reaction heat is generated during this absorption and release. .
この反応を利用して特開昭56−100276号公報や
特開昭58−22854号公報に開示されているように
、温冷熱を得る熱利用システムが既に提案されている。Heat utilization systems that utilize this reaction to obtain hot and cold heat have already been proposed, as disclosed in Japanese Patent Application Laid-open No. 56-100276 and Japanese Patent Application Laid-Open No. 58-22854.
しかしながら水素吸蔵合金を用いたこれらのシステムで
は、連続運転を可能とするために、それぞれ水素吸蔵合
金を収容した2つの水素吸蔵合金槽を水素配管で接続し
たユニットを少くとも2組設け、これらユニットを交互
に切替え運転することが不可欠である。ところが、交互
切り替え運転の際、今迄低熱熱媒が流れていた一方の水
素吸蔵合金槽に高温熱媒が、また高温熱媒が流れていた
他方の水素吸蔵合金槽に低温熱媒が流れるように熱媒経
路が切り換わるが、この場合、水素吸蔵合金容器の温度
を大きく変化させる必要があった。However, in these systems using hydrogen storage alloys, in order to enable continuous operation, at least two units are installed in which two hydrogen storage alloy tanks, each containing a hydrogen storage alloy, are connected by hydrogen piping. It is essential to alternately switch and operate the However, during alternating switching operation, the high-temperature heat medium now flows into one hydrogen storage alloy tank, where the low-temperature heat medium had been flowing, and the low-temperature heat medium now flows into the other hydrogen storage alloy tank, where the high-temperature heat medium had been flowing. In this case, the temperature of the hydrogen storage alloy container had to be changed significantly.
従って、このような操作を必要とすることが水素吸蔵合
金を用いた熱利用システムの熱効率を大きく低下させる
原因となっていた。これを改善するために、特開昭57
−104063号公報に見られるように2組の水素吸蔵
合金槽ユニットの各水素吸蔵合金容器で熱交換する構造
が提案されている。Therefore, the necessity of such operations has been a cause of a significant decrease in the thermal efficiency of heat utilization systems using hydrogen storage alloys. In order to improve this, Unexamined Japanese Patent Publication No. 57
As seen in Japanese Patent No. 104063, a structure has been proposed in which each hydrogen storage alloy container of two sets of hydrogen storage alloy tank units exchanges heat.
(ハ)発明が解決しようとする課題
しかし、上記公報に示すシステムの方法であると、その
ための付属装置が大きく、又効率良く熱利用システムの
余剰熱を回収する(顕熱回収)ものとはなっていなかっ
た。(c) Problems to be solved by the invention However, the system method shown in the above publication requires large attached equipment, and it is difficult to efficiently recover excess heat from the heat utilization system (sensible heat recovery). It wasn't.
本発明は、上記問題点に鑑み成されたもので、水素吸蔵
合金を利用した、ヒートポンプ、熱輸送、冷熱システム
等の熱利用システムの運転切替え時の顕熱回収を比較的
簡易な方法で高効率で行う高効率熱利用システムを提供
することを目的とする。The present invention has been made in view of the above-mentioned problems, and uses a relatively simple method to increase sensible heat recovery during operation switching of heat utilization systems such as heat pumps, heat transport, and cold storage systems that utilize hydrogen storage alloys. The purpose is to provide a highly efficient heat utilization system.
(ニ)課題を解決するための手段
本発明に係る熱利用゛システムおよびその運転方法は、
運転切り替えを行う熱媒配管切り過程で、3種の熱源も
しくは熱負荷から水素吸蔵合金槽に熱媒を供給する熱媒
配管を最初に切り替え、その後、遅延時間をもうけて水
素吸蔵合金槽から熱源もしくは熱負荷に熱媒を戻す熱媒
配管を切り替えることにより、熱利用システム内の余剰
熱を有効に利用する顕熱回収方法を採用し、特に顕熱回
収を行っている時の熱媒流量を熱利用システムの水素移
動時の熱媒流量に比べて少くなるように制御する。(d) Means for solving the problem The heat utilization system and its operating method according to the present invention are as follows:
In the heat medium piping cutting process for operation switching, the heat medium piping that supplies heat medium from three types of heat sources or heat loads to the hydrogen storage alloy tank is first switched, and then, after a delay time, the heat medium piping is switched from the hydrogen storage alloy tank to the heat source. Alternatively, by switching the heating medium piping that returns the heating medium to the heat load, a sensible heat recovery method is adopted that effectively utilizes the surplus heat in the heat utilization system, and in particular, the heating medium flow rate during sensible heat recovery can be reduced. The flow rate of the heat medium is controlled to be smaller than the flow rate of the heat medium during hydrogen transfer in the heat utilization system.
望ましくは、熱利用システム作動の熱媒流量に比べて1
73〜2/3の流量に減少させ熱交換率を高めて、高効
率の顕熱回収をしようとするものである。Preferably, 1 compared to the heat medium flow rate for operation of the heat utilization system.
The purpose is to reduce the flow rate to 73 to 2/3 and increase the heat exchange rate, thereby achieving highly efficient sensible heat recovery.
更に、上記熱媒流量を制御する運転方法とともに熱負荷
に供給する熱媒温度を感知して、その温度により熱負荷
への熱媒供給ポンプの運転・停止を制御することにより
、高効率熱利用システムを達成しようとするものである
。Furthermore, in addition to the operating method of controlling the heat medium flow rate described above, the temperature of the heat medium supplied to the heat load is sensed, and the operation/stop of the heat medium supply pump to the heat load is controlled based on that temperature, thereby achieving high efficiency heat utilization. system.
(ホ)作 用
顕熱回収を行う際の熱媒流量を熱利用システムの水素移
動時の熱媒流量とは関係なく、高効率顕熱回収が可能な
最適熱媒流量に設定するため、理想的な顕熱回収が達成
でき、しいては、高効率熱利用システムを提供すること
ができる。(e) Effect The heat medium flow rate when performing sensible heat recovery is set to the optimum heat medium flow rate that enables high-efficiency sensible heat recovery, regardless of the heat medium flow rate during hydrogen transfer in the heat utilization system. sensible heat recovery can be achieved, and a highly efficient heat utilization system can therefore be provided.
(へ)実施例 以下、本発明の実施例を図面とともに説明する。(f) Example Embodiments of the present invention will be described below with reference to the drawings.
第1図は冷熱発生システム等に応用可能な本発明の一実
施例に係る熱利用システムの構成概念図を示したもので
ある。FIG. 1 shows a conceptual diagram of the configuration of a heat utilization system according to an embodiment of the present invention which can be applied to cold heat generation systems and the like.
図において、LA、IBは、内部に後述する平衡特性図
に示す同一特性の水素吸蔵合金MH[1]を収容した水
素吸蔵合金槽で槽自身は耐圧性の材料例えばステンレス
鋼を用いて形成されている。そして水素吸蔵合金MH[
1]としては、その合金組成が希土類−Ni系のAB、
型金属を用いる。また、この各槽IA、IBには、熱交
換器2a 、 2bも収容され、この熱交換器2a 、
2bには熱媒管3,4を通して熱媒が供給されるよう
になっている。そして、各熱媒管3,4において熱交換
器2a 、 2bに対する熱媒の入口側、及び出口側に
は、切り替え弁5,6,7.8が設けられ、切り替え弁
5,6,7.8の切り替えによりI→ビを■→■′間を
循環している熱媒9,10が互いに交換して他の熱交換
器2a 、 2bに流入するように熱媒配管40.41
を構成して、熱媒経路が切り替え可能に形成される構成
となっている。11と12は上記熱媒循環系■→ I’
、II→■′に設けた熱媒の循環ポンプp1.p2であ
る。In the figure, LA and IB are hydrogen storage alloy tanks containing a hydrogen storage alloy MH [1] with the same characteristics as shown in the equilibrium characteristic diagram described later, and the tanks themselves are made of a pressure-resistant material such as stainless steel. ing. and hydrogen storage alloy MH [
1], AB whose alloy composition is rare earth-Ni based,
Use mold metal. In addition, heat exchangers 2a and 2b are also accommodated in these tanks IA and IB, and these heat exchangers 2a and 2b are
A heat medium is supplied to 2b through heat medium pipes 3 and 4. In each heat medium pipe 3, 4, switching valves 5, 6, 7.8 are provided on the inlet side and outlet side of the heat medium with respect to the heat exchangers 2a, 2b. The heating medium pipes 40 and 41 are arranged so that the heating mediums 9 and 10 circulating between I→VI and ■→■' exchange with each other and flow into the other heat exchangers 2a and 2b by switching 8.
The heating medium path is configured to be switchable. 11 and 12 are the heat medium circulation system ■→ I'
, II→■', a heating medium circulation pump p1. It is p2.
循環ポンプ11は、130〜150℃程度の高温熱媒9
を循環するためのもので、また循環ポンプ12は20〜
25℃程度の冷却源よりの熱媒10すなわち冷却水を循
環するためのものである。以上の構成をシステムlとす
る。The circulation pump 11 uses a high temperature heat medium 9 of about 130 to 150°C.
The circulation pump 12 is for circulating 20~
This is for circulating the heat medium 10, that is, cooling water, from a cooling source at about 25°C. The above configuration is referred to as system 1.
一方、17A、17Bは、前述した水素吸蔵合金M)I
[1]とは、平衡水素圧力が同一温度では高くなってい
る特性をもつ水素吸蔵合金MH[2]をそれぞれ収容し
た2つの水素吸蔵合金槽である。この合金槽17A。On the other hand, 17A and 17B are the aforementioned hydrogen storage alloys M)I
[1] are two hydrogen storage alloy tanks each containing a hydrogen storage alloy MH[2] having a characteristic that the equilibrium hydrogen pressure is high at the same temperature. This alloy tank 17A.
17Bもステンレス鋼より成ると共に、この水素吸蔵合
金MH[2]も希土類−Ni系のAB、型金属である。17B is also made of stainless steel, and this hydrogen storage alloy MH[2] is also a rare earth-Ni based AB type metal.
そして、この水素吸蔵合金槽17A、17Bの設けられ
ているシステム■側においても、システムIと同様に、
各槽17A、17B内に設けた熱交換器18a、18b
とそれぞれの熱交換器18a、18bに熱媒を供給する
熱媒管19,20と熱媒管19,20の熱媒入口側と出
口側にそれぞれ設けた切替弁21,22,23.24と
、並びに熱媒の循環系m−m’ 、rv−rv’間に熱
媒を循環させる循環ポンプ(P□、P4)25,26と
を備える。又、切替弁21,22,23.24を切替え
操作することによって、m−m’ とIV−IV’間を
循環している熱媒27,30が互いに交換して他の熱交
換器18a、18bに流入するように熱媒配管50,5
1を構成して熱媒経路が切り替え可能に形成される構成
となっている。Similarly to system I, on the system ■ side where the hydrogen storage alloy tanks 17A and 17B are installed,
Heat exchangers 18a and 18b provided in each tank 17A and 17B
and heat medium pipes 19, 20 that supply heat medium to the respective heat exchangers 18a, 18b, and switching valves 21, 22, 23, 24 provided on the heat medium inlet side and outlet side of the heat medium pipes 19, 20, respectively. , and circulation pumps (P□, P4) 25, 26 that circulate the heat medium between the heat medium circulation systems m-m' and rv-rv'. Also, by switching the switching valves 21, 22, 23.24, the heat medium 27, 30 circulating between m-m' and IV-IV' are exchanged with each other and transferred to other heat exchangers 18a, The heat medium pipes 50, 5 flow into the heat medium pipe 18b.
1, and the heat medium path is switchably formed.
循環ポンプ25は、20〜25℃程度の冷却源よりの熱
媒(冷却水)27を循環するためのもので、循環ポンプ
26は、冷凍倉庫等の熱負荷に冷熱を供給する熱媒30
を循環するためのものである。The circulation pump 25 is for circulating a heat medium (cooling water) 27 from a cooling source of about 20 to 25 degrees Celsius, and the circulation pump 26 is for circulating a heat medium 30 that supplies cold heat to a heat load such as a refrigerated warehouse.
It is for circulating.
そして、水素吸蔵合金槽IA、IBと水素吸蔵合金槽1
7A、17Bとは水素配管31.32で接続され、その
中途に設けた開閉弁33.34により、水素の往来を可
能としている。Then, hydrogen storage alloy tanks IA and IB and hydrogen storage alloy tank 1
7A and 17B are connected by hydrogen pipes 31.32, and an on-off valve 33.34 provided in the middle allows hydrogen to flow back and forth.
以上の構成で、高温熱媒9を熱交換器2aに供給するよ
う切替え弁5,7を操作し、水素吸蔵合金槽IA内に水
素を発生させ、一方低温熱媒(冷却水)27を熱交換器
18aに供給するように切替え弁21.23を操作し、
同時に低温熱媒(冷却水)10を熱交換器2bに供給す
るように切替え弁6,8を操作する。With the above configuration, the switching valves 5 and 7 are operated to supply the high temperature heat medium 9 to the heat exchanger 2a, hydrogen is generated in the hydrogen storage alloy tank IA, and the low temperature heat medium (cooling water) 27 is heated. operating the switching valve 21.23 to supply the exchanger 18a;
At the same time, the switching valves 6 and 8 are operated to supply the low temperature heat medium (cooling water) 10 to the heat exchanger 2b.
また、熱交換器18bには、冷凍倉庫等の熱負荷からの
戻り熱媒30を供給するように切替え弁22゜24を操
作する。この状態で、水素配管3+、、32の開閉弁3
3.34を開閉させる。Further, the switching valves 22 and 24 are operated to supply the heat exchanger 18b with the return heat medium 30 from a heat load such as a refrigerated warehouse. In this state, the on-off valve 3 of the hydrogen pipes 3+, 32
3. Open and close 34.
ところで、各水素吸蔵合金槽IA、IB、17A、1.
7Bに収容されている水素吸蔵合金MH[1]、MH[
2]は第2図のvan’t Hoffプロットで示す平
衡特性を有している。即ち、水素吸蔵合金MH[l]は
与えられた温度条件の下で、実線イで示す水素解離特性
と点線イ′で示す水素吸収特性をもつ。又水素吸蔵合金
MH[2]も同様に実線口で示す水素解離特性と口′で
示す水素吸収特性を持つ。従って、全上記の如き熱媒配
管であると、I→ビ系の高温熱媒9の循環する水素吸蔵
合金IA内の水素吸蔵合金MH[1]は平衡特性イで水
素H2を発生している。そして。By the way, each hydrogen storage alloy tank IA, IB, 17A, 1.
Hydrogen storage alloys MH[1] and MH[ accommodated in 7B
2] has the equilibrium characteristics shown in the van't Hoff plot in FIG. That is, the hydrogen storage alloy MH[l] has hydrogen dissociation characteristics shown by the solid line A and hydrogen absorption characteristics shown by the dotted line A' under given temperature conditions. Similarly, the hydrogen storage alloy MH[2] has hydrogen dissociation properties indicated by the solid line openings and hydrogen absorption properties indicated by the openings '. Therefore, with the heating medium piping as described above, the hydrogen storage alloy MH[1] in the hydrogen storage alloy IA through which the I→Bi system high temperature heating medium 9 circulates generates hydrogen H2 with the equilibrium characteristic A. . and.
この水素H2は■→■′系の熱媒27の循環する水素吸
蔵合金槽17^内の水素吸蔵合金MH[2]が平衡特性
口′を示す関係から、同図中のA点より0点に示す如く
水素配管31を介して移動し、この水素吸蔵合金MH[
2]に水素が吸収されて熱が発生し、この熱は冷却水2
7により取り除かれる。Since the hydrogen storage alloy MH[2] in the hydrogen storage alloy tank 17^ in which the heating medium 27 of the ■→■' system circulates exhibits an equilibrium characteristic mouth, this hydrogen H2 moves from point A to point 0 in the figure. As shown in the figure, the hydrogen storage alloy MH[
2] absorbs hydrogen and generates heat, and this heat is transferred to the cooling water 2
removed by 7.
一方、■→■′の冷却水10の循環する水素吸蔵合金槽
IB内の水素吸蔵合金Ml(El]は平衡特性イ′によ
って、水素H2を吸収できるような低い圧力状態に保持
されている。また、水素吸蔵合金槽17B内の水素吸蔵
合金MH[2]は水素配管32内のバルブ34を開放す
ることにより、水素吸蔵合金槽IB内の水素吸蔵合金M
H[1]の圧力に誘導されて低圧状態になり、同時に水
素吸蔵合金MHE2]は平衡特性口上を伝って低温化す
る。この状態の時、水素H□は第2図中のD点より8点
に示す如く水素配管32を介して、水素吸蔵合金槽17
Bから水素吸蔵合金槽IBへと移動する。よって、水素
吸蔵合金槽17Bでは吸熱反応が行われ、熱交換器18
bにより熱媒30は低温化されて、冷熱が取り出される
。従ってこの冷熱を、冷凍倉庫等の熱負荷(図示せず)
からの戻り熱媒30により回収し、再び冷凍倉庫等の熱
負荷に冷熱を供給する。上記した過程を第1過程とする
。なお、上記文中のA点、0点及び8点、D点は第1図
の水素吸蔵合金槽LA、17A及びIB、17B内の各
水素吸蔵合金MH[1]、MH[2]に付したアルファ
ベットA、C。On the other hand, the hydrogen storage alloy Ml (El) in the hydrogen storage alloy tank IB through which the cooling water 10 from ■→■' circulates is maintained at a low pressure state where it can absorb hydrogen H2 due to the equilibrium characteristic A'. Furthermore, by opening the valve 34 in the hydrogen pipe 32, the hydrogen storage alloy MH[2] in the hydrogen storage alloy tank 17B can be removed from the hydrogen storage alloy M in the hydrogen storage alloy tank IB.
It is induced by the pressure of H[1] to be in a low pressure state, and at the same time, the hydrogen storage alloy MHE2] lowers in temperature due to its equilibrium characteristic. In this state, hydrogen H
Move from B to hydrogen storage alloy tank IB. Therefore, an endothermic reaction occurs in the hydrogen storage alloy tank 17B, and the heat exchanger 18
The temperature of the heating medium 30 is lowered by b, and cold heat is extracted. Therefore, this cold energy is transferred to the heat load (not shown) of the refrigerated warehouse, etc.
The heat is recovered by the return heat medium 30 from the heat exchanger, and the cold heat is again supplied to a heat load such as a refrigerated warehouse. The above process is referred to as the first process. Note that points A, 0, 8, and D in the above text are assigned to the hydrogen storage alloys MH[1] and MH[2] in the hydrogen storage alloy tanks LA, 17A, IB, and 17B in Figure 1. Alphabet A, C.
B、Dに対応して代用したものである。This is a substitute corresponding to B and D.
ここで、両過程の水素移動が終了した時点で、開閉弁3
3.34を閉めて、水素移動を止める。その後連続運転
を行うべく、切替え弁5,6,7,8,21,22゜2
3 、24を切替えると、各水素吸蔵合金IA、17A
とIB。Here, when the hydrogen transfer in both processes is completed, the on-off valve 3
3. Close 34 to stop hydrogen transfer. After that, in order to perform continuous operation, the switching valves 5, 6, 7, 8, 21, 22°2
3, 24, each hydrogen storage alloy IA, 17A
and I.B.
17Bとの間で逆の過程(第2過程)が行われて、水素
吸蔵合金槽17Aの方より冷熱の回収が行われる。A reverse process (second process) is performed between the tank 17B and the hydrogen storage alloy tank 17A, and cold energy is recovered from the hydrogen storage alloy tank 17A.
即ち、今度は熱媒30が■→循環ポンプ26→切替え弁
22→熱交換器18a→切替え弁23→■′と流れて。That is, this time, the heat medium 30 flows as follows: ■→circulation pump 26→switching valve 22→heat exchanger 18a→switching valve 23→■'.
水素吸蔵合金槽17Aの方から冷熱の回収が行われる。Cold heat is recovered from the hydrogen storage alloy tank 17A.
ところで、この運転の切り替えの際、例えばI→ビ系と
■→■′系に於いて、熱媒入口側の切替弁5,6と熱媒
出口側の切替弁7,8を同時に切り替えると1次のよう
な不都合が生じる。すなわち、切り替えにより水素吸蔵
合金槽IAには、20〜25℃の冷却水が入り、また水
素吸蔵合金槽IBには130〜150℃の高温熱媒が流
入するが、切り替え直後には、水素吸蔵合金IAは高温
に保持されていたため水素吸蔵合金槽IAからは高温熱
媒がIA→7→■′→■→6→IAの経路で流入し、冷
却源(図示せず)に過大な冷却能力を要求する。同様に
、水素吸蔵合金槽IBに於いても、切り替え直後、水素
吸蔵合金IBは低温に保持されていたため水素吸蔵合金
槽IBから低温熱媒(20〜25℃)が切替弁8により
IB→8→I′→Iの経路で流入し、熱源(図示せず)
に過大な加熱能力を要求する。By the way, when switching this operation, for example in the I→VI system and the ■→■' system, if the switching valves 5 and 6 on the heat medium inlet side and the switching valves 7 and 8 on the heat medium outlet side are switched at the same time, 1 The following inconveniences occur. That is, upon switching, cooling water at 20 to 25°C flows into the hydrogen storage alloy tank IA, and high temperature heating medium at 130 to 150°C flows into the hydrogen storage alloy tank IB. Since Alloy IA was kept at a high temperature, high-temperature heating medium flows from hydrogen storage alloy tank IA through the route IA → 7 → ■' → ■ → 6 → IA, causing excessive cooling capacity to the cooling source (not shown). request. Similarly, in the hydrogen storage alloy tank IB, immediately after switching, the hydrogen storage alloy IB was kept at a low temperature, so the low temperature heat medium (20 to 25°C) was transferred from the hydrogen storage alloy tank IB to IB → 8 by the switching valve 8. →I′→I, and the heat source (not shown)
requires excessive heating capacity.
このように、切替弁5,6,7.8を全て同時に切り替
えると、(−+ I’系、■→■′系のシステムに存在
する顕熱がそのシステム作動に悪影響を与える。同様に
、■→■′系および■→■′系においても切替弁21,
22,23,24の同時切り替えにより、各水素吸蔵合
金槽17A、17Bの持つ顕熱が上記と同じようにシス
テムの作動に悪影響を与えることとなる。In this way, if all the switching valves 5, 6, and 7.8 are switched at the same time, the sensible heat existing in the (-+ I' system, ■→■' system) will adversely affect the system operation.Similarly, Also in the ■→■′ system and the ■→■′ system, the switching valve 21,
Due to the simultaneous switching of hydrogen storage alloy tanks 22, 23, and 24, the sensible heat of each hydrogen storage alloy tank 17A, 17B will adversely affect the operation of the system in the same way as described above.
そこで、この顕熱をシステム内に於いて有効に利用でき
るように、熱媒入口側にある切替弁5,6および21.
22のみを最初に切替える。すなわち。Therefore, in order to effectively utilize this sensible heat within the system, switching valves 5, 6 and 21.
Only 22 is switched first. Namely.
熱媒配管40.50の方が先に切替わる。こうすると、
例えば水素吸蔵合金槽IA内の顕熱を含んだ熱媒(高温
熱媒)はI→11→5→2b→8→■′→■→10→6
→2a→7→■′→■となる閉じた熱媒経路を流れ。The heat medium pipe 40.50 is switched first. This way,
For example, the heating medium containing sensible heat (high temperature heating medium) in the hydrogen storage alloy tank IA is I → 11 → 5 → 2b → 8 → ■' → ■ → 10 → 6
→2a→7→■′→■Flows through a closed heat medium path.
熱源、冷却源に過大な負荷がかからず、すなわち、合金
槽IA、IBの顕熱が有効に利用(顕熱回収)されるこ
とになる。このように、水素吸蔵合金槽IA。An excessive load is not placed on the heat source and the cooling source, and in other words, the sensible heat of the alloy tanks IA and IB is effectively utilized (sensible heat recovery). In this way, the hydrogen storage alloy tank IA.
18間で熱の受給が成されて有効に顕熱の回収をするこ
とができる。Heat is received within 18 hours, and sensible heat can be effectively recovered.
このような手法を取ることによって顕熱の回収を行い、
その後10〜30秒の間隔をおいて、熱媒出口側の各切
替弁7,8,23.24を切替えることにより、熱媒配
管41,51も切替えられて、完全なシステムの運転切
替えとなる。また、水素移動は、完全なシステムの運転
切替え後30〜60秒経過後、水素の開閉弁33.34
を開放して行う。こうして、今度は水素吸蔵合金槽IB
から水素吸蔵合金槽17Bに水素H2が移動し、また水
素吸蔵合金槽17Aから水素吸蔵合金槽IAに水素H2
が移動する逆の過程が行われて、水素吸蔵合金槽17A
より冷熱の回収が行われる。By taking such a method, sensible heat is recovered,
After that, by switching the switching valves 7, 8, 23.24 on the heat medium outlet side at intervals of 10 to 30 seconds, the heat medium pipes 41, 51 are also switched, resulting in complete system operation switching. . In addition, hydrogen transfer will begin after 30 to 60 seconds have passed after the complete system operation has been switched, and the hydrogen on-off valve 33.34
Do this by opening up. In this way, hydrogen storage alloy tank IB
Hydrogen H2 moves from the hydrogen storage alloy tank 17B to the hydrogen storage alloy tank 17B, and hydrogen H2 moves from the hydrogen storage alloy tank 17A to the hydrogen storage alloy tank IA.
The reverse process of moving is performed, and the hydrogen storage alloy tank 17A
More cold energy is recovered.
而るに、顕熱回収はシステムが完全に切り替り間の10
〜30秒という短い時間内に行うこととなるので、効率
的な熱交換をすることが要求される。However, the sensible heat recovery system has been completely switched over for 10 days.
Since this is carried out within a short time of ~30 seconds, efficient heat exchange is required.
そこで、本発明では顕熱回収時に、熱媒流量を少くして
、各槽内にある熱交換器より熱媒に顕熱が効果的に熱交
換できるようにする。従来では水素゛移動をさせてシス
テムが作動している時の熱媒流量と変わらない量の熱媒
が顕熱回収時にも流れていて、しかも10秒程度の短い
時間しか流れず回収が終了してしまうが、本発明では、
熱媒を流す時間も10秒以上(10〜30秒)として、
ゆっくりと少い量の熱媒を流すことによって、高効率な
顕熱回収方法とする。Therefore, in the present invention, when recovering sensible heat, the flow rate of the heat medium is reduced so that sensible heat can be effectively exchanged with the heat medium from the heat exchanger in each tank. Conventionally, the same amount of heat medium flows during sensible heat recovery as when the system is operating by transferring hydrogen, and it only flows for a short period of about 10 seconds before recovery is complete. However, in the present invention,
The time for flowing the heat medium is also 10 seconds or more (10 to 30 seconds),
A highly efficient sensible heat recovery method is achieved by slowly flowing a small amount of heat medium.
熱媒の流量変化は、各ポンプ11,12,25.26の
運転能力を調整する等して対応できる。すなわち、上述
した10〜30秒の顕熱回収時の熱媒流量を、水素移動
を行う場合の熱媒流量に比べて少く変化させるようにな
っていることが本発明の特徴とするところである。Changes in the flow rate of the heat medium can be handled by adjusting the operating capacity of each pump 11, 12, 25, 26, etc. That is, the present invention is characterized in that the heat medium flow rate during sensible heat recovery for 10 to 30 seconds described above is changed by a smaller amount than the heat medium flow rate when hydrogen transfer is performed.
このようにして、顕熱回収時の顕熱回収率を高効率にし
、−尚かつ、冷凍システムを高効率化及び高出力化しよ
うとしたものである。具体的に、顕熱回収時の熱媒流量
を最適にするために、システムを試作し、熱媒流量と顕
熱回収率の関係を調べた。In this way, the objective is to increase the efficiency of sensible heat recovery during sensible heat recovery, and also to increase the efficiency and output of the refrigeration system. Specifically, in order to optimize the heat medium flow rate during sensible heat recovery, we prototyped a system and investigated the relationship between heat medium flow rate and sensible heat recovery rate.
試作冷熱システムは、水素吸蔵合金槽IA、IB。The prototype cooling and heating system consists of hydrogen storage alloy tanks IA and IB.
17A、17Bにそれぞれ16kgの水素吸蔵合金MH
[1]、MH[2]を充填して運転を行った。この運転
において、水素移動を行う場合の熱媒9,10,27.
30の流量は10fl /winである。16 kg of hydrogen storage alloy MH for each of 17A and 17B
[1] and MH[2] were charged and the operation was performed. In this operation, heating mediums 9, 10, 27 .
The flow rate of No. 30 is 10 fl/win.
先ず、上記試作の冷熱システムで、従来の顕熱回収方法
を試みた。すなわち、熱媒流量はシステム作動時と変わ
らない10 Q /minの流量は熱媒を流し、前述の
ように水素吸蔵合金槽の前後のバルブの切替えに遅延を
もたせて、顕熱回収を行った結果、遅延時間10sec
で最大の顕熱回収ができ、その時の顕熱回収率(顕熱交
換率)は50%であった。First, we tried the conventional sensible heat recovery method using the above prototype cooling and heating system. In other words, the heat medium was flowed at a flow rate of 10 Q/min, which is the same as when the system is operating, and sensible heat recovery was performed by delaying the switching of the valves before and after the hydrogen storage alloy tank as described above. As a result, the delay time is 10 seconds
The maximum sensible heat recovery was achieved at this time, and the sensible heat recovery rate (sensible heat exchange rate) at that time was 50%.
次に本発明の方法を試みた。すなわち、顕熱回収を行う
期間だけ熱媒流量を変化させ、顕熱回収率を測定したも
のである。その結果は第3図に示す通りである。なお、
同図中、縦方向の点線ハは、熱媒流量がシステム作動時
と変わらない流量(10Q /win)で、切換遅延時
間10秒の場合の顕熱回収率(50%)を示している。Next, the method of the present invention was tried. That is, the heat medium flow rate was varied only during the period during which sensible heat recovery was performed, and the sensible heat recovery rate was measured. The results are shown in FIG. In addition,
In the figure, the vertical dotted line C indicates the sensible heat recovery rate (50%) when the heat medium flow rate is the same as when the system is operating (10Q/win) and the switching delay time is 10 seconds.
第3図から分かるように、顕熱回収を行う熱媒流量を低
下させた場合の顕熱回収率は大きく上昇することが分か
った。一方、熱媒流量を低下させた場合は、高効率顕熱
回収ができるが、ゆっくりと顕熱を回収するために、水
素吸蔵合金槽の前後のバルブを切替える遅延時間が長く
なり、熱媒流量5 Q /minでは25〜30sec
、それ以下の流量ではより長い時間を必要とする。従っ
て、大きく熱媒流量を低下させた場合は、水素ガスの移
動を停止している期間が長くなり、冷熱システムの熱出
力を低下させる。そこで、顕熱回収時の熱媒流量を変化
させた場合の冷熱システムの熱出力について調べた。As can be seen from FIG. 3, it was found that the sensible heat recovery rate increased significantly when the flow rate of the heat medium for sensible heat recovery was reduced. On the other hand, if the heat medium flow rate is lowered, highly efficient sensible heat recovery is possible, but in order to recover sensible heat slowly, the delay time for switching the valves before and after the hydrogen storage alloy tank becomes longer, and the heat medium flow rate increases. 5 Q/min is 25~30sec
, lower flow rates require longer times. Therefore, if the heat medium flow rate is significantly reduced, the period during which the movement of hydrogen gas is stopped becomes longer, which reduces the thermal output of the cooling and heating system. Therefore, we investigated the thermal output of the cooling and heating system when changing the heat medium flow rate during sensible heat recovery.
第4図は、熱媒流量の熱出力に対する影響をプロットし
たものであり、この図より通常運転の熱媒流量10 Q
/m1n(ニ)に対して、顕熱回収時の熱媒流量を1
/3〜2/3(ホ〜への間)に低下させることが。Figure 4 plots the influence of heat medium flow rate on heat output, and from this figure, the heat medium flow rate during normal operation is 10Q.
/m1n(d), the heat medium flow rate during sensible heat recovery is 1
/3 to 2/3 (between E and E).
冷熱システムの高効率化、高出力化につながる運転方法
であることが分かった。It was found that this is an operating method that leads to higher efficiency and higher output of the cooling and heating system.
更に本発明では、熱回収用の熱媒を熱負荷に供給する循
環ポンプ26を熱回収熱媒30の温度に応じて、その運
転、停止をするように制御して、温度的に安定した熱媒
が供給できるようにしている特徴をも有する。Furthermore, in the present invention, the circulation pump 26 that supplies the heat medium for heat recovery to the heat load is controlled to operate or stop depending on the temperature of the heat recovery heat medium 30, thereby generating temperature-stable heat. It also has the feature of being able to supply a medium.
すなわち、上記のように顕熱回収時の熱媒流量を制御す
ることにより高効率顕熱回収を達成した後、次の過程で
は、水素吸蔵合金M)I[2]の充填されている水素吸
蔵合金槽の他方の槽から冷熱が回収され、冷凍倉庫等の
熱負荷に冷熱′を供給される訳であるが、過程の初期に
おいては、水素吸蔵合金槽は充分に冷却されていない。That is, after achieving highly efficient sensible heat recovery by controlling the heat medium flow rate during sensible heat recovery as described above, in the next process, the hydrogen storage alloy filled with hydrogen storage alloy M) I [2] Cold energy is recovered from the other tank of the alloy tank and supplied to heat loads such as cold storage warehouses, but at the beginning of the process, the hydrogen storage alloy tank is not sufficiently cooled.
仮に、水素吸蔵合金槽1.7Bより冷熱を取り出してい
る状態から、運転が切り替わり、水素吸蔵合金槽17A
から冷熱を取り出す状態となったとすると、切替えの初
期には、水素吸蔵合金槽IAが冷却水10により水素H
2を吸収できるような低い圧力状態及び低温状態とはま
だ充分にされていない。よって、水素配管31を通して
の水素吸蔵合金槽17Aから水素吸蔵合金槽IAへの水
素H2の移動が充分でなく、水素吸蔵合金槽17Aは十
分に低温化されておらず、その槽17A内の熱交換器1
8aより出る熱媒30は温度的に高いままである。Suppose that the operation is switched from the state in which cold energy is extracted from the hydrogen storage alloy tank 1.7B, and the hydrogen storage alloy tank 17A
Assuming that cold energy is extracted from the hydrogen storage alloy tank IA, at the initial stage of switching, the hydrogen storage alloy tank IA is heated by the cooling water 10.
The low pressure and low temperature conditions that allow the absorption of 2 have not yet been achieved. Therefore, hydrogen H2 is not sufficiently transferred from the hydrogen storage alloy tank 17A to the hydrogen storage alloy tank IA through the hydrogen pipe 31, and the temperature of the hydrogen storage alloy tank 17A is not sufficiently lowered, and the heat inside the tank 17A is exchanger 1
The heat medium 30 exiting from 8a remains high in temperature.
従って、この状況時でも循環ポンプ26が運転されるよ
うであると、熱負荷には温熱が供給され、冷熱システム
が十分に機能しなくなる。そこでこの場合、熱負荷から
の戻り熱媒を循環するポンプ26を、この水素吸蔵合金
MH[2]の温度により運転、停止するように制御する
ことにより、熱負荷に高温熱の流入を防ぎ、効率良く運
転することができる。その為に、水素吸蔵合金にH[2
]の温度を検出する温度検出手段35を水素吸蔵合金槽
17A 、 17Bに配置する。そして、この温度計測
手段35により、熱媒温度が成る設定温度以下として検
出された時は循環ポンプ26を停止し、それ以上の温度
にある時は運転を継続するように構成する。こうするこ
とによって、十分冷却された熱媒30が熱負荷に安定供
給でき、高出力の冷熱システムとなる。Therefore, if the circulation pump 26 is operated even in this situation, warm heat will be supplied to the heat load, and the cooling/heating system will not function sufficiently. Therefore, in this case, the pump 26 that circulates the return heat medium from the heat load is controlled to operate and stop depending on the temperature of the hydrogen storage alloy MH[2], thereby preventing high-temperature heat from flowing into the heat load. Able to drive efficiently. Therefore, H[2
] Temperature detection means 35 for detecting the temperature is arranged in the hydrogen storage alloy tanks 17A and 17B. When the temperature measurement means 35 detects that the heat medium temperature is below a set temperature, the circulation pump 26 is stopped, and when the temperature is higher than that, the circulation pump 26 is continued to operate. By doing so, the sufficiently cooled heat medium 30 can be stably supplied to the heat load, resulting in a high-output cooling/heating system.
このように、顕熱回収時の熱媒流量を制御すること、及
び必要に応じて熱回収熱媒の温度に応じて、熱回収熱媒
の循環ポンプの運転、停止を制御することにより、高効
率、高出力冷熱システムを提供することができる。また
、上記の運転方法は、水素吸蔵合金を利用したヒートポ
ンプシステム、熱輸送システムにも全く同様に適用でき
ることは言うまでもない。In this way, by controlling the flow rate of the heat medium during sensible heat recovery and, if necessary, controlling the operation and stop of the circulation pump for the heat recovery heat medium according to the temperature of the heat recovery heat medium, high heat recovery can be achieved. Able to provide efficient, high output cooling and heating systems. Furthermore, it goes without saying that the above operating method can be applied to heat pump systems and heat transport systems using hydrogen storage alloys in exactly the same way.
(ト)発明の効果
以上のように本発明によ九ば、水素吸蔵合金を用いた熱
利用システムにおいて、運転の交互切り替え時に、シス
テム内の顕熱を回収する時、流す熱媒の量をシステム作
動時の熱媒流量より少くし、そしてゆっくりと循環させ
ることで、熱交換率を高めて、より効率的な顕熱回収を
可能とできる。(g) Effects of the Invention As described above, the present invention provides that, in a heat utilization system using a hydrogen storage alloy, when recovering sensible heat in the system during alternating operation, the amount of heat medium flowing can be reduced. By making the flow rate of the heat medium smaller than when the system is operating and circulating it slowly, the heat exchange rate can be increased and more efficient sensible heat recovery can be achieved.
また、水素吸蔵合金の温度が測られて、熱負荷へ熱回収
用熱媒を供給する循環ポンプの訃動、停止を制御するよ
うにしたので、運転切替時の未だ十分に冷熱、或いは温
熱となっていない熱媒が熱負荷に流入しないように抑制
することができ、利用温度レベル以上の良質の熱を安定
して供給できる。In addition, the temperature of the hydrogen storage alloy is measured to control the failure and stoppage of the circulation pump that supplies the heat medium for heat recovery to the heat load, so there is still sufficient cold or heat at the time of operation switching. It is possible to prevent the unused heat medium from flowing into the heat load, and it is possible to stably supply high-quality heat above the usage temperature level.
このように5本発明の運転方法を採用することにより、
水素吸蔵合金を用いた冷熱システムヒートポンプ、熱輸
送システムにおいて、高効率運転、高出力運転が可能で
あり、その工業的価値は大である。In this way, by adopting the operating method of the present invention,
High-efficiency and high-output operation are possible in cold-heat system heat pumps and heat transport systems using hydrogen storage alloys, and their industrial value is great.
第1図は水素吸蔵合金を用いた冷熱システムのシステム
構成図、第2図はvan’t Hoff図上に示した第
1図の冷熱システムに係る冷却サイクル図、第3図は熱
媒流量による顕熱回収率の変化を示す実験測定結果図、
第4図は熱媒流量にょる熱出力の変化を示す実験測定結
果図である。
LA、IB、17A、17B−・・水素吸蔵合金槽、
2a、2b、1.8a。
iab・・・熱交換器、5,6,21,22・・・熱入
口側の切替弁、7.8,23,24・・・熱媒出口側の
切替弁、26・・・熱負荷への熱媒供給用ポンプ、3o
・・・熱負荷へ流れる熱媒。
35・・・熱負荷に供給する熱媒温度の検出手段、MH
[1]、MH[2]・・・水素吸蔵合金。
代理人 弁理士 紋 1) 誠
目
≧
第
図
第
図
S、Vラメtt (//m1n)
第
図
Mffitt (//min)Figure 1 is a system configuration diagram of a cooling/heating system using a hydrogen storage alloy, Figure 2 is a cooling cycle diagram of the cooling/heating system shown in Figure 1 on the van't Hoff diagram, and Figure 3 is a diagram of the cooling system based on the heat medium flow rate. Diagram of experimental measurement results showing changes in sensible heat recovery rate,
FIG. 4 is a diagram showing experimental measurement results showing changes in thermal output depending on the flow rate of the heat medium. LA, IB, 17A, 17B--hydrogen storage alloy tank,
2a, 2b, 1.8a. iab... Heat exchanger, 5, 6, 21, 22... Switching valve on the heat inlet side, 7.8, 23, 24... Switching valve on the heat medium outlet side, 26... To heat load heat medium supply pump, 3o
...heat medium flowing to the heat load. 35... Means for detecting the temperature of the heat medium supplied to the heat load, MH
[1], MH[2]...Hydrogen storage alloy. Agent Patent Attorney Crest 1) Seime ≧ Figure Figure S, V lame tt (//m1n) Figure Mffitt (//min)
Claims (3)
が切換可能に供給される熱交換器と第1の水素吸蔵合金
とをそれぞれ収容した第1及び第3の水素吸蔵合金槽と
、第3の外部熱源からの熱媒および熱負荷に利用される
熱回収用熱媒が切換可能に供給される熱交換器と第2の
水素吸蔵合金とをそれぞれ収容した第2及び第4の水素
吸蔵合金槽と、第1と第2及び第3と第4の水素吸蔵合
金槽が連結される水素配管と、第1と第3の水素吸蔵合
金槽と前記2種類の外部熱源とをそれぞれ切り替え可能
に連結する熱媒配管と、第2と第4の水素吸蔵合金槽と
第3の外部熱源及び熱負荷とをそれぞれ切り替え可能に
連結する熱媒配管とより構成され、第1と第2の水素吸
蔵合金槽間および第3と第4の水素吸蔵合金槽間で行わ
れる水素移動の方向を互いに逆とする第1と第2の過程
を交互に行い、この両過程の切替えを前記熱媒配管の切
り替えにより行うと共に、この切り替え時、各水素吸蔵
合金槽に対して、その熱媒入口側の熱媒配管を先に切替
えて、顕熱回収用の熱媒循環路を形成し、その後、熱媒
出口側の熱媒配管を切り替えることにより熱利用システ
ム内の顕熱回収を行うようにした熱利用システムにおい
て、この顕熱回収を行っている間の熱媒流量を熱利用シ
ステムの水素移動時の熱媒流量に比べて少く流れるよう
に制御したことを特徴とする水素吸蔵合金を利用した熱
利用システムの運転方法。(1) first and third hydrogen storage alloy tanks each housing a first hydrogen storage alloy and a heat exchanger to which heat medium from two types of external heat sources having different temperature levels are switchably supplied; The second and fourth hydrogen absorbers each house a heat exchanger to which a heat medium from a third external heat source and a heat recovery heat medium used for heat load are switchably supplied, and a second hydrogen storage alloy. Switching between the hydrogen storage alloy tank, the hydrogen piping to which the first and second and third and fourth hydrogen storage alloy tanks are connected, and the first and third hydrogen storage alloy tanks and the two types of external heat sources, respectively. The first and second hydrogen storage alloy tanks are configured of heat medium piping that connects each other in a switchable manner, and heat medium piping that connects the second and fourth hydrogen storage alloy tanks and the third external heat source and heat load in a switchable manner. The first and second processes in which the directions of hydrogen transfer between the hydrogen storage alloy tanks and between the third and fourth hydrogen storage alloy tanks are opposite to each other are performed alternately, and the switching between these processes is performed using the heat medium. This is done by switching the piping, and at the time of this switching, the heating medium piping on the heating medium inlet side of each hydrogen storage alloy tank is first switched to form a heating medium circulation path for sensible heat recovery, and then, In a heat utilization system that recovers sensible heat within the heat utilization system by switching the heat medium piping on the heat medium outlet side, the flow rate of the heat medium during this sensible heat recovery is used as hydrogen transfer in the heat utilization system. 1. A method of operating a heat utilization system using a hydrogen storage alloy, characterized in that the flow rate of the heat medium is controlled to be smaller than the flow rate of the heat medium.
移動時の熱媒流量に比べて、1/3〜2/3の流量にす
ることを特徴とする請求項1記載の水素吸蔵合金を利用
した熱利用システムの運転方法。(2) The hydrogen according to claim 1, characterized in that the flow rate of the heat medium during sensible heat recovery is 1/3 to 2/3 of the flow rate of the heat medium during hydrogen transfer in the heat utilization system. How to operate a heat utilization system using storage alloys.
段を設け、この温度により熱負荷への熱媒供給ポンプの
運転、停止を制御するようにしたことを特徴とする請求
項1記載の水素吸蔵合金を利用した熱利用システムの運
転方法。(3) A means for detecting the temperature of the hydrogen storage alloy that supplies heat to the heat load is provided, and operation and stop of the heat medium supply pump to the heat load is controlled based on this temperature. A method of operating a heat utilization system using a hydrogen storage alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10517990A JP2652456B2 (en) | 1990-04-23 | 1990-04-23 | Operating method of heat utilization system using hydrogen storage alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10517990A JP2652456B2 (en) | 1990-04-23 | 1990-04-23 | Operating method of heat utilization system using hydrogen storage alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH046357A true JPH046357A (en) | 1992-01-10 |
JP2652456B2 JP2652456B2 (en) | 1997-09-10 |
Family
ID=14400454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10517990A Expired - Fee Related JP2652456B2 (en) | 1990-04-23 | 1990-04-23 | Operating method of heat utilization system using hydrogen storage alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2652456B2 (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107782009A (en) * | 2016-08-25 | 2018-03-09 | 青岛海尔智能技术研发有限公司 | Metal hydride refrigeration system and its control method |
CN108507075A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning system and its control method |
CN108507077A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning system and its control method |
CN108507076A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning, the method for controlling electrochemistry air-conditioning |
CN108507074A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning system and its control method |
CN108507059A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning, the method for controlling electrochemistry air-conditioning |
CN108507069A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning system and its control method |
CN108507079A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | A kind of electrochemistry air-conditioning system and its control method |
CN108507060A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning system and its control method |
CN108507073A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning system and its control method |
CN108507068A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | A kind of method and device of control electrochemistry air-conditioning system |
CN108507066A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning system and its control method |
CN108507065A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | A kind of electrochemistry air-conditioning system, control method and device |
CN108507072A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | A kind of electrochemistry air-conditioning system and its control method |
CN108507067A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning system and its control method |
CN108507078A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning system and its control method |
CN108507063A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | A kind of electrochemistry air-conditioning system, control method and device |
CN108507071A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning, the method for controlling electrochemistry air-conditioning |
CN108507114A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | A kind of method and device of control electrochemistry air-conditioning system |
CN108507062A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | A kind of electrochemistry air-conditioning system, control method and device |
CN108507070A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning system and its control method |
CN108507064A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning system and its control method |
CN108692399A (en) * | 2017-02-27 | 2018-10-23 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning system and its control method |
CN109425145A (en) * | 2017-08-28 | 2019-03-05 | 青岛海尔智能技术研发有限公司 | A kind of warm and humid adjusting air-conditioning system of electrochemistry and control method |
-
1990
- 1990-04-23 JP JP10517990A patent/JP2652456B2/en not_active Expired - Fee Related
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107782009A (en) * | 2016-08-25 | 2018-03-09 | 青岛海尔智能技术研发有限公司 | Metal hydride refrigeration system and its control method |
CN108507065A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | A kind of electrochemistry air-conditioning system, control method and device |
CN108507076A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning, the method for controlling electrochemistry air-conditioning |
CN108507067A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning system and its control method |
CN108507078A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning system and its control method |
CN108507059A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning, the method for controlling electrochemistry air-conditioning |
CN108507069A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning system and its control method |
CN108507079A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | A kind of electrochemistry air-conditioning system and its control method |
CN108507060A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning system and its control method |
CN108507073A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning system and its control method |
CN108507068A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | A kind of method and device of control electrochemistry air-conditioning system |
CN108507066A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning system and its control method |
CN108507075A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning system and its control method |
CN108507063B (en) * | 2017-02-27 | 2021-07-23 | 青岛海尔智能技术研发有限公司 | Electrochemical air conditioning system, control method and device |
CN108507077A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning system and its control method |
CN108507074A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning system and its control method |
CN108507063A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | A kind of electrochemistry air-conditioning system, control method and device |
CN108507071A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning, the method for controlling electrochemistry air-conditioning |
CN108507114A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | A kind of method and device of control electrochemistry air-conditioning system |
CN108507062A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | A kind of electrochemistry air-conditioning system, control method and device |
CN108507070A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning system and its control method |
CN108507064A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning system and its control method |
CN108692399A (en) * | 2017-02-27 | 2018-10-23 | 青岛海尔智能技术研发有限公司 | Electrochemistry air-conditioning system and its control method |
CN108507072A (en) * | 2017-02-27 | 2018-09-07 | 青岛海尔智能技术研发有限公司 | A kind of electrochemistry air-conditioning system and its control method |
CN108507114B (en) * | 2017-02-27 | 2020-12-25 | 青岛海尔智能技术研发有限公司 | Method and device for controlling electrochemical air conditioning system |
CN109425145B (en) * | 2017-08-28 | 2021-03-16 | 青岛海尔智能技术研发有限公司 | Electrochemical temperature and humidity adjusting air conditioning system and control method |
CN109425145A (en) * | 2017-08-28 | 2019-03-05 | 青岛海尔智能技术研发有限公司 | A kind of warm and humid adjusting air-conditioning system of electrochemistry and control method |
Also Published As
Publication number | Publication date |
---|---|
JP2652456B2 (en) | 1997-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH046357A (en) | Operation method of heat utilizing apparatus using hydrogen-occlusion alloy | |
US4523635A (en) | Metal hydride heat pump system | |
JPH02110263A (en) | Heat-utilizing system utilizing hydrogen storage alloy and operation thereof | |
JPH0493593A (en) | Heat application system utilizing hydrogen storage alloy | |
JPH109709A (en) | Metal hydride adsorption type thermally driven refrigerating machine | |
JPH01305273A (en) | Metal hydride heat pump | |
JPH0227387B2 (en) | ||
JP2703360B2 (en) | Heat-driven chiller using metal hydride | |
JP2000346483A (en) | Heat pump | |
JPH085173A (en) | Pulse tube refrigerator | |
JP2623002B2 (en) | Heat utilization system using hydrogen storage alloy | |
JP2580402B2 (en) | Heat utilization system | |
JPS62245056A (en) | Low-temperature heat recovery method and device | |
JPS638391B2 (en) | ||
JPH0355749B2 (en) | ||
JPH04165271A (en) | Cold-heat generating system | |
JPH1073337A (en) | Method for cooling and heating and equipment therefor | |
JP2002168541A (en) | Heat utilizing system employing hydrogen occlusion material | |
JPS63143466A (en) | Heat pump utilizing metallic hydride and control method thereof | |
JP3744689B2 (en) | Co-generation system | |
JPH0745992B2 (en) | Control method for air conditioning system using metal hydride | |
JP2001183024A (en) | Heat utilizing system using hydrogen absorbing material | |
JPH1038486A (en) | System for transporting hydrogen and method for transporting heat | |
JP2005090759A (en) | Continuous heat generating/absorbing method using powder | |
JPH0316594B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |