JPS5889678A - Absorption of fluctuation in heat load in batch type operation - Google Patents

Absorption of fluctuation in heat load in batch type operation

Info

Publication number
JPS5889678A
JPS5889678A JP56187218A JP18721881A JPS5889678A JP S5889678 A JPS5889678 A JP S5889678A JP 56187218 A JP56187218 A JP 56187218A JP 18721881 A JP18721881 A JP 18721881A JP S5889678 A JPS5889678 A JP S5889678A
Authority
JP
Japan
Prior art keywords
hydrogen
heat
tank
alloy
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56187218A
Other languages
Japanese (ja)
Other versions
JPH0227387B2 (en
Inventor
Shuichiro Ono
修一郎 小野
Mitsutaka Kawamura
河村 光隆
Yoshihiko Ishido
石堂 善彦
Yoshio Imamura
今村 嘉男
Yoichi Mizuno
陽一 水野
Haruhiro Tanaka
田中 治尋
Takeo Nishi
武郎 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Toyobo Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Toyobo Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP56187218A priority Critical patent/JPS5889678A/en
Publication of JPS5889678A publication Critical patent/JPS5889678A/en
Publication of JPH0227387B2 publication Critical patent/JPH0227387B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To reduce heat loss extremely, by carrying out load leveling using both endothermic heat during hydrogen release of alloy for occluding hydrogen and exothermic heat during hydrogen occlusion of the alloy. CONSTITUTION:Hydrogen is released from the alloy A for occluding hydrogen in the regeneative tank 6 using excess heat when the heat is in excess state in a batch operation. A regenerative device which is used in the operation is obtained by providing the regenerative thak 6 packed with the alloy A for occluding hydrogen with the tank 7 for storing hydrogen packed with the alloy B for occluding hydrogen through the hyrogen pipe 8. The operation system is cooled by the endothermic heat during the operation, the evolved hydrogen is sent through the hydrogen pipe 8 to the tank 7, for storing hydrogen, and hydrogen is occluded in the alloy B for occluding hydrogen. While, when a heating medium in the heating medium pipe L is in a heat demanding state, hydrogen occluded in the alloy B for occluding hydrogen is released, transferred through the hydrogen pipe 8 to the regenerative tank 6, and hydrogen is occluded in the alloy A for occluding hydrogen in the regenerative tank 6. The heating medium in the pipe L is heated by the heat generated during this operation.

Description

【発明の詳細な説明】 本発明は、回分式操作における熱負荷変動を、水素吸蔵
用合金の水素放出時の吸熱及び水素吸蔵時の発熱t−−
1月して吸収し、・−ドVペリ・グを行なう方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to reduce heat load fluctuations in batch operations to heat absorption during hydrogen release and heat generation during hydrogen absorption of the hydrogen storage alloy.
It relates to a method of absorbing and performing .

具ツチ式反応等の回分式操作では、周期的に熱需要(加
熱を要する状II)と熱余剰(冷却を要する状態)が生
じることが多い0例えば高分子重合反応槽では、重合開
始時には原料昇温の為の熱需要があり、一方重合後期及
び取出し時には攪拌熱の除去及び降温の為の熱余剰があ
る。また染色工程では、初期段階で染料、被染色物質及
び染色媒体の加熱の為の熱需要があり、染色後は降温の
為の熱余剰がある0食品加工や発酵工業における回分式
操作においても、同様に熱需要と熱余剰が時間的なずれ
をもって発生することが多い。
In batch-type operations such as tool-type reactions, heat demand (state II requiring heating) and heat surplus (state requiring cooling) often occur periodically. There is a demand for heat to raise the temperature, while there is a surplus of heat to remove the stirring heat and lower the temperature during the latter stages of polymerization and during removal. In addition, in the dyeing process, there is heat demand for heating the dye, material to be dyed, and dyeing medium at the initial stage, and there is a surplus of heat for cooling the temperature after dyeing.Even in batch operations in food processing and fermentation industries, Similarly, heat demand and heat surplus often occur with a time lag.

例えば第1図は重合による高分子物質製造工程を略示す
るフローV−)であり、まず初期重合槽lで初期重合物
を得た後配管2を通して後期重合槽3へ送り、これを例
えば280℃の熱媒によって加熱しながら重合反応を行
なう0図中6はボイラーを示す1重合反応が進行するに
つれて粘度が上−し、それに伴なう攪拌熱によって反応
液の温度は徐々に上昇するが、温度が上がりすぎると分
解、着色、副反応等が起こるので、重合の末期には加熱
媒体を破線フィンの冷却器4に通して例えば100℃に
降温し、反応液の過度の昇Ilt防止している・また取
出し時には反応物′を常瓢付近まで降温させる為に冷却
を行なうが、cの様な冷却に用いた冷却水はそのtt放
流しているのが殆んどであり、熱エネルギーのロスは相
当大暑かった・本発明者等は上記の様な事情に着目し、
熱余剰時の熱エネルギーを蓄積し熱需要時に放出させる
様にすれば熱エネルギーのロスが抑えられると考え、鋭
i研究を進めて自た。
For example, FIG. 1 is a flow V-) schematically showing the process of producing a polymeric substance by polymerization. First, an initial polymer is obtained in an initial polymerization tank 1, and then sent to a late polymerization tank 3 through a pipe 2. The polymerization reaction is carried out while being heated by a heating medium at ℃. 6 in the figure indicates a boiler.1 As the polymerization reaction progresses, the viscosity increases, and the temperature of the reaction liquid gradually increases due to the heat of stirring that accompanies it. If the temperature rises too high, decomposition, coloring, side reactions, etc. will occur, so at the end of the polymerization, the heating medium is passed through a broken line fin cooler 4 to lower the temperature to, for example, 100°C to prevent the reaction liquid from rising excessively.・Furthermore, when taking out the reactant, it is cooled to bring the temperature down to around normal gourd temperature, but the cooling water used for cooling as in c is mostly discharged, and the thermal energy is The loss was quite large.The inventors focused on the above circumstances,
We conducted intensive research with the idea that thermal energy loss could be reduced by accumulating thermal energy when there is surplus heat and releasing it when heat is needed.

この様な目的に利用可能な蓄熱法としては一般に顕熱蓄
熱法と潜熱蓄熱法が知られているが、これらは夫々以下
に示す様な欠点がTop満足し得るものとは嘗い難い。
Generally, the sensible heat storage method and the latent heat storage method are known as heat storage methods that can be used for such purposes, but each of these methods has the following disadvantages, and it is difficult to find a top-satisfactory method.

顕熱蓄熱:顕在する熱tその11保温蓄熱する方式でT
op、放熱ロスが大きく且つ蓄熱密度が小さ埴、しかも
高温で蓄熱し 工もそれより低い温度でしか利用する ことができない。
Sensible heat storage: Sensible heat t Part 11 T by the method of heat retention and heat storage
OP, heat dissipation loss is large and heat storage density is small, and heat is stored at high temperatures and can only be used at lower temperatures.

潜熱蓄熱:蓄熱材料固有の相転移CM!騰、−纏等)エ
ネルギーとして蓄熱する方式で あり、蓄熱密度は高いが、上記相転移 fllJI!01点でしか蓄熱及び再利用をすることが
できない・ 一方比較的新しい蓄熱法として金属水素イし物を利用す
る方法がある。これは水素吸蔵用合金が水素吸蔵時に発
熱し水素放出時に吸熱する性質を利用し*もので、蓄熱
量が極めて大きく且つ水素ガスの圧力を調節することに
よって蓄熱及び放熱温度を自在に賢更し得るという利点
がある0例えば第1表は代表的な蓄熱媒体の蓄熱量等を
示したものでToD、この表からも水素吸蔵用合金の蓄
熱媒体としての特徴を知ることができる。
Latent heat storage: Phase transition CM unique to heat storage materials! This method stores heat as energy, and the heat storage density is high, but the above phase transition fllJI! Heat can be stored and reused only at one point. On the other hand, there is a relatively new heat storage method that uses metal hydride. This takes advantage of the property of hydrogen storage alloys to generate heat when storing hydrogen and absorb heat when releasing hydrogen.The amount of heat stored is extremely large, and by adjusting the pressure of hydrogen gas, the heat storage and heat release temperatures can be adjusted freely. For example, Table 1 shows the amount of heat storage of typical heat storage media, ToD, and the characteristics of hydrogen storage alloys as heat storage media can also be learned from this table.

本発明紘、上記水素吸蔵用合金の有すb優れた蓄熱性a
t利用し、回分式操作における熱負荷変動を吸収して熱
のロードレベリングを効率良く行なうぺ(鋭意研売の結
果兜IEiiれたも0′c塾って、その構成は、水素吸
蔵用合金を充填した蓄熱槽、蓄水素槽及び両槽を結ぶ水
素配管を備えた蓄熱装置上使用し、回分式操作における
熱余剰時には前記蓄熱槽中O金属水素化物から水素を放
出させて操作系を冷却すると共に、該発生水雷は前記蓄
水素槽に送って貯蔵すム工程、また熱不足時には前記蓄
水素槽から蓄熱槽に水素を移動名せて該蓄熱槽内の水素
吸蔵用合金に水素を吸蔵させ、発生する熱くよって操作
系を加熱する工程、を繰り返して行なうととろに要旨が
存在する・ 本発明では第8図(各種金属水素化物の平行圧力の温度
依存性)に示す様な水素吸蔵用合金を利用するもので、
各合金は夫々の平衡分解圧曲線の下側の条件で水素を放
出して吸熱し、上側の条件では水素を吸蔵して発熱する
0本発明はこの水素放出・吸蔵に伴なう吸熱φ発熱を利
用し、熱余剰時の熱を利用して水素を放出させて蓄熱し
ておき、熱需要時には放出された前記水素を吸蔵させて
そのときに発生する熱を操作系に供給する方法tS用し
ている。
According to the present invention, the above-mentioned hydrogen storage alloy has (b) excellent heat storage properties (a).
(As a result of extensive research, the Kabuto IEii Taremo 0'c School is made of a hydrogen storage alloy. It is used on a heat storage device equipped with a heat storage tank filled with hydrogen, a hydrogen storage tank, and hydrogen piping connecting both tanks, and when there is a surplus of heat in batch operation, hydrogen is released from the O metal hydride in the heat storage tank to control the operation system. At the same time as cooling, the generated torpedo is sent to the hydrogen storage tank for storage, and when there is a lack of heat, hydrogen is transferred from the hydrogen storage tank to the heat storage tank and stored in the hydrogen storage alloy in the heat storage tank. The gist of this invention is to repeat the process of absorbing hydrogen and heating the operating system with the generated heat.In the present invention, the process of absorbing hydrogen and heating the operating system with the generated heat is clearly carried out. It uses a hydrogen storage alloy.
Each alloy releases hydrogen and absorbs heat under the conditions below the equilibrium decomposition pressure curve, and absorbs hydrogen and generates heat under the conditions above. For tS, the released hydrogen is stored as heat by using the heat when there is surplus heat, and when heat is needed, the released hydrogen is stored and the heat generated at that time is supplied to the operating system. are doing.

以下実施例を示す図面に基づいて本発明の構成及び作用
効果t−説明するが、下記は代表例であって本発明を限
定する性質のものではなく、蓄熱装置及び配管等の具体
的な構成は藺・後IaO趣旨に適用し得る範囲で任意に
設計することができる。
The configuration and effects of the present invention will be explained below based on drawings showing examples, but the following are representative examples and do not limit the present invention, and specific configurations of the heat storage device, piping, etc. can be arbitrarily designed as long as it is applicable to the purpose of IaO and IaO.

−8図は本発明に係る蓄熱法を例示する概念図で、水素
吸蔵用合金Aを充填した蓄熱槽6と水素吸蔵用合金Bt
充填した蓄水紫檀7を水素配管8によって接続すると共
に、水素配管8には流量調節弁9を取付ける。そして蓄
熱槽6内には、例えば第1図に示した様な重合反応装置
におけるボイラ6と後期重合反応槽8t−結ぶ熱媒配管
Lt通過させ、この部分で熱交換を行なう、一方蓄水紫
檀7に設けた熱交換用配管Mには冷却水C及びプロセス
温排水H(例えば高分子重合プロセスの場合はボイラ6
の排ガスから熱回収したもの、染色プロセスでは高温染
色排水、等を利用)を流量調節弁10’、11によって
切換供給で自る様にし、また熱媒配管りの下流側−には
温度検知器12を取付け、該検知器l!は流量調節弁9
,10.11と制御系統的に接続する。
Figure-8 is a conceptual diagram illustrating the heat storage method according to the present invention, showing a heat storage tank 6 filled with hydrogen storage alloy A and hydrogen storage alloy Bt.
The filled water storage rosewood 7 is connected by a hydrogen pipe 8, and a flow rate control valve 9 is attached to the hydrogen pipe 8. In the heat storage tank 6, a heat medium pipe Lt connecting the boiler 6 and the late polymerization reaction tank 8t in the polymerization reaction apparatus shown in FIG. 1 is passed through, for example, and heat exchange is performed in this part. The heat exchange piping M installed in 7 is connected to cooling water C and process hot water H
heat recovered from exhaust gas, high-temperature dyeing wastewater in the dyeing process, etc.) is controlled by flow control valves 10' and 11, and a temperature sensor is installed downstream of the heat medium piping. 12, and the detector l! is the flow control valve 9
, 10.11 in a control system.

そして熱媒配管り内の熱媒が熱余剰状簡のときは、その
余剰熱を利用して蓄熱槽6内の水素吸蔵合金Aから水素
を放出させ、そのときの吸熱によって配管り内の熱媒を
降温させると共に、放出水素は水嵩配管8及び流量調゛
節弁9を通して蓄水紫檀7に送p、水素吸蔵合金Bに水
素管吸蔵させる。
When the heating medium in the heating medium piping has a surplus of heat, the excess heat is used to release hydrogen from the hydrogen storage alloy A in the heat storage tank 6, and the heat absorbed at that time causes the heat in the piping to be released. While the temperature of the medium is lowered, the released hydrogen is sent to the water storage rosewood 7 through the bulk water pipe 8 and the flow rate regulating valve 9, and is stored in the hydrogen storage alloy B in the hydrogen pipe.

このとき配管Mには冷却水Ci流し蓄水紫檀7を冷却す
ることによって水素吸蔵反応を促進させる。
At this time, cooling water Ci flows through the pipe M to cool the water storage rosewood 7, thereby promoting the hydrogen storage reaction.

一方熱媒配管り内の熱媒が熱需要状鵬のときは、流量調
節弁1lt−開いて配管M内にプロセス温排水Hを流し
、蓄水紫檀7を加温することによって水素吸蔵合金Bに
吸蔵させた前記水素を放出させ、水素配管8及び流量調
節弁9を通して蓄熱槽6に返送する。その結果核水素は
水素吸蔵合金Aに吸蔵され、このときに発生する熱によ
って配管り内の熱媒を加熱することができる。上記流量
調節弁9の開閉及び流量調節弁to、ttの切換えは、
温度検知器111(或いは図示しない自動制御装置)に
よって自動的に行なうことができる。
On the other hand, when the heating medium in the heating medium piping is in a heat demand state, the flow rate control valve 1lt is opened to flow the process heated waste water H into the piping M, and the hydrogen storage alloy B is heated by heating the water storage rosewood 7. The stored hydrogen is released and returned to the heat storage tank 6 through the hydrogen pipe 8 and the flow control valve 9. As a result, nuclear hydrogen is stored in the hydrogen storage alloy A, and the heat generated at this time can heat the heat medium in the piping. Opening and closing of the flow rate control valve 9 and switching of the flow rate control valves to and tt are as follows:
This can be done automatically using the temperature sensor 111 (or an automatic control device, not shown).

上記蓄熱制御法tA体的な水素吸蔵合金と関連づけて説
明すれば下記の通9である。即ち水素吸蔵合金ムとして
Ml−101N1.岡BとしてLa N i s を使
用した場合において、熱余剰時の熱媒温度t880℃と
し蓄熱槽6内における熱媒と水素吸蔵合金Aとの温度差
110”0とすると、水素吸蔵合金の温度は320℃と
なり、このときの平衡解離圧は8.48に9/傷 とな
る、一方taN1sの充填された蓄水紫檀7を!6℃の
冷却水で冷却するものとし、冷却水とLaNI、O温度
差t1゜℃とすゐとx−a x l s (水素吸蔵合
金II)0温度は8s℃となり、そのと自の平衡解離圧
は岡じ〈198に%l/♂となる。従って蓄熱槽6から
蓄水紫檀7への水素の流入は上記差圧0.6 KYaa
” (m14g−198) K!ツ’t”1K11名t
L、Ml−111Ni。
The above heat storage control method tA will be explained in relation to the specific hydrogen storage alloy as follows. That is, Ml-101N1. When La Nis is used as Oka B, if the temperature of the heating medium at the time of heat surplus is 880°C and the temperature difference between the heating medium and hydrogen storage alloy A in the heat storage tank 6 is 110"0, the temperature of the hydrogen storage alloy is is 320°C, and the equilibrium dissociation pressure at this time is 8.48 to 9/wound.On the other hand, assume that the water storage rosewood 7 filled with taN1s is cooled with cooling water at !6°C, and the cooling water and LaNI, The 0 temperature difference between t1゜℃ and ゜ and x-a x l s (hydrogen storage alloy II) is 8s℃, and its equilibrium dissociation pressure is equal to 〈198%l/♂.Therefore, Hydrogen flows from the heat storage tank 6 to the water storage rosewood 7 at the above-mentioned differential pressure of 0.6 KYaa.
” (m14g-198) K!tsu’t”1K11 people
L, Ml-111Ni.

脱水素度広に伴なう吸熱によって配管り内0熱謀は冷却
される。
The heat absorption inside the piping is cooled by the heat absorption that accompanies the increase in the degree of dehydrogenation.

また熱需要時におけるMl−1011LNlと熱媒O温
度差t−10℃トスルト、Mll−1011N16温度
としく1140℃が必要となり、このときの平衡解離圧
は6.961[9/cIM となる、一方蓄水紫檀7内
0LaN1.t110″00温排水Hで加温するとLa
N1.()温度は70℃(温度差10℃)とな   9
このとSO平衡解離圧は6.46&V′aIPトナル。
Also, during heat demand, the temperature difference between Ml-1011LNl and heating medium O is t-10°C, and the temperature of Mll-1011N16 is 1140°C, and the equilibrium dissociation pressure at this time is 6.961 [9/cIM. Water storage rosewood 7 inside 0LaN1. When heated with t110″00 heated waste water H, La
N1. () The temperature is 70℃ (temperature difference 10℃) 9
The SO equilibrium dissociation pressure is 6.46&V'aIP tonal.

従って差圧o、 8 KG□によって蓄水紫檀Tかも蓄
熱槽6へ水素の移動が起こD、MI−10SN1の水素
吸蔵反応に伴なう発熱によって熱媒は加熱される。換言
すれば熱需要時における要求熱量に応じ九水素差圧が得
られる様に、蓄水f槽7内の配管へ導入する温排水の温
度を調整することによって、配管り内の熱媒を所定温度
壕で加熱する仁とができる。しかもこのときの加熱源は
、前述の如く熱余剰時に蓄水紫檀7方向へ放出され九水
素の返還によって生じる吸蔵熱であるから、結局熱余剰
時の熱を一旦蓄熱して熱需要時に利用することとなり、
熱ロスを可及的に低減することができる。
Therefore, due to the differential pressure o, 8 KG□, hydrogen moves to the heat storage tank 6 due to the water storage rosewood T, and the heating medium is heated by the heat generated by the hydrogen storage reaction of MI-10SN1. In other words, by adjusting the temperature of the heated wastewater introduced into the piping in the water storage tank 7, the heat medium in the piping can be adjusted to a predetermined value so that a hydrogen pressure difference can be obtained according to the amount of heat required at the time of heat demand. It can be heated in a temperature chamber. Moreover, the heating source at this time is, as mentioned above, the stored heat that is released in the 7 directions of the stored water rosewood and generated by the return of 9 hydrogen when there is a surplus of heat, so in the end, the heat during the surplus heat is temporarily stored and used when there is a demand for heat. As a result,
Heat loss can be reduced as much as possible.

上記例では重合反応の場合で水素吸蔵用合金としてMl
−10惧NI、L烏N量、t−例に挙げて説明したが、
この組合せにかぎることなく、対象プロセスの温度レベ
ルでo、s NFIQatmの平衡解離圧を持つ合金と
、使用でIiる加熱用熱源と冷却源の温度レベルで0.
64I!@mtlIO平衡解離圧を持つ合金の組合せで
あれば良い(水素圧力がQJatm以下中l@atm以
上では寅用上問題が多い)。
In the above example, Ml is used as a hydrogen storage alloy in the case of a polymerization reaction.
-10 NI, L-N amount, t-Explained using an example,
This combination is not limited to this combination, and may be applied to an alloy having an equilibrium dissociation pressure of o, s NFIQ atm at the temperature level of the target process and 0.0 at the temperature level of the heating heat source and cooling source.
64I! Any combination of alloys having an equilibrium dissociation pressure of @mtlIO is sufficient (if the hydrogen pressure is below QJatm or above l@atm, there are many problems in practical use).

たとえばポリエステル、ポリアミド、ジメチルテレフタ
V酸、エチレングリコ−V、アスファルト。
For example, polyester, polyamide, dimethyl terephthalate V acid, ethylene glycol-V, asphalt.

インタ1工Z*VしVン、メラミン樹脂、パテフィン、
アルキッド樹脂、アクリA’ll冶金焼鈍。
Inter-1 construction Z*V and Vn, melamine resin, putty fin,
Alkyd resin, acrylic A'll metallurgical annealing.

加熱炉等の480℃〜i!50℃の温度で運転されるデ
ーセXK対して運転温度レベルで0.6−6・mtmの
平衡解離圧を持つ合金、Mg系、Mg−Mg系、Ml−
C1l系、pd系等および上記合金tペースにし九多元
系、tた乾燥炉1食品加工、殺菌。
480℃~i! of heating furnaces, etc. Alloys, Mg-based, Mg-Mg-based, Ml- that have an equilibrium dissociation pressure of 0.6-6 mtm at the operating temperature level for Dase XK operated at a temperature of 50 °C.
C1l type, PD type, etc. and the above alloys are made into nine-element type, drying oven 1, food processing and sterilization.

染色、ゴム、たばこ、皮革製品等の260℃〜70℃の
温度で運転されるプロセスに対して運転温度レペ〃で0
.6〜59atmの平衡解離圧を持つ合金、T I −
C(I系、Zr−M、系、tS−C・系9丁1−F・−
Ni系、(a−)(を系等および上記合金をペースにし
た多元系と、使用で!為加熱用熱源と冷却源の温度レベ
ルで0.5〜59atmの平衡解離圧を持つ合金、Mm
−Ni系、CI−M、−Ni系、MHI−NI−F@系
、 T I−M、系、ye−TI系、Ll−81系、T
ト1・−)Ii系、F・−T I −M n系@ M 
ta−N l −A I系、Ll−111−Al系等お
よび上記合金をペースとした多元系との組合せが考えら
れる。
For processes operating at temperatures between 260°C and 70°C, such as dyeing, rubber, tobacco, and leather products, the operating temperature is 0.
.. Alloy with equilibrium dissociation pressure of 6 to 59 atm, T I −
C (I system, Zr-M, system, tS-C/system 9-1-F/-
For use with Ni-based, (a-)(-based, etc.) and multi-component systems based on the above alloys, alloys with an equilibrium dissociation pressure of 0.5 to 59 atm at the temperature level of the heating heat source and cooling source, Mm
-Ni system, CI-M, -Ni system, MHI-NI-F@ system, T I-M, system, ye-TI system, Ll-81 system, T
1・-) Ii system, F・-T I -M n system @M
Combinations with multi-component systems based on the ta-Nl-A I system, Ll-111-Al system, etc. and the above alloys are conceivable.

第4図は本発明の他の実施例で、熱需要と熱余剰の切換
えサイクルが短い回分式操作に適した制御法を示す概略
図である。即ち第8図の例では、蓄水紫檀T内における
水素O吸蔵−放出を冷却水用流量調節弁1G及び温排水
用流量調節弁11)切換えによって行なうものであり、
水素吸蔵合金Bの冷却−加温に相当の時間を要する為、
熱需要と熱余剰が短サイクルで繰り返される回分式操作
には追従しきれないことがある。しかし第4図の例では
2基の蓄水紫檀7a*7bt並設し、一方の蓄水電槽7
1には冷却水配管M。1設けると共に水素吸蔵量の少な
い(水素吸蔵能力を多く残している)合金を充填し、蓄
水電槽7bには温排水配管MHI設けると共に多量の尿
素を吸蔵した(水素放出活性の高い)合金を充填し、両
蓄水紫檀7 m 、 71*Fi!方弁11を介しテ水
111ia管8KIIi続している。そして無謀配管り
内O熱媒が熱余剰状態のときは三方弁18によって水素
配管8を蓄水紫檀7麿に連通させ、放出水素を蓄水電槽
7aに導いて吸蔵し、熱需要状頗のときは三方弁18を
切換えて水素配管8t−蓄水電槽ybに連通させ、蓄水
紫檀7b内の水素を蓄熱槽6へ供給する。即ち蓄水電槽
7mは専ら水素吸蔵部として作用するので常時冷m−g
れており、一方蓄水紫檀マbは専ら水素放出部として作
用せしめるべく常時加温されているから、三方弁IIの
切換えのみで直ちに追従することができる。尚この例の
場合、操作時間が経過するにつれて蓄水電槽7a内の吸
蔵水素量が増加すると共に蓄水紫檀7b内の放出水素量
は減少してくる。しかしながら、図示した如く冷却水供
給管と温排水供給管とを結ぶ弁付き切換配管14.18
を設けておき、周期的に冷却水C及び温排水Hの供給方
向を切換えゐ様にしておけば、蓄水電槽7−内の合金O
水素吸蔵量が飽和状部に達した時点或いはその直前に該
蓄水紫檀yat水素放出WIAK切換えることかで1!
(この時点で蓄水紫檀7b内の水素吸蔵量は殆んどなく
なっているので水素吸蔵部に切換えられる)、この操作
を繰り返すことによって水素の収支平IIlを保つこと
ができる。
FIG. 4 is another embodiment of the present invention, which is a schematic diagram showing a control method suitable for batch operation with short switching cycles between heat demand and heat surplus. That is, in the example shown in FIG. 8, the storage and release of hydrogen O in the water storage rosewood T is performed by switching the flow rate control valve 1G for cooling water and the flow rate control valve 11) for hot water discharge,
Since cooling and heating of hydrogen storage alloy B requires a considerable amount of time,
It may not be possible to keep up with batch operations where heat demand and heat surplus are repeated in short cycles. However, in the example shown in Fig. 4, two water storage rosewood tanks 7a*7bt are installed in parallel, and one water storage battery tank 7
1 is the cooling water pipe M. 1 and filled with an alloy that has a small amount of hydrogen storage (remaining a large amount of hydrogen storage capacity), and a heated drainage pipe MHI is installed in the water storage battery tank 7b, and an alloy that stores a large amount of urea (has a high hydrogen release activity). Filled with water storage rosewood 7m, 71*Fi! The water pipe 111ia is connected to the water pipe 8KIIi via the diverter valve 11. When the O heat medium in the reckless piping is in a heat surplus state, the three-way valve 18 connects the hydrogen piping 8 to the water storage rosewood 7maro, and the released hydrogen is guided to the water storage battery tank 7a and stored there, thereby reducing the heat demand. At this time, the three-way valve 18 is switched to connect the hydrogen pipe 8t to the water storage battery tank yb, and the hydrogen in the water storage rosewood 7b is supplied to the heat storage tank 6. In other words, the water storage battery tank 7m acts exclusively as a hydrogen storage unit, so it is always cold.
On the other hand, since the water storage rosewood b is constantly heated to function exclusively as a hydrogen release section, it can be immediately followed by simply switching the three-way valve II. In this example, as the operating time passes, the amount of hydrogen stored in the water storage battery tank 7a increases and the amount of released hydrogen in the water storage rosewood 7b decreases. However, as shown in the figure, switching piping 14.18 with a valve connecting the cooling water supply pipe and the heated wastewater supply pipe
If the supply direction of the cooling water C and the heated waste water H is changed periodically, the alloy O in the water storage battery tank 7-
1! By switching the water storage rosewood yat hydrogen release WIAK at the time when the hydrogen storage amount reaches the saturated level or just before that!
(At this point, the amount of hydrogen stored in the water storage rosewood 7b is almost gone, so it is switched to the hydrogen storage section.) By repeating this operation, the hydrogen balance can be maintained at the same level.

第す図は本発明の更に他の実施例を示すもので、蓄水電
槽として単なる高圧水素タンク16−と低圧水素タンク
16bを便用しており、熱余四時に蓄熱槽6で放出され
た水素は水素配管8、流量調節弁9及び三方弁l畠を通
して低圧水素タンク16bに送シ込み、熱需要時には高
圧水素メンタ16暑から三方弁13、電磁弁9及び水素
配管St通して蓄熱槽6内へ水素を供給する。1食低圧
水素タンク16bに送り込まれた水素は間欠的(或いは
連続的)に圧縮機17で加圧して高圧水素タンク16畠
に戻し循環使用される0図中?、、P、は圧力指示調節
器を示す、この様に蓄水電槽は水素吸蔵合金を充填した
ものであってもよく、或い線単なる水素タンクであって
も差支えない。
Fig. 3 shows still another embodiment of the present invention, in which a simple high-pressure hydrogen tank 16- and a low-pressure hydrogen tank 16b are conveniently used as water storage batteries, and the water is released in the heat storage tank 6 when there is excess heat. The hydrogen is sent to the low-pressure hydrogen tank 16b through the hydrogen pipe 8, the flow control valve 9, and the three-way valve St. When heat is required, the hydrogen is transferred from the high-pressure hydrogen tank 16 to the heat storage tank through the three-way valve 13, the solenoid valve 9, and the hydrogen pipe St. Supply hydrogen into 6. The hydrogen fed into the low-pressure hydrogen tank 16b for one meal is intermittently (or continuously) pressurized by the compressor 17 and returned to the high-pressure hydrogen tank 16 for circulation. , , P indicate a pressure indicating regulator. In this way, the water storage battery tank may be filled with a hydrogen storage alloy, or it may be a simple hydrogen tank.

本発明は例えば上記の様に構成されているが、要は水素
吸蔵合金の水素放出時の吸熱及び水素吸蔵時の発熱を利
用し、回分式操作における熱余剰時の熱を蓄積し熱需要
時の熱源として活用することによって、操作系全体とし
ての熱ロスを大幅に低減し得ることになった。
The present invention is configured, for example, as described above, but the key point is to utilize the heat absorbed by the hydrogen storage alloy when releasing hydrogen and the heat generated when it absorbs hydrogen, to accumulate heat during surplus heat during batch operation, and to store heat during heat demand. By using this as a heat source, it was possible to significantly reduce heat loss in the entire operating system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用される回分式操作の具体例を示す
tので高分子重合プルセスを示す工程図、第2図は各種
金属水素化物の平衡圧力の温度依存性を示すグラフ、第
8〜6図は本発明の突流側を示す概略図である。 6−・蓄熱槽     7.71,7に−・・蓄水紫檀
8・−水素配管    9.10.11−・電磁弁A、
B−−水素吸蔵合金 L・・・無謀配管    M・−配管 C−冷却水     H−・・温排水 出願人  工業技−術院長 第2r!!J 10007T へ) 第3図
FIG. 1 is a process diagram showing a polymer polymerization process as a specific example of batch operation to which the present invention is applied, FIG. 2 is a graph showing the temperature dependence of equilibrium pressure of various metal hydrides, and FIG. Figures 1 to 6 are schematic diagrams showing the rush side of the present invention. 6-・Heat storage tank 7.71, 7-・・Water storage rosewood 8・-Hydrogen piping 9.10.11-・Solenoid valve A,
B--Hydrogen storage alloy L...Reckless piping M--Piping C-Cooling water H--Heat drainage applicant Industrial Technology Director 2nd R! ! To J 10007T) Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)水素吸蔵用合金を充填した蓄熱槽に、水素配管を
介して蓄水電槽を設けた蓄熱装置を便用し、回分式操作
における熱余剰時には前記蓄熱槽中の金属水素化物から
水素を放出させて操作系を冷却すると共に、該発生水素
は前記蓄水電槽に送って貯蔵する工程、tた熱不足時に
は前記蓄水電槽か ′ら蓄熱槽に水素を移動させて該蓄
熱槽内0水素吸蔵用舎金に水素を吸蔵させ、発生する熱
によって操作系を加熱する工程、を繰り返すことを特徴
とする回分式操作における熱負荷変動の吸収法。
(1) Conveniently use a heat storage device in which a water storage battery tank is connected to a heat storage tank filled with a hydrogen storage alloy via hydrogen piping, and when there is surplus heat in batch operation, hydrogen is extracted from the metal hydride in the heat storage tank. At the same time, the generated hydrogen is sent to the water storage battery tank for storage, and when there is insufficient heat, the hydrogen is transferred from the water storage battery tank to the heat storage tank to cool the operation system. A method for absorbing heat load fluctuations in batch operation, which is characterized by repeating the steps of storing hydrogen in a hydrogen storage shell in a tank and heating an operating system with the generated heat.
JP56187218A 1981-11-20 1981-11-20 Absorption of fluctuation in heat load in batch type operation Granted JPS5889678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56187218A JPS5889678A (en) 1981-11-20 1981-11-20 Absorption of fluctuation in heat load in batch type operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56187218A JPS5889678A (en) 1981-11-20 1981-11-20 Absorption of fluctuation in heat load in batch type operation

Publications (2)

Publication Number Publication Date
JPS5889678A true JPS5889678A (en) 1983-05-28
JPH0227387B2 JPH0227387B2 (en) 1990-06-15

Family

ID=16202132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56187218A Granted JPS5889678A (en) 1981-11-20 1981-11-20 Absorption of fluctuation in heat load in batch type operation

Country Status (1)

Country Link
JP (1) JPS5889678A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231394A (en) * 1983-06-10 1984-12-26 Kubota Ltd Hydrogen occlusion and emission type heat exchanger
JPS6096802A (en) * 1983-10-31 1985-05-30 積水化学工業株式会社 Steam generator
JPS6096801A (en) * 1983-10-31 1985-05-30 積水化学工業株式会社 Steam generator
JPS6222883A (en) * 1985-07-22 1987-01-31 Sekisui Chem Co Ltd Rapid heating device
JP2014153029A (en) * 2013-02-13 2014-08-25 Toyota Central R&D Labs Inc Regeneration structure of heat accumulator and chemical heat storage system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136978U (en) * 1979-03-16 1980-09-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136978U (en) * 1979-03-16 1980-09-29

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231394A (en) * 1983-06-10 1984-12-26 Kubota Ltd Hydrogen occlusion and emission type heat exchanger
JPH056120B2 (en) * 1983-06-10 1993-01-25 Kubota Kk
JPS6096802A (en) * 1983-10-31 1985-05-30 積水化学工業株式会社 Steam generator
JPS6096801A (en) * 1983-10-31 1985-05-30 積水化学工業株式会社 Steam generator
JPH0132401B2 (en) * 1983-10-31 1989-06-30 Sekisui Chemical Co Ltd
JPH0212321B2 (en) * 1983-10-31 1990-03-20 Sekisui Chemical Co Ltd
JPS6222883A (en) * 1985-07-22 1987-01-31 Sekisui Chem Co Ltd Rapid heating device
JP2014153029A (en) * 2013-02-13 2014-08-25 Toyota Central R&D Labs Inc Regeneration structure of heat accumulator and chemical heat storage system

Also Published As

Publication number Publication date
JPH0227387B2 (en) 1990-06-15

Similar Documents

Publication Publication Date Title
US4185979A (en) Apparatus and method for transferring heat to and from a bed of metal hydrides
CA1050777A (en) Hydrogen-hydride absorption systems and methods for refrigeration and heat pump cycles
US3220191A (en) Varying the pressure level of a closed-cycle gas turbine plant
JP2652456B2 (en) Operating method of heat utilization system using hydrogen storage alloy
Tange et al. Experimental study of hydrogen storage with reaction heat recovery using metal hydride in a totalized hydrogen energy utilization system
JPS5889678A (en) Absorption of fluctuation in heat load in batch type operation
Kang et al. Dynamic behavior of heat and hydrogen transfer in a metal hydride cooling system
KR101643045B1 (en) Heat recovery apparatus
JPH02110263A (en) Heat-utilizing system utilizing hydrogen storage alloy and operation thereof
CN219441649U (en) Synthetic device of water reducing agent
JPH07289853A (en) Device for separating and concentrating hydrogen isotope
JP2000346483A (en) Heat pump
JPS5819956B2 (en) Cooling device using metal hydride
JPH04126961A (en) Chemical heat accumulative heat pump
JP2703360B2 (en) Heat-driven chiller using metal hydride
JP2580402B2 (en) Heat utilization system
JPS61173062A (en) Method of utilizing waste heat by using metallic hydride
JPH03282190A (en) Heat accumulating device
JPS61285357A (en) Heat pump device
JPS62169997A (en) Heat transport system utilizing metal hydride
JPS638391B2 (en)
Shanin Simulation of hydride heat pump operation with reference to vehicle refrigerating devices
JPH06109388A (en) Chemical heat accumulating method and device
JPH04161768A (en) Operation control method for heat pump device
JPH05322363A (en) Room cooler