JPH0227387B2 - - Google Patents

Info

Publication number
JPH0227387B2
JPH0227387B2 JP56187218A JP18721881A JPH0227387B2 JP H0227387 B2 JPH0227387 B2 JP H0227387B2 JP 56187218 A JP56187218 A JP 56187218A JP 18721881 A JP18721881 A JP 18721881A JP H0227387 B2 JPH0227387 B2 JP H0227387B2
Authority
JP
Japan
Prior art keywords
heat
hydrogen
storage tank
hydrogen storage
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56187218A
Other languages
Japanese (ja)
Other versions
JPS5889678A (en
Inventor
Shuichiro Ono
Mitsutaka Kawamura
Yoshihiko Ishido
Yoshio Imamura
Yoichi Mizuno
Haruhiro Tanaka
Takeo Nishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Toyobo Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Toyobo Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP56187218A priority Critical patent/JPS5889678A/en
Publication of JPS5889678A publication Critical patent/JPS5889678A/en
Publication of JPH0227387B2 publication Critical patent/JPH0227387B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、回分式操作における熱負荷変動を、
水素吸蔵用合金の水素放出時の吸熱及び水素吸蔵
時の発熱を利用して吸収し、ロードレベリングを
高なう方法に関するものである。 バツチ式反応等の回分式操作では、周期的に熱
需要(加熱を要する状態)と熱余剰(冷却を要す
る状態)が生じることが多い。例えば高分子重合
反応槽では、重合開始時には原料昇温の為の熱需
要があり、一方重合後期及び取出し時には攪拌熱
の除去及び降温の為の熱余剰がある。また染色工
程では、初期段階で染料、被染色物質及び染色媒
体の加熱の為の熱需要があり、染色後は降温の為
の熱余剰がある。食品加工や発酵工業における回
分式操作においても、同様に熱需要と熱余剰が時
間的なずれをもつて発生することが多い。 例えば第1図は重合による高分子物質製造工程
を略示するフローシートであり、まず初期重合槽
1で初期重合物を得た後配管2を通して後期重合
槽3へ送り、これを例えば280℃の熱媒によつて
加熱しながら重合反応を行なう。図中5はボイラ
ーを示す。重合反応が進行するにつれて粘度が上
昇し、それに伴なう攪拌熱によつて反応液の温度
は徐々に上昇するが、温度が上がりすぎると分
解、着色、副反応等が起こるので、重合の末期に
は加熱媒体を破線ラインの冷却器4に通して例え
ば200℃に降温し、反応液の過度の昇温を防止し
ている。また取出し時には反応物を常温付近まで
降温させる為に冷却を行なうが、この様な冷却に
用いた冷却水はそのまま放流しているのが殆んど
であり、熱エネルギーのロスは相当大きかつた。 本発明者等は上記の様な事情に着目し、熱余剰
時の熱エネルギーを蓄積し熱需要時に放出させる
様にすれば熱エネルギーのロスが抑えられると考
え、鋭意研究を進めてきた。 この様な目的に利用可能な蓄熱法としては一般
に顕熱蓄熱法と潜熱蓄熱法が知られているが、こ
れらは夫々以下に示す様な欠点があり満足し得る
ものとは言い難い。 顕熱蓄熱:顕在する熱をそのまま保温蓄熱する方
式であり、放熱ロスが大きく且つ蓄熱密度が小
さい。しかも高温で蓄熱してもそれより低い温
度でしか利用することができない。 潜熱蓄熱:蓄熱材料固有の相転移(沸騰、凝縮
等)エネルギーとして蓄熱する方式であり、蓄
熱密度は高いが、上記相転移温度の1点でしか
蓄熱及び再利用をすることができない。 一方比較的新しい蓄熱法として金属水素化物を
利用する方法がある。これは水素吸蔵用合金が水
素吸蔵時に発熱し水素放出時に吸熱する性質を利
用したもので、蓄熱量が極めて大きく且つ水素ガ
スの圧力を調節することによつて蓄熱及び放熱温
度を自在に変更し得るという利点がある。例えば
第1表は代表的な蓄熱媒体の蓄熱量等を示したも
のであり、この表からも水素吸蔵用合金の蓄熱媒
体としての特徴を知ることができる。
The present invention reduces heat load fluctuations in batch operation.
The present invention relates to a method for increasing load leveling by absorbing hydrogen by utilizing the heat absorption during hydrogen release and the heat generation during hydrogen storage in a hydrogen storage alloy. In batch operations such as batch reactions, there is often a periodic heat demand (conditions requiring heating) and heat surplus (conditions requiring cooling). For example, in a polymer polymerization reaction tank, there is a demand for heat to raise the temperature of the raw materials at the start of polymerization, while there is a surplus of heat to remove stirring heat and lower the temperature at the later stages of polymerization and at the time of removal. Furthermore, in the dyeing process, there is heat demand for heating the dye, dyed material, and dyeing medium at the initial stage, and there is a heat surplus for cooling the temperature after dyeing. Similarly, in batch operations in food processing and fermentation industries, heat demand and heat surplus often occur with a time lag. For example, FIG. 1 is a flow sheet schematically showing the process of producing a polymeric substance by polymerization. First, an initial polymer is obtained in an initial polymerization tank 1, and then sent to a late polymerization tank 3 through a pipe 2. The polymerization reaction is carried out while being heated by a heating medium. In the figure, 5 indicates a boiler. As the polymerization reaction progresses, the viscosity increases, and the temperature of the reaction solution gradually rises due to the accompanying heat of stirring. However, if the temperature rises too much, decomposition, coloring, side reactions, etc. will occur, so In this step, the heating medium is passed through a cooler 4 indicated by a broken line to lower the temperature to, for example, 200°C to prevent excessive temperature rise of the reaction liquid. Furthermore, when taking out the reactants, cooling is performed to bring the temperature down to around room temperature, but in most cases the cooling water used for this cooling is simply discharged, resulting in a considerable loss of thermal energy. . The inventors of the present invention have focused on the above-mentioned circumstances, and have conducted intensive research with the idea that loss of thermal energy can be suppressed by accumulating thermal energy during surplus heat and releasing it during heat demand. Generally, the sensible heat storage method and the latent heat storage method are known as heat storage methods that can be used for such purposes, but each of these methods has the following drawbacks and cannot be said to be satisfactory. Sensible heat storage: A method that retains and stores the sensible heat as it is, resulting in large heat radiation loss and low heat storage density. Moreover, even if heat is stored at high temperatures, it can only be used at lower temperatures. Latent heat storage: A method of storing heat as phase transition (boiling, condensation, etc.) energy specific to the heat storage material. Although the heat storage density is high, heat can only be stored and reused at one point, the phase transition temperature. On the other hand, there is a relatively new heat storage method that uses metal hydrides. This utilizes the property of hydrogen storage alloys to generate heat when storing hydrogen and absorb heat when releasing hydrogen.The amount of heat stored is extremely large, and by adjusting the pressure of hydrogen gas, the heat storage and heat release temperatures can be freely changed. There are advantages to getting it. For example, Table 1 shows the amount of heat storage of typical heat storage media, and the characteristics of hydrogen storage alloys as heat storage media can be understood from this table as well.

【表】 本発明は、上記水素吸蔵用合金の有する優れた
蓄熱性能を利用し、回分式操作における熱負荷変
動を吸収して熱のロードレベリングを効率良く行
なうべく鋭意研究の結果完成されたものであつ
て、その構成は、水素吸蔵用合金が充填され且つ
熱媒体の導通される熱交換部を内蔵する蓄熱槽
と、複数基の蓄水素槽を備えた蓄水素装置とを、
水素配管を介して接続し、前記蓄水素槽の少なく
とも1基は水素の放出勝手とすると共に、他の少
なくとも1基は水素の導入勝手とし、回分式操作
における熱余剰時には、前記蓄熱槽中の金属水素
化物から前記水素導入勝手の蓄水素槽方向へ水素
を放出させて該蓄熱槽を冷却し、該蓄熱槽の熱交
換部から取り出される冷却された熱媒体によつて
操作系を冷却する工程、また熱不足時には、前記
水素放出勝手の蓄水素槽から前記蓄熱槽方向へ水
素を移動させて該蓄熱槽内の水素吸蔵用合金に水
素を吸蔵させて該蓄熱槽を加熱し、該蓄熱槽の熱
交換部から取り出される加熱された熱媒体によつ
て操作系を加熱する工程、を繰り返して行なうと
ころに要旨が存在する。 本発明では第2図(各種金属水素化物の平行圧
力の温度依存性)に示す様な水素吸蔵用合金を利
用するもので、各合金は夫々の平衡分解圧曲線の
下側の条件で水素を放出して吸熱し、上側の条件
では水素を吸蔵して発熱する。本発明はこの水素
放出・吸蔵に伴なう吸熱・発熱を利用し、熱余剰
時の熱を利用して水素を放出させて蓄熱してお
き、熱需要時には放出された前記水素を吸蔵させ
てそのときに発生する熱を操作系に供給する方法
を採用している。 以下実施例を示す図面に基づいて本発明の構成
及び作用効果を説明するが、下記は代表例であつ
て本発明を限定する性質のものではなく、蓄熱装
置及び配管等の具体的な構成は前・後記の趣旨に
適用し得る範囲で任意に設計することができる。 第3図は本発明の基本となる蓄熱法を例示する
概念図で、水素吸蔵用合金Aを充填した蓄熱槽6
と水素吸蔵用合金Bを充填した蓄水素槽7を水素
配管8によつて接続すると共に、水素配管8には
流量調節弁9を取付ける。そして蓄熱槽6内に
は、例えば第1図に示した様な重合反応装置にお
けるボイラ5と後期重合反応槽3を結ぶ熱媒配管
Lを通過させ、この部分で熱交換を行なう。一方
蓄水素槽7に設けた熱交換用配管Mには冷却水C
及びプロセス温排水H(例えば高分子重合プロセ
スの場合はボイラ5の排ガスから熱回収したも
の、染色プロセスでは高温染色排水、等を利用)
を流量調節弁10,11によつて切換供給できる
様にし、また熱媒配管Lの下流側には温度検知器
12を取付け、該検知器12は流量調節弁9,1
0,11と制御系統的に接続する。 そして熱媒配管L内の熱媒が熱余剰状態のとき
は、その余剰熱を利用して蓄熱層6内の水素吸蔵
合金Aから水素を放出させ、そのときの吸熱によ
つて配管L内の熱媒を降温させると共に、放出水
素は水素配管8及び流量調節弁9を通して蓄水素
槽7に送り、水素吸蔵合金Bに水素を吸蔵させ
る。このとき配管Mには冷却水Cを流し蓄水素槽
7を冷却することによつて水素吸蔵反応を促進さ
せる。一方熱媒配管L内の熱媒が熱需要状態のと
きは、流量調節弁11を開いて配管M内にプロセ
ス温排水Hを流し、蓄水素槽7を加温することに
よつて水素吸蔵合金Bに吸蔵させた前記水素を放
出させ、水素配管8及び流量調節弁9を通して蓄
熱槽6に返送する。その結果該水素は水素吸蔵合
金Aに吸蔵され、このときに発生する熱によつて
配管L内の熱媒を加熱することができる。上記流
量調節弁9の開閉及び流量調節弁10,11の切
換えは、温度検知器12(或いは図示しない自動
制御装置)によつて自動的に行なうことができ
る。 上記蓄熱制御法を具体的な水素吸蔵合金と関連
づけて説明すれば下記の通りである。即ち水素吸
蔵合金AとしてMg−10%Ni、同BとしてLaNi5
を使用した場合において、熱余剰時の熱媒温度を
330℃とし蓄熱槽6内における熱媒と水素吸蔵合
金Aとの温度差を10℃とすると、水素吸蔵合金の
温度は320℃となり、このときの平衡解離圧は
3.48Kg/cm2となる。一方LaNi5の充填された蓄水
素槽7を25℃の冷却水で冷却するものとし、冷却
水とLaNi5の温度差を10℃とするとLaNi5(水素
吸蔵合金B)の温度は35℃となり、そのときの平
衡解離圧は同じく2.98Kg/cm2となる。従つて蓄熱
槽6から蓄水素槽7への水素の流入は上記差圧
0.5Kg/cm2(=3.48−2.98)によつて駆動され、
Mg−10%Niの脱水素反応に伴なう吸熱によつて
配管L内の熱媒は冷却される。 また熱需要時におけるMg−10%Niと熱媒の温
度差を10℃とすると、Mg−10%Niの温度として
340℃が必要となり、このときの平衡解離圧は
5.96Kg/cm2となる。一方蓄水素槽7内のLaNi5
80℃の温排水Hで加温するとLaNi5の温度は70℃
(温度差10℃)となりこのときの平衡解離圧は
6.46Kg/cm2となる。従つて差圧0.5Kg/cm2によつ
て蓄水素槽7から蓄熱槽6へ水素の移動が起こ
り、Mg−10%Niの水素吸蔵反応に伴なう発熱に
よつて熱媒は加熱される。換言すれば熱需要時に
おける要求熱量に応じた水素差圧が得られる様
に、蓄水素槽7内の配管へ導入する温排水の温度
を調整することによつて、配管L内の熱媒を所定
温度まで加熱することができる。しかもこのとき
の加熱源は、前述の如く熱余剰時に蓄水素槽7方
向へ放出された水素の返還によつて生じる吸蔵熱
であるから、結局熱余剰時の熱を一旦蓄熱して熱
需要時に利用することとなり、熱ロスを可及的に
低減することができる。 上記例では重合反応の場合で水素吸蔵用合金と
してMg−10%Ni、LaNi5を例に挙げて説明した
が、この組合せにかぎることなく、対象プロセス
の温度レベルで0.5〜50atmの平衡解離圧を持つ
合金と、使用できる加熱用熱源と冷却源の温度レ
ベルで0.5〜50atmの平衡解離圧を持つ合金の組
合せであれば良い(水素圧力が0.5atm以下や
50atm以上では実用上問題が多い)。たとえばポ
リエステル、ポリアミド、ジメチルテレフタル
酸、エチレングリコール、アスフアルト、イン
ク、エポキシレジン、メラミン樹脂、パラフイ
ン、アルキツト樹脂、アクリル酸、冶金焼鈍、加
熱炉等の450℃〜250℃の温度で運転されるプロセ
スに対して運転温度レベルで0.5〜50atmの平衡
離圧を持つ合金、Mg系,Mg−Ni系、Mg−Cu
系、Pd系等および上記合金をベースにした多元
系、また乾燥炉、食品加工、殺菌、染色、ゴム、
たばこ、皮革製品等の250℃〜70℃の温度で運転
されるプロセスに対して運転温度レベルで0.5〜
50atmの平衡解離圧を持つ合金、Ti−Co系、Zr
−Mn系、La−Co系、Ti−Fe−Ni系、Ca−Ni系
等および上記合金をベースにした多元系と、使用
できる加熱用熱源と冷却源の温度レベルで0.5〜
50atmの平衡解離圧を持つ合金、Mm−Ni系、
Ca−Mm−Ni系、Mm−Ni−Fe系、Ti−Mn系、
Fe−Ti系、La−Ni系、Ti−Fe−Ni系、Fe−Ti
−Mn系、Mm−Ni−Al系、La−Ni−Al系等お
よび上記合金をベースとした多元系との組合せが
考えられる。 第4図は本発明の実施例を示すもので、上記の
様な基本思想を活用し、殊に熱需要と熱余剰の切
換えサイクルが短い回分式操作に有利に適用でき
る様にしたものであり、基本的構成は第3図の例
と同じであるので、同一部分についての重複説明
は割愛する。前記第3図の例では、蓄水素槽7内
における水素の吸蔵−放出を冷却水用流量調節弁
10及び温排水用流量調節弁11の切換えによつ
て行なうものであり、水素吸蔵合金Bの冷却−加
温に相当の時間を要する為、熱需要と熱余剰が短
サイクルで繰り返される回分式操作には追従しき
れず、蓄水素槽7の加熱・冷却にも相当の熱が消
費されるため熱ロスもかなり大きくなる。しかし
第4図の例では2基の蓄水素槽7a,7bを並設
し、一方の蓄水素槽7aには冷却水配管MCを設
けると共に水素吸蔵量の少ない(水素吸蔵能力を
多く残している)合金を充填して水素の導入勝手
とし、蓄水素槽7bには温排水配管MHを設ける
と共に多量の水素を吸蔵した(水素放出活性の高
い)合金を充填して水素の放出勝手とし、両蓄水
素槽7a,7bは三方弁13を介して水素配管8
に接続している。そして熱媒配管L内の熱媒が熱
余剰状態のときは三方弁13によつて水素配管8
を蓄水素槽7aに連通させ、放出水素を蓄水素槽
7aに導いて吸蔵し、熱需要状態のときは三方弁
13を切換えて水素配管8を蓄水素槽7bに連通
させ、蓄水素槽7b内の水素を蓄熱槽6へ供給す
る。即ち蓄水素槽7aは専ら水素吸蔵部として作
用するので常時冷却されており、一方蓄水素槽7
bは専ら水素放出部として作用せしめるべく常時
加温されているから、三方弁13の切換えのみで
直ちに追従することができる。尚この例の場合、
操作時間が経過するにつれて蓄水素槽7a内の吸
蔵水素量が増加すると共に蓄水素槽7b内の放出
水素量は減少してくる。しかしながら、図示した
如く冷却水供給管と温排水供給管とを結ぶ弁付き
切換配管14,15を設けておき、周期的に冷却
水C及び温排水Hの供給方向を切換える様にして
おけば、蓄水素槽7a内の合金の水素吸蔵量が飽
和状態に達した時点或いはその直前に該蓄水素槽
7aを水素放出部に切換えることができ(この時
点で蓄水素槽7b内の水素吸蔵量は殆んどなくな
つているので水素吸蔵部に切換えられる)、この
操作を繰り返すことによつて水素の収支平衡を保
つことができる。尚上記では2基の蓄水素槽を併
設して切換え操作する例を示したが、3基もしく
は4基以上の蓄水素槽を設けて切換え操作するこ
とも勿論可能である。 第5図は本発明の他の実施例を示すもので、蓄
水素槽として単なる高圧水素タンク16aと低圧
水素タンク16bを使用しており、熱余剰時に蓄
熱槽6で放出された水素は水素配管8、流量調節
弁9及び三方弁13を通して低圧水素タンク16
bに送り込み、熱需要時には高圧水素タンク16
aから三方弁13、電磁弁9及び水素配管8を通
して蓄熱槽6内へ水素を供給する。また低圧水素
タンク16bに送り込まれた水素は間欠的(或い
は連続的)に圧縮機17で加圧して高圧水素タン
ク16aに戻し循環使用される。図中P1,P2
圧力指示調節器、18a,18bは逆止弁を示
す。この様に蓄水素槽は水素吸蔵合金を充填した
ものであつてもよく、或いは単なる水素タンクで
あつても差支えない。 本発明は例えば上記の様に構成されているが、
要は水素吸蔵合金の水素放出時の吸熱及び水素吸
蔵時の発熱を利用した加熱・冷却を優れた即応性
のもとに遂行することができ、しかも回分式操作
における熱余剰時の熱を蓄積し熱需要時の熱源と
して活用することによつて、操作系全体としての
熱ロスを大幅に低減し得ることになつた。
[Table] The present invention was completed as a result of intensive research in order to efficiently perform heat load leveling by absorbing heat load fluctuations in batch operation by utilizing the excellent heat storage performance of the above-mentioned hydrogen storage alloy. The configuration includes a heat storage tank filled with a hydrogen storage alloy and a built-in heat exchange section through which a heat medium is conducted, and a hydrogen storage device equipped with a plurality of hydrogen storage tanks.
Connected via hydrogen piping, at least one of the hydrogen storage tanks is configured to release hydrogen, and at least one other is configured to introduce hydrogen, and when there is surplus heat in batch operation, the heat storage tank is The heat storage tank is cooled by releasing hydrogen from the metal hydride toward the hydrogen storage tank on the hydrogen introduction side, and the operating system is cooled by the cooled heat medium taken out from the heat exchange part of the heat storage tank. In addition, when there is a lack of heat, hydrogen is moved from the hydrogen storage tank with a hydrogen release mechanism toward the heat storage tank, and hydrogen is stored in the hydrogen storage alloy in the heat storage tank to heat the heat storage tank. The gist lies in repeatedly performing the step of heating the operating system with the heated heat medium taken out from the heat exchange section of the heat storage tank. The present invention utilizes hydrogen storage alloys as shown in Figure 2 (temperature dependence of parallel pressure of various metal hydrides), and each alloy absorbs hydrogen under conditions below its respective equilibrium decomposition pressure curve. It emits and absorbs heat, and under the upper conditions it absorbs hydrogen and generates heat. The present invention makes use of the heat absorption and heat generation associated with this hydrogen release and occlusion, and uses the heat at the time of surplus heat to release and store hydrogen, and when heat is required, the released hydrogen is stored. A method is used to supply the heat generated at that time to the operating system. The configuration and effects of the present invention will be explained below based on drawings showing examples, but the following are representative examples and do not limit the present invention, and the specific configurations of the heat storage device, piping, etc. It can be arbitrarily designed as long as it can be applied to the purpose described above and below. FIG. 3 is a conceptual diagram illustrating the heat storage method that is the basis of the present invention, showing a heat storage tank 6 filled with hydrogen storage alloy A.
and a hydrogen storage tank 7 filled with hydrogen storage alloy B are connected by a hydrogen pipe 8, and a flow rate control valve 9 is attached to the hydrogen pipe 8. A heat medium pipe L connecting a boiler 5 and a late polymerization reaction tank 3 in a polymerization reaction apparatus as shown in FIG. 1, for example, is passed through the heat storage tank 6, and heat exchange is performed in this part. On the other hand, the heat exchange pipe M installed in the hydrogen storage tank 7 has cooling water C.
and process heated wastewater H (for example, in the case of a polymer polymerization process, heat recovered from the exhaust gas of the boiler 5 is used, and in the dyeing process, high-temperature dyeing wastewater, etc. is used)
can be switched and supplied by the flow rate control valves 10 and 11, and a temperature sensor 12 is installed on the downstream side of the heat medium pipe L, and the detector 12 is connected to the flow rate control valves 9 and 1.
0 and 11 in a control system. When the heat medium in the heat medium pipe L is in a heat surplus state, hydrogen is released from the hydrogen storage alloy A in the heat storage layer 6 using the surplus heat, and the heat medium in the pipe L is absorbed by the heat absorption at that time. While lowering the temperature of the heating medium, the released hydrogen is sent to the hydrogen storage tank 7 through the hydrogen pipe 8 and the flow control valve 9, and hydrogen is stored in the hydrogen storage alloy B. At this time, the hydrogen storage tank 7 is cooled by flowing cooling water C through the pipe M, thereby promoting the hydrogen storage reaction. On the other hand, when the heat medium in the heat medium pipe L is in a heat demand state, the flow rate control valve 11 is opened to flow the process heated waste water H into the pipe M, and the hydrogen storage tank 7 is heated to store hydrogen. The hydrogen stored in the alloy B is released and returned to the heat storage tank 6 through the hydrogen pipe 8 and the flow control valve 9. As a result, the hydrogen is stored in the hydrogen storage alloy A, and the heat medium generated in the pipe L can be heated by the heat generated at this time. Opening/closing of the flow control valve 9 and switching of the flow control valves 10 and 11 can be automatically performed by the temperature sensor 12 (or an automatic control device, not shown). The above heat storage control method will be explained below in relation to a specific hydrogen storage alloy. That is, hydrogen storage alloy A is Mg-10%Ni, hydrogen storage alloy B is LaNi 5
When using
If the temperature is 330°C and the temperature difference between the heat medium and hydrogen storage alloy A in the heat storage tank 6 is 10°C, the temperature of the hydrogen storage alloy is 320°C, and the equilibrium dissociation pressure at this time is
It becomes 3.48Kg/cm 2 . On the other hand, if the hydrogen storage tank 7 filled with LaNi 5 is cooled with cooling water at 25°C, and the temperature difference between the cooling water and LaNi 5 is 10°C, the temperature of LaNi 5 (hydrogen storage alloy B) is 35°C. The equilibrium dissociation pressure at that time is also 2.98Kg/cm 2 . Therefore, hydrogen flows from the heat storage tank 6 to the hydrogen storage tank 7 at the above differential pressure.
Driven by 0.5Kg/cm 2 (=3.48−2.98),
The heat medium in the pipe L is cooled by heat absorption accompanying the dehydrogenation reaction of Mg-10%Ni. Also, if the temperature difference between Mg-10%Ni and the heating medium during heat demand is 10℃, then the temperature of Mg-10%Ni is
A temperature of 340℃ is required, and the equilibrium dissociation pressure at this time is
It becomes 5.96Kg/ cm2 . On the other hand, LaNi 5 in hydrogen storage tank 7
When heated with heated waste water H at 80°C, the temperature of LaNi 5 is 70°C.
(Temperature difference: 10℃), and the equilibrium dissociation pressure at this time is
It becomes 6.46Kg/ cm2 . Therefore, hydrogen moves from the hydrogen storage tank 7 to the heat storage tank 6 due to the differential pressure of 0.5 Kg/cm 2 , and the heating medium is heated by the heat generated by the hydrogen absorption reaction of Mg-10%Ni. Ru. In other words, by adjusting the temperature of the heated wastewater introduced into the piping in the hydrogen storage tank 7, the heat medium in the piping L is can be heated to a predetermined temperature. Moreover, the heat source at this time is the stored heat generated by the return of the hydrogen released toward the hydrogen storage tank 7 during the heat surplus as described above, so in the end, the heat during the heat surplus is temporarily stored and used to meet the heat demand. This can reduce heat loss as much as possible. In the above example, Mg-10%Ni and LaNi 5 were used as hydrogen storage alloys in the case of a polymerization reaction, but the combination is not limited to this, and the equilibrium dissociation pressure of 0.5 to 50 atm at the temperature level of the target process is used. It is sufficient to combine an alloy with an equilibrium dissociation pressure of 0.5 to 50 atm at the temperature level of the heating heat source and cooling source that can be used (if the hydrogen pressure is 0.5 atm or less,
There are many practical problems at 50 atm or higher). For example, for processes operating at temperatures between 450°C and 250°C, such as polyester, polyamide, dimethyl terephthalic acid, ethylene glycol, asphalt, ink, epoxy resin, melamine resin, paraffin, alkylene resin, acrylic acid, metallurgical annealing, heating furnaces, etc. On the other hand, alloys with equilibrium depressurization of 0.5 to 50 atm at the operating temperature level, Mg series, Mg-Ni series, Mg-Cu
systems, Pd systems, etc., and multi-component systems based on the above alloys, as well as drying ovens, food processing, sterilization, dyeing, rubber,
0.5 to 0.5 at the operating temperature level for processes such as tobacco and leather products that operate at temperatures between 250℃ and 70℃.
Alloy with equilibrium dissociation pressure of 50atm, Ti-Co system, Zr
-Mn-based, La-Co-based, Ti-Fe-Ni-based, Ca-Ni-based, etc., and multi-component systems based on the above alloys, and the temperature level of the heating heat source and cooling source that can be used is 0.5~
Alloy with equilibrium dissociation pressure of 50 atm, Mm-Ni system,
Ca-Mm-Ni system, Mm-Ni-Fe system, Ti-Mn system,
Fe-Ti series, La-Ni series, Ti-Fe-Ni series, Fe-Ti
-Mn system, Mm-Ni-Al system, La-Ni-Al system, etc., and combinations with multi-component systems based on the above alloys are possible. FIG. 4 shows an embodiment of the present invention, which utilizes the basic idea as described above and is particularly applicable to batch-type operations where the switching cycle between heat demand and heat surplus is short. , the basic configuration is the same as the example shown in FIG. 3, so redundant explanation of the same parts will be omitted. In the example shown in FIG. 3, the storage and release of hydrogen in the hydrogen storage tank 7 is performed by switching the cooling water flow rate control valve 10 and the hot water discharge flow rate control valve 11. Since it takes a considerable amount of time to cool and heat the hydrogen storage tank 7, it cannot keep up with batch operation in which heat demand and heat surplus are repeated in short cycles, and a considerable amount of heat is consumed in heating and cooling the hydrogen storage tank 7. As a result, heat loss is also considerably large. However, in the example shown in Fig. 4, two hydrogen storage tanks 7a and 7b are installed in parallel, and one of the hydrogen storage tanks 7a is provided with a cooling water pipe M C , and the hydrogen storage capacity is small (the hydrogen storage capacity is increased). Hydrogen can be easily introduced by filling the hydrogen storage tank 7b with an alloy (remaining), and installing a hot water drainage pipe M Both hydrogen storage tanks 7a and 7b are connected to a hydrogen pipe 8 via a three-way valve 13.
is connected to. When the heat medium in the heat medium pipe L is in a heat surplus state, the hydrogen pipe 8 is
is connected to the hydrogen storage tank 7a, and the released hydrogen is guided to the hydrogen storage tank 7a and stored therein. When there is a heat demand state, the three-way valve 13 is switched to connect the hydrogen pipe 8 to the hydrogen storage tank 7b, and the hydrogen is stored. Hydrogen in the hydrogen tank 7b is supplied to the heat storage tank 6. That is, the hydrogen storage tank 7a acts exclusively as a hydrogen storage unit and is constantly cooled, while the hydrogen storage tank 7a
Since b is constantly heated so that it functions exclusively as a hydrogen release section, it can be immediately followed by simply switching the three-way valve 13. In this example,
As the operation time passes, the amount of hydrogen stored in the hydrogen storage tank 7a increases and the amount of released hydrogen in the hydrogen storage tank 7b decreases. However, if switching pipes 14 and 15 with valves are provided to connect the cooling water supply pipe and the heated wastewater supply pipe as shown in the figure, and the supply directions of the cooling water C and the heated wastewater H are periodically switched, The hydrogen storage tank 7a can be switched to the hydrogen release section at the time when the hydrogen storage amount of the alloy in the hydrogen storage tank 7a reaches a saturated state, or just before that (at this point, the hydrogen storage tank 7b Since the storage capacity is almost gone, it is switched to the hydrogen storage section), and by repeating this operation, it is possible to maintain hydrogen balance. In the above example, two hydrogen storage tanks are installed together and the switching operation is performed, but it is of course possible to install three or four or more hydrogen storage tanks and perform the switching operation. FIG. 5 shows another embodiment of the present invention, in which a simple high-pressure hydrogen tank 16a and a low-pressure hydrogen tank 16b are used as hydrogen storage tanks, and the hydrogen released in the heat storage tank 6 during heat surplus is hydrogen. A low pressure hydrogen tank 16 is passed through the piping 8, the flow control valve 9 and the three-way valve 13.
b, and when heat is required, high-pressure hydrogen tank 16
Hydrogen is supplied from a to the heat storage tank 6 through the three-way valve 13, the solenoid valve 9, and the hydrogen pipe 8. Further, the hydrogen fed into the low-pressure hydrogen tank 16b is intermittently (or continuously) pressurized by the compressor 17 and returned to the high-pressure hydrogen tank 16a for circulation use. In the figure, P 1 and P 2 are pressure indicating regulators, and 18a and 18b are check valves. In this way, the hydrogen storage tank may be filled with a hydrogen storage alloy, or may be a simple hydrogen tank. Although the present invention is configured as described above, for example,
In short, it is possible to perform heating and cooling with excellent responsiveness by utilizing the heat absorbed by the hydrogen storage alloy when releasing hydrogen and the heat generated when it absorbs hydrogen, and it also stores heat when there is surplus heat in batch operations. By using it as a heat source when heat is required, it has become possible to significantly reduce heat loss in the entire operating system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用される回分式操作の具体
例を示すもので高分子重合プロセスを示す工程
図、第2図は各種金属水素化物の平衡圧力の温度
依存性を示すグラフ、第3図は本発明の基本とな
る操作法を示す概略図、第4〜5図は本発明の実
施例を示す概略図である。 6……蓄熱槽、7,7a,7b……蓄水素槽、
8……水素配管、9,10,11……電磁弁、
A,B……水素吸蔵合金、L……熱媒配管、M…
…配管、C……冷却水、H……温排水。
Figure 1 shows a specific example of batch operation to which the present invention is applied, and is a process diagram showing a polymer polymerization process. Figure 2 is a graph showing the temperature dependence of the equilibrium pressure of various metal hydrides. The figure is a schematic diagram showing the basic operating method of the present invention, and FIGS. 4 and 5 are schematic diagrams showing embodiments of the present invention. 6... Heat storage tank, 7, 7a, 7b... Hydrogen storage tank,
8...Hydrogen piping, 9,10,11...Solenoid valve,
A, B...Hydrogen storage alloy, L...Heating medium piping, M...
...Piping, C...Cooling water, H...Heat drainage.

Claims (1)

【特許請求の範囲】[Claims] 1 水素吸蔵用合金が充填され且つ熱媒体の導通
される熱交換部を内蔵する蓄熱槽と、複数基の蓄
水素槽を備えた蓄水素装置とを、水素配管を介し
て接続し、前記蓄水素槽の少なくとも1基は水素
の放出勝手とすると共に、他の少なくとも1基は
水素の導入勝手とし、回分式操作における熱余剰
時には、前記蓄熱槽中の金属水素化物から前記水
素導入勝手の蓄水素槽方向へ水素を放出させて該
蓄熱槽を冷却し、該蓄熱槽の熱交換部から取り出
される冷却された熱媒体によつて操作系を冷却す
る工程、また熱不足時には、前記水素放出勝手の
蓄水素槽から前記蓄熱槽方向へ水素を移動させて
該蓄熱槽内の水素吸蔵用合金に水素を吸蔵させて
該蓄熱槽を加熱し、該蓄熱槽の熱交換部から取り
出される加熱された熱媒体によつて操作系を加熱
する工程、を繰り返すことを特徴とする回分式操
作における熱負荷変動の吸収法。
1. A heat storage tank filled with a hydrogen storage alloy and containing a heat exchange section through which a heat medium is conducted, and a hydrogen storage device equipped with a plurality of hydrogen storage tanks are connected via hydrogen piping, At least one of the hydrogen storage tanks is configured to release hydrogen, and at least one other unit is configured to introduce hydrogen, and when there is a surplus of heat in batch operation, the hydrogen is introduced from the metal hydride in the heat storage tank. A step of cooling the heat storage tank by discharging hydrogen in the direction of the free hydrogen storage tank, and cooling the operation system with the cooled heat medium taken out from the heat exchange part of the heat storage tank, and when there is insufficient heat, Transferring hydrogen from the hydrogen storage tank capable of releasing hydrogen toward the heat storage tank to store hydrogen in a hydrogen storage alloy in the heat storage tank to heat the heat storage tank, and from the heat exchange section of the heat storage tank. A method for absorbing heat load fluctuations in batch operation, characterized by repeating the step of heating an operation system with a heated heat medium taken out.
JP56187218A 1981-11-20 1981-11-20 Absorption of fluctuation in heat load in batch type operation Granted JPS5889678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56187218A JPS5889678A (en) 1981-11-20 1981-11-20 Absorption of fluctuation in heat load in batch type operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56187218A JPS5889678A (en) 1981-11-20 1981-11-20 Absorption of fluctuation in heat load in batch type operation

Publications (2)

Publication Number Publication Date
JPS5889678A JPS5889678A (en) 1983-05-28
JPH0227387B2 true JPH0227387B2 (en) 1990-06-15

Family

ID=16202132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56187218A Granted JPS5889678A (en) 1981-11-20 1981-11-20 Absorption of fluctuation in heat load in batch type operation

Country Status (1)

Country Link
JP (1) JPS5889678A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231394A (en) * 1983-06-10 1984-12-26 Kubota Ltd Hydrogen occlusion and emission type heat exchanger
JPS6096801A (en) * 1983-10-31 1985-05-30 積水化学工業株式会社 Steam generator
JPS6096802A (en) * 1983-10-31 1985-05-30 積水化学工業株式会社 Steam generator
JPS6222883A (en) * 1985-07-22 1987-01-31 Sekisui Chem Co Ltd Rapid heating device
JP6135167B2 (en) * 2013-02-13 2017-05-31 株式会社豊田中央研究所 Regenerator structure, chemical heat storage system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913512Y2 (en) * 1979-03-16 1984-04-21 三洋電機株式会社 heat storage device

Also Published As

Publication number Publication date
JPS5889678A (en) 1983-05-28

Similar Documents

Publication Publication Date Title
CN109708002B (en) Temperature compensation type alloy hydrogen storage and supply system
CN101128952B (en) Method of using hydrogen storage tank and hydrogen storage tank
JP5147831B2 (en) Hydrogen consumption system and operation method thereof
US4185979A (en) Apparatus and method for transferring heat to and from a bed of metal hydrides
US4044819A (en) Hydride heat pump
CN101010824A (en) Fuel cell system
JPH046357A (en) Operation method of heat utilizing apparatus using hydrogen-occlusion alloy
US7611566B2 (en) Direct gas recirculation heater for optimal desorption of gases in cryogenic gas storage containers
JPH0227387B2 (en)
Kang et al. Dynamic behavior of heat and hydrogen transfer in a metal hydride cooling system
JP2020090943A (en) Solar power generation system
US7112382B2 (en) Fuel cell hydrogen recovery system
DK2984434T3 (en) Thermochemical storage system with improved storage efficiency
JPH02110263A (en) Heat-utilizing system utilizing hydrogen storage alloy and operation thereof
JPH04126961A (en) Chemical heat accumulative heat pump
JP2000346483A (en) Heat pump
JPS61151001A (en) Method of raising hydrogen gas pressure
CN118009782A (en) Balance-adjustable chemical heat storage system and working method thereof
JPS6213971A (en) Method and device for recovering waste heat
JP2020132450A (en) Hydrogen supply apparatus and hydrogen supply method
JP2005090759A (en) Continuous heat generating/absorbing method using powder
JPS5819956B2 (en) Cooling device using metal hydride
WO2024074268A1 (en) Ammonia reactor and methods
CN114353350A (en) Heat storage circulating system of groove type photo-thermal power station and control method thereof
JP2008239442A (en) Apparatus for generating and controlling hydrogen