JPS5913512Y2 - heat storage device - Google Patents

heat storage device

Info

Publication number
JPS5913512Y2
JPS5913512Y2 JP1979034842U JP3484279U JPS5913512Y2 JP S5913512 Y2 JPS5913512 Y2 JP S5913512Y2 JP 1979034842 U JP1979034842 U JP 1979034842U JP 3484279 U JP3484279 U JP 3484279U JP S5913512 Y2 JPS5913512 Y2 JP S5913512Y2
Authority
JP
Japan
Prior art keywords
heat storage
heat
hydrogen
tank
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1979034842U
Other languages
Japanese (ja)
Other versions
JPS55136978U (en
Inventor
貴史 酒井
直二郎 本田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP1979034842U priority Critical patent/JPS5913512Y2/en
Publication of JPS55136978U publication Critical patent/JPS55136978U/ja
Application granted granted Critical
Publication of JPS5913512Y2 publication Critical patent/JPS5913512Y2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【考案の詳細な説明】 この考案は蓄熱装置に関し、詳しくは、蓄熱材として金
属もしくは合金またはそれらの水素化物を用いる蓄熱槽
と水素貯蔵槽とを開閉弁を介して水素流通管で連結して
なる蓄熱装置において、蓄熱槽内に水素ガスが通過可能
な細孔を有する材質で作られた蓄熱材槽を設け、該蓄熱
材槽内に熱媒体輸送管の熱交換部を内設し、蓄熱槽の内
壁面と蓄熱材槽の外壁面との間に構成される空間に水素
ガスが通過可能な断熱材を充填し、水素流通管の開[1
部を該断熱材充填部に設けたことよりなる蓄熱装置に関
する。
[Detailed description of the invention] This invention relates to a heat storage device, and more specifically, a heat storage tank using a metal, an alloy, or a hydride thereof as a heat storage material and a hydrogen storage tank are connected by a hydrogen flow pipe via an on-off valve. In this heat storage device, a heat storage material tank made of a material having pores through which hydrogen gas can pass is provided in the heat storage tank, and a heat exchange part of a heat medium transport pipe is installed inside the heat storage material tank, and the heat storage The space formed between the inner wall surface of the tank and the outer wall surface of the heat storage material tank is filled with a heat insulating material through which hydrogen gas can pass, and the hydrogen flow pipe is opened [1].
The present invention relates to a heat storage device including a heat insulating material filling portion.

従来、熱エネルギーの蓄熱装置としては種々前えられ検
討されているが、例えば太陽熱の熱エネルギーを貯蔵す
るために水、岩などの顕熱を利用する装置、また最近で
は顕熱以外に、例えばNa2SO4・5H20,Na2
SO4・10H20などのような水和塩による潜熱を用
いるものも研究されている。
Conventionally, various thermal energy storage devices have been developed and studied. Na2SO4・5H20,Na2
Methods using latent heat due to hydrated salts such as SO4.10H20 are also being researched.

しかし両者ともその保温に問題があり、断熱効果の優れ
た材料で蓄熱槽を作成してもかなりの熱エネルギーを放
散するので、蓄熱効果は劣り短期蓄熱用にしか用いられ
ない。
However, both have problems with heat retention, and even if the heat storage tank is made of a material with excellent heat insulation effect, it dissipates a considerable amount of thermal energy, so the heat storage effect is poor and it can only be used for short-term heat storage.

ところで、上記のような欠点を補った蓄熱方法として、
金属もしくは合金またはそれらの水素化物を蓄熱材とし
て用いる蓄熱方法(例えば、小野修一部、化学の領域、
■O1,31,NO1,第1.〜47頁、1977年参
照)が提案された。
By the way, as a heat storage method that compensates for the above drawbacks,
Heat storage methods using metals, alloys, or their hydrides as heat storage materials (for example, Osamu Ono, chemistry field,
■O1, 31, NO1, 1st. -47, 1977) was proposed.

この蓄熱方法は、水素化と脱水素化反応を可逆的に行い
得る金属もしくは合金またはその水素化物を用い、下記
の式によって示される反応により蓄熱およびエネルギー
の取り出しを行うものである。
This heat storage method uses a metal, an alloy, or a hydride thereof that can undergo hydrogenation and dehydrogenation reactions reversibly, and stores heat and extracts energy through a reaction represented by the following formula.

MHx→M十Hx(吸熱反応:蓄熱過程)M+Hx−+
MHx(発熱反応:放熱過程)但しMは金属もしくは合
金、Hは水素原子およびXは水素原子数を示す。
MHx→M×Hx (endothermic reaction: heat storage process) M+Hx−+
MHx (exothermic reaction: heat dissipation process) where M is a metal or alloy, H is a hydrogen atom, and X is the number of hydrogen atoms.

この蓄熱方法は、長期蓄熱の画期的な方法として期待さ
れるものであり、鋭意研究が進められている。
This heat storage method is expected to be an innovative method for long-term heat storage, and intensive research is underway.

まず、この方法による蓄熱装置として代表的な一従米例
を挙げ、その装置の作動方法を図面によって説明する。
First, a typical example of a heat storage device using this method will be given, and the operating method of the device will be explained with reference to the drawings.

即ち、第1図において、例えば太陽熱を集熱した熱媒体
が熱媒体輸送管3によって蓄熱槽5に導びかれ、その熱
によって蓄熱槽5内の蓄熱材7を構成する金属または合
金の水素化物を加熱して脱水素化する。
That is, in FIG. 1, for example, a heat medium that collects solar heat is guided to a heat storage tank 5 by a heat medium transport pipe 3, and the heat is used to transform the metal or alloy hydride constituting the heat storage material 7 in the heat storage tank 5. Dehydrogenate by heating.

発生した水素ガスを弁2を開き水素流通管4(但し、蓄
熱槽内の部分はメツシュパイプ)を通じて水素貯蔵槽1
に送り貯蔵する。
The generated hydrogen gas is transferred to the hydrogen storage tank 1 by opening the valve 2 and passing it through the hydrogen distribution pipe 4 (however, the part inside the heat storage tank is a mesh pipe).
sent to and stored.

次いで熱を利用したい時は、弁2を開いて水素ガスを蓄
熱槽5に導き、前記熱交換時に金属もしくは合金の水素
化物が脱水素化して金属まだは合金に変換した蓄熱材7
と水素とを反応させ、発生した熱を熱媒体輸送管3中の
熱媒体によって集熱し冷暖房および給湯用などに利用す
る。
Next, when it is desired to utilize heat, the valve 2 is opened to introduce hydrogen gas into the heat storage tank 5, and during the heat exchange, the heat storage material 7 in which the metal or alloy hydride is dehydrogenated and converted into a metal or alloy.
and hydrogen, and the generated heat is collected by the heat medium in the heat medium transport pipe 3 and used for heating and cooling, hot water supply, etc.

なお、6は蓄熱槽5を構成する断熱材で、もちろん水素
ガスは通過できない。
Note that 6 is a heat insulating material that constitutes the heat storage tank 5, and of course hydrogen gas cannot pass therethrough.

本考案はこのような従来の蓄熱装置の改良に関するもの
であり、この蓄熱槽の熱効率を向上し、かつその構造を
簡単にして設備費の低減を図る目的でなされたものであ
る。
The present invention relates to an improvement of such a conventional heat storage device, and has been made for the purpose of improving the thermal efficiency of this heat storage tank and simplifying its structure to reduce equipment costs.

この考案の構成上の特徴と作用効果は次のとおりである
The structural features and effects of this invention are as follows.

すなわち蓄熱槽の内部に水素ガスが通過可能な細孔を有
する材質で作られ前記のごとき蓄熱材の充填された蓄熱
材槽が設けられ、水素ガスはその外壁を介して蓄熱材槽
内外いずれにも移動可能である。
That is, a heat storage material tank made of a material having pores through which hydrogen gas can pass and filled with the heat storage material as described above is provided inside the heat storage tank, and the hydrogen gas flows through its outer wall to either the inside or outside of the heat storage material tank. It is also movable.

さらに蓄熱槽の内壁面と蓄熱材槽の外壁面との間に構成
される空間に水素ガスが通過可能な断熱材を充填してい
るので、この断熱材の層は蓄熱材槽の断熱を行っだはで
なく水素流通路としての機能も兼ね備えて断熱材と蓄熱
材の両層間で水素ガスが流通可能となり、それによって
水素流通管を従来のごとく蓄熱材の内部にまで導入する
までもなく、この断熱材層に開口するだけで、蓄熱材槽
内へ及び蓄熱槽外への両方向の水素ガスの流通が可能で
ある。
Furthermore, since the space between the inner wall of the heat storage tank and the outer wall of the heat storage material tank is filled with a heat insulating material that allows hydrogen gas to pass through, this layer of heat insulating material insulates the heat storage material tank. It also functions as a hydrogen flow path, allowing hydrogen gas to flow between both layers of the insulation material and heat storage material, thereby eliminating the need to introduce hydrogen flow pipes inside the heat storage material as in the past. By simply opening the heat insulating layer, hydrogen gas can flow in both directions into and out of the heat storage tank.

従って前記従来例の蓄熱槽が備えているメツシュパイプ
のごとく複雑な構造で高価な、蓄熱材と直接接触する水
素流通管が不要なので、安価になり、蓄熱材の単位重量
当りの蓄熱槽の容積は減少し、構造も簡単になりかつ熱
効率も著しく向上する。
Therefore, there is no need for the complicated and expensive hydrogen flow pipes that come into direct contact with the heat storage material, such as the mesh pipes in the conventional heat storage tank, resulting in lower cost and the volume of the heat storage tank per unit weight of the heat storage material. The structure is simplified and the thermal efficiency is significantly improved.

この考案における蓄熱材槽は水素ガスが通過可能な材質
であればよく、特に限定されないがメツシュステンレス
等が挙げられる。
The heat storage material tank in this invention may be made of any material that allows hydrogen gas to pass through, and examples thereof include mesh stainless steel, but are not particularly limited.

また断熱材としては水素ガスと反応せず、水素ガスが通
過可能に充填できてかつ断熱効果を示すものであればよ
い。
Further, the heat insulating material may be any material as long as it does not react with hydrogen gas, can be filled in a manner allowing hydrogen gas to pass therethrough, and exhibits a heat insulating effect.

その例としては、珪藻土またはモレキュラーシーブ等が
挙げられる。
Examples include diatomaceous earth or molecular sieve.

さらに蓄熱材としては、LaNi5またはCaxNiM
ml−x(Mm :メッシュメタル)等適切なものを用
いることができる。
Furthermore, as a heat storage material, LaNi5 or CaxNiM
An appropriate material such as ml-x (Mm: mesh metal) can be used.

以下、本考案の蓄熱装置を第2図に示す実施例によって
、説明する。
Hereinafter, the heat storage device of the present invention will be explained with reference to an embodiment shown in FIG.

この実施例の蓄熱槽12は円筒形で、260 mm高さ
X240mmφ、厚み2mmのステンレス(SUS 3
16)製であり、その内部に設けられた蓄熱材槽16は
内容積が41の円筒形で、200mm高さX 160
mmφ、厚さ2mmの325メツシユステンレス(SL
TS 316)製である。
The heat storage tank 12 of this embodiment is cylindrical, 260 mm high x 240 mmφ, and 2 mm thick stainless steel (SUS 3).
16), and the heat storage material tank 16 provided inside is cylindrical with an internal volume of 41 cm, and has a height of 200 mm and a height of 160 mm.
mmφ, 2mm thick 325 mesh stainless steel (SL
TS 316).

この蓄熱材槽16の中に48メツシユパスのLaNi5
H61kgを充填した。
In this heat storage material tank 16, there are 48 mesh paths of LaNi5.
61 kg of H was filled.

また熱媒体流通管10はヒートパイプ(3mmφ、SU
S 316 )を用いた。
The heat medium flow pipe 10 is a heat pipe (3 mmφ, SU
S 316 ) was used.

蓄熱材槽壁15と蓄熱槽壁17との間に構成された空間
に断熱材13として水素ガスと反応しない珪藻土を水素
ガスが通過可能に充填した。
A space formed between the heat storage material tank wall 15 and the heat storage tank wall 17 is filled with diatomaceous earth that does not react with hydrogen gas as a heat insulating material 13 so that hydrogen gas can pass therethrough.

水素貯蔵槽8としては2001の水素ガスを貯蔵しうる
耐圧容器とした。
The hydrogen storage tank 8 was a pressure-resistant container capable of storing 2001 hydrogen gas.

一方、第1図で示される従来の蓄熱装置の水素流通管4
は、蓄熱槽5内では高価なメツシュパイプで構成されて
いるのに対し、本考案の実施例の水素流通管11は蓄熱
槽12に連結し、その断熱材13部に開口しているだけ
で蓄熱槽内ではほとんど不要である。
On the other hand, the hydrogen flow pipe 4 of the conventional heat storage device shown in FIG.
The inside of the heat storage tank 5 is constructed of an expensive mesh pipe, whereas the hydrogen flow pipe 11 of the embodiment of the present invention is connected to the heat storage tank 12 and is only opened in the heat insulating material 13 of the heat storage tank 5. It is almost unnecessary in the tank.

つまり、水素ガスは蓄熱槽12内では断熱材13を通過
して流通し、断熱材13は水素ガスの流路も兼ねている
わけである。
In other words, hydrogen gas flows through the heat insulating material 13 within the heat storage tank 12, and the insulating material 13 also serves as a flow path for the hydrogen gas.

以上の実施例の装置によれば、蓄熱材の単位重量当りの
蓄熱槽の容積は第1図の従来構造の蓄熱装置と比べて1
0〜20%削減され、しかも構造が簡単になり、熱効率
も著しく向上した。
According to the device of the above embodiment, the volume of the heat storage tank per unit weight of the heat storage material is 1
It has been reduced by 0 to 20%, the structure has been simplified, and the thermal efficiency has been significantly improved.

一方、この実施例の蓄熱装置において、水素貯蔵槽8と
蓄熱槽12との間の水素流通管11から万一水素が漏洩
した際は、蓄熱装置内に空気が混入する。
On the other hand, in the heat storage device of this embodiment, if hydrogen were to leak from the hydrogen flow pipe 11 between the hydrogen storage tank 8 and the heat storage tank 12, air would be mixed into the heat storage device.

一般に蓄熱材14の金属もしくは合金は、この空気中の
酸素と結合し、金属酸化物を形成して金属もしくは合金
の水素化反応を抑制し、その触媒毒として働き、さらに
水素化および脱水素化の可逆性をも減退させ蓄熱装置の
蓄熱機能を低下させる。
In general, the metal or alloy of the heat storage material 14 combines with oxygen in the air to form a metal oxide, suppresses the hydrogenation reaction of the metal or alloy, acts as a catalyst poison, and further promotes hydrogenation and dehydrogenation. This also reduces the reversibility of heat storage and reduces the heat storage function of the heat storage device.

さらに水素貯蔵槽8および蓄熱槽12中の水素ガスが加
圧状態であれば問題はないが、水素ガスが漏洩すれば蓄
熱装置内の水素が減少することになる。
Further, there is no problem if the hydrogen gas in the hydrogen storage tank 8 and the heat storage tank 12 is in a pressurized state, but if the hydrogen gas leaks, the hydrogen in the heat storage device will decrease.

この場合、同一の蓄熱能力の蓄熱サイクルを続けたいな
らば、不足水素分を外部から充填する必要がある。
In this case, if you want to continue the heat storage cycle with the same heat storage capacity, it is necessary to fill up the hydrogen shortage from the outside.

また、蓄熱サイクルを繰返して水素化、脱水素化反応を
行なっていると水素はかなり高純度化しているので、同
程度の蓄熱性能を維持するには同程度の高純度の水素を
供給する必要があり、さらに前述の金属もしくは合金は
酸素に対してがなり敏感に作用するので、酸素骨の少な
い水素純度が99 、99999%、含有酸素が“0.
O5ppm以下の高純度水素でなければならない。
Furthermore, hydrogen becomes highly purified when hydrogenation and dehydrogenation reactions are repeated through repeated heat storage cycles, so in order to maintain the same level of heat storage performance, it is necessary to supply hydrogen with the same level of purity. Moreover, since the metals or alloys mentioned above are sensitive to oxygen, the purity of hydrogen with little oxygen content is 99.99999%, and the oxygen content is 0.
It must be high purity hydrogen with O5 ppm or less.

上記のような水素ガス漏洩問題は、例えば第2図の装置
において水素流通管11に開閉弁19を介して高純度水
素供給槽18を連結すれば解決でき好ましいことである
The problem of hydrogen gas leakage as described above can be solved, for example, by connecting the high-purity hydrogen supply tank 18 to the hydrogen flow pipe 11 via the on-off valve 19 in the apparatus shown in FIG. 2, which is preferable.

即ち、円筒形で高さ200mm X 4Q mmφ、厚
み2mmのステンレス(SUS 316)製の高純度水
素供給槽18(第2図中、破線区画内)を水素流通管1
1に弁19を介して連結し、LaN15Hs200 g
を充填した。
That is, a high-purity hydrogen supply tank 18 (within the dashed line section in Figure 2) made of stainless steel (SUS 316) with a cylindrical shape, height 200 mm x 4Q mmφ, and thickness 2 mm is connected to the hydrogen flow pipe 1.
1 through valve 19, and 200 g of LaN15Hs.
filled with.

水素貯蔵槽8と蓄熱槽12間の水素流通管11で水素ガ
スが漏洩したことを水素流通管11内の水素ガス圧を検
出して発見した際、高純度水素供給槽18の弁19を開
放し、水素流通管11内に高純度水素ガスを添加する。
When detecting the hydrogen gas pressure in the hydrogen flow pipe 11 and discovering that hydrogen gas has leaked from the hydrogen flow pipe 11 between the hydrogen storage tank 8 and the heat storage tank 12, the valve 19 of the high-purity hydrogen supply tank 18 is opened. Then, high-purity hydrogen gas is added into the hydrogen flow pipe 11.

具体的には、弁21および19の開閉を繰返して水素流
通管11内を高純度水素ガスで置換した後、管内の水素
ガス圧を蓄熱サイクル終了時の圧力に調整し、次の蓄熱
サイクルを実施した。
Specifically, after repeatedly opening and closing the valves 21 and 19 to replace the inside of the hydrogen flow pipe 11 with high-purity hydrogen gas, the hydrogen gas pressure inside the pipe is adjusted to the pressure at the end of the heat storage cycle, and the next heat storage cycle is started. carried out.

またこの高純度水素供給槽内の高純度水素源としては、
前記LaNi5H6以外に他の適切な金属水素化物類ま
たは高純度水素ガスを用いることができる。
In addition, the high-purity hydrogen source in this high-purity hydrogen supply tank is
In addition to the LaNi5H6, other suitable metal hydrides or high purity hydrogen gas can be used.

上記装置で蓄熱サイクルを繰返しながら水素ガスが漏洩
した際、水素ガス添加を行なった場合と、行なわなかっ
た場合との蓄熱材単位重量当りの反応熱量を比較すると
第3図のとおりであった。
When hydrogen gas leaked while repeating the heat storage cycle in the above device, the amount of reaction heat per unit weight of the heat storage material was compared between when hydrogen gas was added and when it was not added, as shown in Figure 3.

このように高純度水素ガスを供給しながら蓄熱サイクル
を続けることによって蓄熱装置中への酸素の混入が防止
され、従って蓄熱性能の劣化が防止されるので、高純度
水素の供給は工業的価値が大であることが分った。
Continuing the heat storage cycle while supplying high-purity hydrogen gas prevents oxygen from entering the heat storage device, thereby preventing deterioration of heat storage performance, so supplying high-purity hydrogen has industrial value. It turned out to be large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の蓄熱装置の機能説明図、第2図は本考案
の蓄熱装置の一実施態様を示す部分破断図を含む機能説
明図であり、第3図はその蓄熱装置において蓄熱サイク
ル数と反応熱量(Kcal/kgLaNi5)との関係
を示すグラフであり、Aは高純度水素を供給して水素ガ
ス圧を調整した場合、Bは水素ガス圧を調整しなかった
場合を示す。 1および8・・・・・・水素貯蔵槽、2,9,19.2
0および21・・・・・・開閉弁、3および10・・・
・・・熱媒体流通管、4および11・・・・・・水素ガ
ス流通管、5および12・・・・・・蓄熱槽、6・・・
・・・断熱材、7および14・・・・・・蓄熱材、13
・・・・・・水素ガスの流路を兼ねた断熱材、15・・
・・・・蓄熱材槽壁、16・・・・・・蓄熱材槽、17
・・・・・・蓄熱槽壁および18・・・・・・高純度水
素供給槽。
Fig. 1 is a functional explanatory diagram of a conventional heat storage device, Fig. 2 is a functional explanatory diagram including a partially cutaway diagram showing an embodiment of the heat storage device of the present invention, and Fig. 3 is a functional explanatory diagram showing the number of heat storage cycles in the heat storage device. It is a graph showing the relationship between and the reaction heat amount (Kcal/kgLaNi5), where A shows the case where high purity hydrogen is supplied and the hydrogen gas pressure is adjusted, and B shows the case where the hydrogen gas pressure is not adjusted. 1 and 8...Hydrogen storage tank, 2, 9, 19.2
0 and 21...Open/close valve, 3 and 10...
... Heat medium flow pipe, 4 and 11 ... Hydrogen gas flow pipe, 5 and 12 ... Heat storage tank, 6 ...
... Insulation material, 7 and 14 ... Heat storage material, 13
...Insulating material that also serves as a flow path for hydrogen gas, 15...
... Heat storage material tank wall, 16 ... Heat storage material tank, 17
. . . Heat storage tank wall and 18 . . . High purity hydrogen supply tank.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 蓄熱槽と水素貯蔵槽とを開閉弁を介して水素流通管で連
結してなる蓄熱装置であって、蓄熱槽内に水素ガスが通
過可能な細孔を有する材質で作られた蓄熱材槽を設け、
蓄熱材槽内に金属もしくは合金またはそれらの水素化物
の蓄熱材を充填しかつ熱媒体輸送管の熱交換部を内設し
、蓄熱槽の内壁面と蓄熱材槽の外壁面との間に構成され
る空間に水素ガスが通過可能な断熱材を充填し、水素流
通管の開口部を該断熱材充填部に設けたことよりなる蓄
熱装置。
A heat storage device in which a heat storage tank and a hydrogen storage tank are connected by a hydrogen flow pipe via an on-off valve, and the heat storage tank includes a heat storage material tank made of a material that has pores through which hydrogen gas can pass. established,
A heat storage material tank is filled with a heat storage material made of a metal, an alloy, or a hydride thereof, and a heat exchange section of a heat medium transport pipe is installed inside the heat storage material tank, and is configured between the inner wall surface of the heat storage tank and the outer wall surface of the heat storage material tank. A heat storage device comprising a space filled with a heat insulating material through which hydrogen gas can pass, and an opening for a hydrogen flow pipe provided in the heat insulating material filled part.
JP1979034842U 1979-03-16 1979-03-16 heat storage device Expired JPS5913512Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1979034842U JPS5913512Y2 (en) 1979-03-16 1979-03-16 heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1979034842U JPS5913512Y2 (en) 1979-03-16 1979-03-16 heat storage device

Publications (2)

Publication Number Publication Date
JPS55136978U JPS55136978U (en) 1980-09-29
JPS5913512Y2 true JPS5913512Y2 (en) 1984-04-21

Family

ID=28892983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1979034842U Expired JPS5913512Y2 (en) 1979-03-16 1979-03-16 heat storage device

Country Status (1)

Country Link
JP (1) JPS5913512Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889678A (en) * 1981-11-20 1983-05-28 Agency Of Ind Science & Technol Absorption of fluctuation in heat load in batch type operation

Also Published As

Publication number Publication date
JPS55136978U (en) 1980-09-29

Similar Documents

Publication Publication Date Title
CA1123293A (en) Reaction heat storage method for hydride tanks
US4510759A (en) Metalhydride container and metal hydride heat storage system
US20030167923A1 (en) Tank for the reversible storage of hydrogen
US6099811A (en) Self-heating metal-hydride hydrogen storage system
Jana et al. Design and performance prediction of a compact MmNi4. 6Al0. 4 based hydrogen storage system
JPH038295B2 (en)
US4829772A (en) Method of and device for storing and transforming heat and generating cold
JPS5913512Y2 (en) heat storage device
US4589479A (en) Hot water supply unit
JPS5890A (en) Structure of heat exchanger utilizing metal hydride
JP3327564B2 (en) Hydrogen storage device
JPS5849493Y2 (en) heat storage device
JP2001289397A (en) Hydrogen storage alloy storing container
JPS5849496Y2 (en) heat storage device
JP2004161554A (en) Method for supplying hydrogen to equipment requiring hydrogen
JPS6321839Y2 (en)
JPS58156192A (en) Heat transfer device by use of solid/gas reversible reactant
JPS6037395B2 (en) Portable heating or cooling device
JPS6223239B2 (en)
JPS58182087A (en) Heat accumulating device by metal hydride
Urunkar et al. Hydrogen Storage Technologies and Related Heat and Mass Transfer Studies
JPH039386B2 (en)
JPS642870B2 (en)
JPS6037394B2 (en) Heat storage method and heat storage tank
JPH0413568Y2 (en)