JP2004161554A - Method for supplying hydrogen to equipment requiring hydrogen - Google Patents

Method for supplying hydrogen to equipment requiring hydrogen Download PDF

Info

Publication number
JP2004161554A
JP2004161554A JP2002330672A JP2002330672A JP2004161554A JP 2004161554 A JP2004161554 A JP 2004161554A JP 2002330672 A JP2002330672 A JP 2002330672A JP 2002330672 A JP2002330672 A JP 2002330672A JP 2004161554 A JP2004161554 A JP 2004161554A
Authority
JP
Japan
Prior art keywords
hydrogen
pressure
reaction vessel
temperature
metal hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002330672A
Other languages
Japanese (ja)
Inventor
Izuru Kanoya
出 鹿屋
Takanori Suzuki
貴紀 鈴木
Buyo Isobe
武揚 磯辺
Mitsuya Hosoe
光矢 細江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002330672A priority Critical patent/JP2004161554A/en
Publication of JP2004161554A publication Critical patent/JP2004161554A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably supply hydrogen and to inhibit generation of steam as far as possible by keeping the pressure and temperature in a reaction vessel within a specified range. <P>SOLUTION: In supplying the hydrogen generated by reaction of a metal hydride and water to equipment, the range of a square shape formed by respectively taking the temperature T of the metal hydride at the x-axis of orthogonal coordinates and the pressure P in the reaction vessel at the y-axis and connecting the coordinates (T<SB>1</SB>and P<SB>1</SB>), (T<SB>4</SB>and P<SB>1</SB>), (T<SB>4</SB>and P<SB>3</SB>), (T<SB>1</SB>and P<SB>3</SB>), and (T<SB>1</SB>and P<SB>1</SB>) is defined as a range A where the hydrogen can be supplied. Prescribed means are employed to measure the temperature T of the metal halide and the pressure P in the reaction vessel and to keep the temperature T and the pressure P within the range A where the hydrogen can be supplied. In supplying the water to the reaction vessel, the reaction vessel is cooled when there is a possibility of generation of excessive steam by the vaporization of the water. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は,水素を必要とする機器への水素供給方法,特に,圧力容器内において,金属水素化物と水との反応により発生した水素を,水素を必要とする機器に供給する方法に関する。
【0002】
【従来の技術】
従来,この種の水素供給方法としては,反応容器内に設置された金属水素化物に水を噴射して水素を発生させ,その水素を燃料電池に供給する,といった方法が知られている(例えば,特許文献1参照)。
【0003】
【特許文献1】
特開2002−137903号公報
【0004】
【発明が解決しようとする課題】
前記従来例のように金属水素化物と水とを反応させると,水素の発生だけでなく,熱も発生するため,その熱により水が気化して水蒸気が過剰に生じ,これにより反応容器内の異常圧力上昇を招来し,安定した水素の供給を行うことができなくなると共に反応容器の損傷を招くおそれがあった。
【0005】
【課題を解決するための手段】
本発明は,反応容器内の圧力および温度を一定範囲内に保持して水素の供給を安定して行い,また反応容器内における過剰な水蒸気の発生を極力抑制し得る前記水素供給方法を提供することを目的とする。
【0006】
前記目的を達成するため本発明によれば,圧力容器内において,金属水素化物と水との反応により発生した水素を,水素を必要とする機器に供給するに当り,直交座標のx軸に前記金属水素化物の温度Tを,またy軸に前記反応容器内の圧力Pをそれぞれとって,前記金属水素化物の許容温度下限値をT,その許容温度上限値をTとし,また前記反応容器内の許容圧力下限値をP,その許容圧力上限値をPとしたとき,座標(T,P),(T,P),(T,P),(T,P),(T,P)を結んで形成される四角形の範囲を水素供給可能領域とし,前記金属水素化物の温度Tを測定すると共に前記反応容器内の圧力Pを測定して,それら温度Tおよび圧力Pの少なくとも一方が前記水素供給可能領域から逸脱したときは,その逸脱状態に対応して,水素の外部への放出,前記金属水素化物の加熱,前記反応容器への水供給および前記反応容器の冷却の何れか1つを実行して,前記温度Tおよび前記圧力Pの少なくとも一方を前記水素供給可能領域に戻し,また前記反応容器への水供給に際し,その水の気化による過剰な水蒸気発生のおそれがあるときは前記反応容器を冷却して水蒸気の発生を回避する,水素を必要とする機器への水素供給方法が提供される。
【0007】
前記のような手段を採用すると,金属水素化物の温度および反応容器内の圧力を水素供給可能領域内に保ち,これにより水素の供給を安定して行うことが可能である。また反応容器内における過剰な水蒸気の発生を回避することが可能であるから,反応容器の損傷回避を図る上で有効である。
【0008】
【発明の実施の形態】
〔第1実施例〕
〔I〕水素供給設備
図1において,反応容器1は有底円筒形器体2と,その開口を閉鎖する蓋体3とよりなり,その器体2内に粉末状金属水素化物MHが入れられている。蓋体3の水素導出部4に第1供給管5の一端が接続され,その他端は,水素を必要とする機器としての燃料電池6の水素供給部に接続される。第1供給管5には,反応容器1側より順次,第1開閉弁7およびレギュレータ8が装置される。燃料電池6の空気供給部に,空気供給源9が第2供給管10を介して接続され,その燃料電池6の排水部は第3供給管11を介して蓋体3の水導入部12に接続され,その第3供給管11に燃料電池6側から順次,気液分離機13,水溜め14,給水ポンプ15および三方弁16が装置される。三方弁16において,その第1,第2ポートa,bが反応容器1内と給水ポンプ15側との連通に寄与する。また三方弁16には第1排出管17を介して真空ポンプ18が接続されており,第1,第3ポートa,cが真空ポンプ18と反応容器1との連通に寄与する。
【0009】
反応容器1の器体2において,冷却水を流通させる冷却管19が器体2外周面全体に密に巻付けられると共に底壁外面全体にも密に添わせられている。
【0010】
冷却管19の入口端と冷却水タンク20との間は第4供給管21により接続され,その第4供給管21に冷却水ポンプ22が装置される。また冷却管19の出口端と冷却水タンク20との間は第2排出管23により接続されている。
【0011】
蓋体3に,それを貫通するように熱電対24が取付けられており,その熱電対24は金属水素化物MHの温度を測定して,その温度情報を制御器25に向けて発信する。また蓋体3の圧力検出部26に圧力計27が取付けられており,その圧力計27は反応容器1内の圧力を測定して,その圧力情報を制御器25に向けて発信する。
【0012】
金属水素化物MH内には,それを加熱するヒータ28が埋設されており,そのヒータ28と反応容器1外に設置された熱源29とが蓋体3を貫通する接続部材30によって接続されている。さらに蓋体3の水素排出部31に第3排出管32を介して水素回収器33が接続され,その第3排出管32に第2開閉弁34が装置される。
【0013】
制御器25は熱電対24からの温度情報および圧力計27からの圧力情報に基づいて,給水ポンプ15,冷却水ポンプ22,熱源29および第2開閉弁34に作動信号を発信する。
【0014】
金属水素化物MHとしては,MgH,NaBH,LiBH,Mg(BH,NaAlH,LiAlH,Mg(AlHおよびNaHから選択される少なくとも一種の粉末状物が用いられる。
【0015】
〔II〕水素供給可能領域の設定
燃料電池6への水素供給に当り,その燃料電池6の要求水素量,反応容器1の能力等を考慮して,金属水素化物MHの温度Tを測定すると共に反応容器1内の圧力Pを測定して,その温度Tおよび圧力Pを水素供給可能領域に保持するようになっている。その水素供給可能領域は次のように設定されている。即ち,図2に示すように,直交座標のx軸に金属水素化物MHの温度Tを,またy軸に反応容器1内の圧力Pをそれぞれとって,金属水素化物MHの許容温度下限値をT,その許容温度上限値をTとし,また反応容器1内の許容圧力下限値をP,その許容圧力上限値をPとしたとき,座標(T,P),(T,P),(T,P),(T,P),(T,P)を結んで形成される四角形の範囲を水素供給可能領域Aとするものである。
【0016】
〔III 〕初期圧力の設定
▲1▼金属水素化物MHを反応容器1内に入れる。▲2▼三方弁16を切換えて,それの第1,第3ポートa,cを介し反応容器1内と真空ポンプ18とを連通させ,次いで反応容器1内に真空引きを施し,その後,三方弁16を切換えて,それの第1,第2ポートa,bにより反応容器1内と給水ポンプ15側とを連通させる。▲3▼給水ポンプ15を駆動して水溜め14から所定量の水を反応容器1に供給し,その水と一部の金属水素化物MHとを反応させて所定量の水素を発生させ,反応容器1内に,水素供給可能領域Aに収まる初期圧力を生じさせる。
【0017】
この水素発生反応は発熱反応であるが,その発生熱量のほとんどは金属水素化物MHおよび反応容器1の昇温に費やされ,また反応容器1を通じて外部に放散されるので,その熱エネルギが,水素による反応容器1内の昇圧に影響を及ぼすことはない。
【0018】
〔IV〕 燃料電池への水素の供給
第1開閉弁7を「開」にすると,反応容器1内の水素がレギュレータ8により減圧されて燃料電池6に供給される。また燃料電池6には空気供給源9より空気が供給されているので,水素と酸素との反応によって発電が行われ,同時に水が生成される。その水は気液分離機13において窒素と分離され,水溜め14に貯溜される。給水ポンプ15を再び駆動して水溜め14の水を反応器1に供給して水素を発生させ,反応容器1内の圧力を回復させる。
【0019】
〔V〕水素供給可能領域への復帰
金属水素化物MHの温度Tおよび反応容器1内の圧力Pの少なくとも一方が水素供給可能領域Aから逸脱したときは,その逸脱状態に対応して,例えば次のような方策をとり,前記温度Tおよび圧力Pの少なくとも一方を水素供給可能領域Aに戻すものである。
【0020】
▲1▼金属水素化物MHの温度TはT≦T≦Tであるが,反応容器1内の圧力PがP>Pであるときは,制御器25からの作動信号により第2開閉弁34を「開」にして圧力PをP≦P≦Pに下降させると共に放出された水素を水素回収器33に回収する。
【0021】
▲2▼反応容器1内の圧力PはP≦P≦Pであるが,金属水素化物MHの温度TがT>Tであるときは,反応容器1内の温度もTを上回っているので,制御器2からの作動信号により冷却水ポンプ22を駆動して冷却管19に冷却水を流通させ,金属水素化物MHおよび反応容器1内の温度TをT<Tに下降させる。
【0022】
▲3▼反応容器1内の圧力PはP≦P≦Pであるが,金属水素化物MHの温度TがT<Tであるときは,制御器25からの作動信号により熱源29を作動させ,ヒータ28によって金属水素化物MHを加熱し,その温度TをT≧Tに上昇させる。
【0023】
▲4▼金属水素化物MHの温度TはT≦T≦Tであるが,反応容器1内の圧力PがP<Pであるときは,制御器25からの作動信号により給水ポンプ15を駆動させて水溜め14から所定量の水を反応容器1に供給し,前記同様に水素を発生させて反応容器1内の圧力PをP≧Pに上昇させる。
【0024】
この場合,金属水素化物MHの温度TがT>Tで,圧力PがP<Pである,といった状態が現出すると,反応容器1内に供給された水が水蒸気になるおそれがある。この過剰な水蒸気の発生を回避するためには,制御器25からの作動信号により冷却水ポンプ22を駆動して冷却管19に冷却水を流通させ,金属水素化物MHおよび反応容器1内の温度TをT<Tに下降させる。
【0025】
〔VI〕水素供給可能領域における最適区域の設定とその区域への移行
(1)水素供給可能領域Aにおいて,金属水素化物MHの温度TおよびTと,許容温度下限値Tおよび許容温度上限値Tとの間に,T<T<T<Tの関係が成立し,また前記反応容器1内の圧力Pと,前記許容圧力下限値Pおよび許容圧力上限値Pとの間にP<P<Pの関係が成立するとき,座標(T,P),(T,P),(T,P),(T,P),(T,P)を結んで形成される小四角形の範囲を水素供給可能領域Aの最適区域Aとする。
【0026】
(2)金属水素化物MHの温度Tおよび反応容器1内の圧力Pが前記最適区域Aに無いときは,次のような方策をとって前記温度Tおよび圧力Pの少なくとも一方を最適区域Aに移行させるものである。
【0027】
▲1▼金属水素化物MHの温度Tおよび反応容器P内の圧力Pが座標(T,P),(T,P),(T,P),(T,P),(T,P)を結んで形成される小四角形の第1区域〔ただし,座標(T,P),(T,P)を結ぶ線分および座標(T,P),(T,P)を結ぶ線分を含まない〕Aに在るときは,制御器25からの作動信号によって給水ポンプ15を駆動し,反応容器1内に水を供給して水素発生による圧力上昇によりその反応容器1内の圧力Pを,最適区域Aの圧力範囲であるP≦P≦Pとする。
【0028】
▲2▼金属水素化物MHの温度Tおよび反応容器1内の圧力Pが座標(T,P),(T,P),(T,P),(T,P),(T,P)を結んで形成される小四角形の第2区域[ただし,座標(T,P),(T,P)を結ぶ線分を含まない]Aに在るときは,制御器25からの作動信号によって給水ポンプ15を駆動し,反応容器1内に水を供給して水素発生による圧力上昇によりその反応容器1内の圧力Pを,前記最適区域Aの圧力範囲であるP≦P≦Pとし,且つ金属水素化物MHの温度TがT>Tであるときは,制御器25からの作動信号により冷却水ポンプ22を駆動して冷却管19に冷却水を流通させ,反応容器1を冷却して前記温度Tを,最適区域Aの温度範囲であるT≦T≦Tとする。
【0029】
▲3▼ 金属水素化物MHの温度Tおよび反応容器1内の圧力Pが座標(T,P),(T,P),(T,P),(T,P),(T,P)を結んで形成される小四角形の第3区域[ただし,座標(T,P),(T,P)を結ぶ線分を含まない]Aにあるときは,制御器25からの作動信号により冷却水ポンプ22を駆動して冷却管19に冷却水を流通させ,反応容器1を冷却して前記温度Tを,最適区域Aの温度範囲であるT≦T≦Tとする。
【0030】
水素供給停止時には,次の水素供給に備え,反応容器1内の圧力Pをほぼ許容圧力上限値Pに保持する。
【0031】
〔VII 〕具体例
(1)圧力容器1:材質Al合金(JIS A5154P),内容積10L.(2)燃料電池6の出力:5kW.(3)粉末状金属水素化物MH:MgH粉末,投入量1.5kg.(4)初期水量65cc,初期設定圧力1.0MPa.(5)レギュレータ8の2次圧0.2MPa,燃料電池6への水素供給量13.9L/min (定常運転).図2において,許容温度下限値T=50℃,許容温度上限値T=110℃,許容圧力下限値P=0.2MPa,許容圧力上限値P=1MPa,温度T=73℃,温度T=80℃,圧力P=0.66MPaである。
【0032】
図3は燃料電池運転時間と発生水素量との関係を示す。図3より,燃料電池6の運転時間の経過に伴い,それに追随すべく,発生水素量も増加することが判る。
【0033】
〔第2実施例〕
図4において,第3供給管11の水溜め14および給水ポンプ15間に第2の三方弁35が装置され,その第1,第2ポートa,bが水溜め14および給水ポンプ15間の連通に寄与する。また三方弁35には第5供給管36を介して貯水タンク37が接続されており,第1,第3ポートa,cが貯水タンク37および給水ポンプ15との連通に寄与する。
【0034】
レギュレータ8の2次圧が0.2MPaを下回る場合には,制御器25からの作動信号により第2の三方弁35を切換えて貯水タンク37と給水ポンプ15とを連通させ,貯水タンク37の水を反応容器1に供給して水素を発生させて圧力上昇を図るものである。
【0035】
第1,第2実施例において,水素を必要とする機器には水素エンジンも含まれる。
【0036】
【発明の効果】
本発明によれば,前記のような手段を採用することによって,水素を必要とする機器へ水素の供給を安定して行い,また反応容器内における水蒸気の発生を極力抑制し得る水素供給方法を提供することができる。
【図面の簡単な説明】
【図1】水素供給設備の一例の系統図である。
【図2】金属水素化物の温度Tと反応容器内の圧力Pとの関係を示すグラフである。
【図3】燃料電池運転時間と発生水素量との関係を示すグラフである。
【図4】水素供給設備の他例の系統図である
【符号の説明】
A…………水素供給可能領域
………最適区域
………第1区域
………第2区域
………第3区域
MH………金属水素化物
1…………反応容器
4…………水素導出部
6…………燃料電池(水素を必要とする機器)
7…………第1開閉弁
8…………レギュレータ
15………給水ポンプ
19………冷却管
20………冷却水タンク
22………冷却水ポンプ
24………熱電対
27………圧力計
28………ヒータ
29………熱源
32………第3排出管
33………水素回収器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for supplying hydrogen to a device requiring hydrogen, and more particularly to a method for supplying hydrogen generated by a reaction between a metal hydride and water in a pressure vessel to a device requiring hydrogen.
[0002]
[Prior art]
Conventionally, as this type of hydrogen supply method, there has been known a method of injecting water into a metal hydride installed in a reaction vessel to generate hydrogen and supplying the hydrogen to a fuel cell (for example, , Patent Document 1).
[0003]
[Patent Document 1]
JP 2002-137903 A
[Problems to be solved by the invention]
When a metal hydride is reacted with water as in the conventional example, not only hydrogen is generated but also heat is generated, so that the water vaporizes due to the heat, and excessive steam is generated. This may cause an abnormal pressure rise, making it impossible to supply hydrogen stably and damaging the reaction vessel.
[0005]
[Means for Solving the Problems]
The present invention provides the above hydrogen supply method capable of stably supplying hydrogen while maintaining the pressure and temperature in the reaction vessel within a certain range and suppressing the generation of excessive steam in the reaction vessel as much as possible. The purpose is to:
[0006]
According to the present invention, in order to achieve the above object, according to the present invention, when hydrogen generated by a reaction between metal hydride and water is supplied to a device requiring hydrogen in a pressure vessel, the x-axis of the orthogonal coordinate is Taking the temperature T of the metal hydride and the pressure P in the reaction vessel on the y-axis, the lower limit of the allowable temperature of the metal hydride is T 1 , the upper limit of the allowable temperature is T 4 , Assuming that the lower limit of the allowable pressure in the container is P 1 and the upper limit of the allowable pressure is P 3 , the coordinates (T 1 , P 1 ), (T 4 , P 1 ), (T 4 , P 3 ), (T 1 , P 3 ) and (T 1 , P 1 ) are defined as a rectangular area formed by connecting the hydrogen, and the temperature T of the metal hydride is measured and the pressure P in the reaction vessel is measured. And at least one of the temperature T and the pressure P is the hydrogen supply When the vehicle deviates from the active region, one of hydrogen release to the outside, heating of the metal hydride, water supply to the reaction vessel, and cooling of the reaction vessel is executed in accordance with the departure state. Then, at least one of the temperature T and the pressure P is returned to the hydrogen-suppliable region. When water is supplied to the reaction vessel, there is a possibility that excessive vapor generation due to vaporization of the water may occur. A method for supplying hydrogen to equipment that requires hydrogen, which cools water to avoid generation of water vapor, is provided.
[0007]
When the above-described means is employed, the temperature of the metal hydride and the pressure in the reaction vessel are maintained in the hydrogen supplyable region, whereby the supply of hydrogen can be stably performed. Further, since it is possible to avoid generation of excessive steam in the reaction vessel, it is effective in avoiding damage to the reaction vessel.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
[First embodiment]
[I] Hydrogen supply equipment In FIG. 1, a reaction vessel 1 comprises a bottomed cylindrical vessel 2 and a lid 3 closing its opening. In the vessel 2, a powdered metal hydride MH is put. ing. One end of the first supply pipe 5 is connected to the hydrogen outlet 4 of the lid 3, and the other end is connected to a hydrogen supply part of a fuel cell 6 as a device requiring hydrogen. The first supply pipe 5 is provided with a first on-off valve 7 and a regulator 8 sequentially from the reaction vessel 1 side. An air supply source 9 is connected to an air supply section of the fuel cell 6 via a second supply pipe 10, and a drain section of the fuel cell 6 is connected to a water introduction section 12 of the lid 3 via a third supply pipe 11. A gas-liquid separator 13, a water reservoir 14, a water supply pump 15 and a three-way valve 16 are connected to the third supply pipe 11 in this order from the fuel cell 6 side. In the three-way valve 16, the first and second ports a and b contribute to communication between the inside of the reaction vessel 1 and the water supply pump 15 side. A vacuum pump 18 is connected to the three-way valve 16 via a first discharge pipe 17, and first and third ports a and c contribute to communication between the vacuum pump 18 and the reaction vessel 1.
[0009]
In the vessel 2 of the reaction vessel 1, a cooling pipe 19 for flowing cooling water is tightly wound around the entire outer peripheral surface of the vessel 2 and is also closely attached to the entire outer surface of the bottom wall.
[0010]
A fourth supply pipe 21 connects the inlet end of the cooling pipe 19 and the cooling water tank 20, and a cooling water pump 22 is installed in the fourth supply pipe 21. The outlet end of the cooling pipe 19 and the cooling water tank 20 are connected by a second discharge pipe 23.
[0011]
A thermocouple 24 is attached to the cover 3 so as to pass therethrough. The thermocouple 24 measures the temperature of the metal hydride MH and transmits the temperature information to the controller 25. A pressure gauge 27 is attached to the pressure detector 26 of the lid 3, and the pressure gauge 27 measures the pressure in the reaction vessel 1 and transmits the pressure information to the controller 25.
[0012]
A heater 28 for heating the metal hydride MH is embedded in the metal hydride MH, and the heater 28 and a heat source 29 provided outside the reaction vessel 1 are connected by a connecting member 30 penetrating the lid 3. . Further, a hydrogen recovery unit 33 is connected to the hydrogen discharge portion 31 of the lid 3 via a third discharge pipe 32, and a second opening / closing valve 34 is provided in the third discharge pipe 32.
[0013]
The controller 25 transmits an operation signal to the water supply pump 15, the cooling water pump 22, the heat source 29, and the second on-off valve 34 based on the temperature information from the thermocouple 24 and the pressure information from the pressure gauge 27.
[0014]
As the metal hydride MH, at least one powdery material selected from MgH 2 , NaBH 4 , LiBH 4 , Mg (BH 4 ) 2 , NaAlH 4 , LiAlH 4 , Mg (AlH 4 ) 2 and NaH is used. .
[0015]
[II] Setting of Hydrogen Supplyable Area In supplying hydrogen to the fuel cell 6, the temperature T of the metal hydride MH is measured while considering the required amount of hydrogen of the fuel cell 6, the capacity of the reaction vessel 1, and the like. The pressure P in the reaction vessel 1 is measured, and the temperature T and the pressure P are held in a hydrogen supplyable area. The hydrogen-suppliable region is set as follows. That is, as shown in FIG. 2, the temperature T of the metal hydride MH is plotted on the x-axis of the rectangular coordinates, and the pressure P in the reaction vessel 1 is plotted on the y-axis. T 1 , the upper limit of the allowable temperature is T 4 , the lower limit of the allowable pressure in the reaction vessel 1 is P 1 , and the upper limit of the allowable pressure is P 3 , the coordinates (T 1 , P 1 ), (T 4 , P 1 ), (T 4 , P 3 ), (T 1 , P 3 ), and a quadrangular range formed by connecting (T 1 , P 1 ) are the hydrogen-suppliable regions A.
[0016]
[III] Setting of initial pressure {circle around (1)} Metal hydride MH is put into reaction vessel 1. {Circle around (2)} The three-way valve 16 is switched so that the inside of the reaction vessel 1 and the vacuum pump 18 are communicated through the first and third ports a and c thereof, and then the inside of the reaction vessel 1 is evacuated. The valve 16 is switched so that the inside of the reaction vessel 1 and the water supply pump 15 are communicated through the first and second ports a and b. (3) The water supply pump 15 is driven to supply a predetermined amount of water from the water reservoir 14 to the reaction vessel 1, and the water and a part of the metal hydride MH are reacted to generate a predetermined amount of hydrogen. An initial pressure that fits in the hydrogen supplyable area A is generated in the container 1.
[0017]
Although this hydrogen generation reaction is an exothermic reaction, most of the generated heat is consumed for raising the temperature of the metal hydride MH and the reaction vessel 1 and is radiated to the outside through the reaction vessel 1, so that the heat energy is It does not affect the pressure rise in the reaction vessel 1 due to hydrogen.
[0018]
[IV] Supply of Hydrogen to Fuel Cell When the first on-off valve 7 is opened, hydrogen in the reaction vessel 1 is reduced in pressure by the regulator 8 and supplied to the fuel cell 6. Since air is supplied to the fuel cell 6 from the air supply source 9, power is generated by the reaction between hydrogen and oxygen, and water is generated at the same time. The water is separated from nitrogen in a gas-liquid separator 13 and stored in a water reservoir 14. By driving the water supply pump 15 again, the water in the water reservoir 14 is supplied to the reactor 1 to generate hydrogen, and the pressure in the reaction vessel 1 is recovered.
[0019]
[V] Return to the Hydrogen-Suppliable Region When at least one of the temperature T of the metal hydride MH and the pressure P in the reaction vessel 1 deviates from the hydrogen-suppliable region A, in response to the departure state, for example, The following measures are taken to return at least one of the temperature T and the pressure P to the hydrogen-suppliable region A.
[0020]
{Circle around (1)} The temperature T of the metal hydride MH is T 1 ≦ T ≦ T 4 , but when the pressure P in the reaction vessel 1 is P> P 3 , the second opening / closing is performed by the operation signal from the controller 25. The valve 34 is opened to lower the pressure P to P 1 ≦ P ≦ P 3 and the released hydrogen is collected in the hydrogen recovery unit 33.
[0021]
{Circle around (2)} The pressure P in the reaction vessel 1 is P 1 ≦ P ≦ P 3. However, when the temperature T of the metal hydride MH is T> T 4 , the temperature in the reaction vessel 1 also exceeds T 4 . since it is, thereby circulating the cooling water to the cooling pipe 19 by driving the cooling water pump 22 by the operation signal from the controller 2, lowering the temperature T within a metal hydride MH and the reaction vessel T <T 4 .
[0022]
{Circle around (3)} The pressure P in the reaction vessel 1 is P 1 ≦ P ≦ P 3. However, when the temperature T of the metal hydride MH is T <T 1 , the heat source 29 is turned off by an operation signal from the controller 25. It is operated to heat the metal hydride MH by the heater 28 to raise the temperature T to T ≧ T 1.
[0023]
{Circle around (4)} The temperature T of the metal hydride MH is T 1 ≦ T ≦ T 4 , but when the pressure P in the reaction vessel 1 is P <P 1 , the feed pump 15 the drives the predetermined amount of water from the water reservoir 14 is supplied to the reaction vessel 1, the pressure P in the reactor 1 is raised to P ≧ P 1 in the same manner as described above to generate hydrogen.
[0024]
In this case, at the temperature T is T> T 4 metal hydride MH, the pressure P is P <P 1, the state is revealing such, supplied water may become steam into the reaction vessel 1 . In order to avoid the generation of excessive steam, the cooling water pump 22 is driven by the operation signal from the controller 25 to flow the cooling water through the cooling pipe 19, and the metal hydride MH and the temperature in the reaction vessel 1 are reduced. the T is lowered to T <T 4.
[0025]
[VI] Setting of optimum area in hydrogen supply possible area and shift to the area (1) In hydrogen supply possible area A, temperatures T 2 and T 3 of metal hydride MH, allowable temperature lower limit value T 1 and allowable temperature The relationship of T 1 <T 2 <T 3 <T 4 holds between the upper limit value T 4 and the pressure P 2 in the reaction vessel 1, and the allowable pressure lower limit value P 1 and the allowable pressure upper limit value. when the relationship of P 1 <P 2 <P 3 is established between the P 3, the coordinates (T 1, P 2), (T 3, P 2), (T 3, P 3), (T 1, The range of the small square formed by connecting (P 3 ) and (T 1 , P 2 ) is defined as the optimum area A 0 of the hydrogen suppliable area A.
[0026]
(2) when the temperature T and pressure P in the reaction container 1 of the metal hydride MH is not in the optimum zone A 0, at least one optimal area A of the temperature T and pressure P take the following measures 0 .
[0027]
▲ 1 ▼ temperature T and pressure P in the reactor P of the metal hydride MH coordinates (T 1, P 1), (T 2, P 1), (T 2, P 2), (T 1, P 2 ), (T 1, P 1) the connecting by the first section of the small quadrangle formed [However, coordinates (T 2, P 1), (T 2, P 2) line segments and coordinates (T 2 connecting, P 2), (T 1, P 2) does not contain a line segment connecting a] when in a 1 drives the water supply pump 15 by the operation signal from the controller 25, supplying water to the reaction vessel 1 Then, the pressure P in the reaction vessel 1 is set to P 2 ≦ P ≦ P 3 which is the pressure range of the optimum area A 0 due to the pressure increase due to the generation of hydrogen.
[0028]
{Circle around (2)} The temperature T of the metal hydride MH and the pressure P inside the reaction vessel 1 are represented by coordinates (T 2 , P 1 ), (T 4 , P 1 ), (T 4 , P 2 ), (T 2 , P 2). ), (T 2 , P 1 ), a small rectangular second area formed by connecting the coordinates (but not including a line connecting the coordinates (T 4 , P 2 ), (T 2 , P 2 )) A 2 , The water supply pump 15 is driven by an operation signal from the controller 25, water is supplied into the reaction vessel 1, and the pressure P in the reaction vessel 1 is increased by the pressure rise due to the generation of hydrogen. When the pressure range of A 1 is P 2 ≦ P ≦ P 3 and the temperature T of the metal hydride MH is T> T 3 , the cooling water pump 22 is driven by an operation signal from the controller 25. by flowing cooling water to the condenser 19, the temperature T of the reaction vessel 1 is cooled, the temperature range of the optimal area a 0 And T 1TT 3 it is.
[0029]
{Circle around (3)} The temperature T of the metal hydride MH and the pressure P in the reaction vessel 1 are represented by coordinates (T 3 , P 2 ), (T 4 , P 2 ), (T 4 , P 3 ), (T 3 , P 3). ), (T 3, P 2 ) third area of the small rectangle are connecting by forming a [where coordinates (T 3, P 3), does not contain a line segment connecting (T 3, P 2)] a 3 when in drives the cooling water pump 22 by the operation signal from the controller 25 is passed through the cooling water to the cooling pipe 19, the temperature T of the reaction vessel 1 is cooled, the temperature range of the optimal area a 0 T 1 ≦ T ≦ T 3 .
[0030]
When the hydrogen supply is stopped, for the next of the hydrogen supply, to maintain the pressure P in the reactor 1 substantially allowable pressure upper limit value P 3.
[0031]
[VII] Specific example (1) Pressure vessel 1: Material Al alloy (JIS A5154P), internal volume 10 L. (2) Output of fuel cell 6: 5 kW. (3) powdered metal hydride MH: MgH 2 powder, input amount 1.5 kg. (4) Initial water volume 65 cc, initial set pressure 1.0 MPa. (5) The secondary pressure of the regulator 8 is 0.2 MPa, and the amount of hydrogen supplied to the fuel cell 6 is 13.9 L / min (steady operation). In FIG. 2, allowable temperature lower limit T 1 = 50 ° C., allowable temperature upper limit T 4 = 110 ° C., allowable pressure lower limit P 1 = 0.2 MPa, allowable pressure upper limit P 3 = 1 MPa, and temperature T 2 = 73 ° C. , Temperature T 3 = 80 ° C., pressure P 2 = 0.66 MPa.
[0032]
FIG. 3 shows the relationship between the operating time of the fuel cell and the amount of generated hydrogen. From FIG. 3, it can be seen that the amount of generated hydrogen increases as the operation time of the fuel cell 6 elapses to follow it.
[0033]
[Second embodiment]
In FIG. 4, a second three-way valve 35 is provided between the water reservoir 14 and the water supply pump 15 of the third supply pipe 11, and the first and second ports a and b communicate with the water reservoir 14 and the water supply pump 15. To contribute. A water storage tank 37 is connected to the three-way valve 35 via a fifth supply pipe 36, and the first and third ports a and c contribute to communication between the water storage tank 37 and the water supply pump 15.
[0034]
When the secondary pressure of the regulator 8 is lower than 0.2 MPa, the second three-way valve 35 is switched by the operation signal from the controller 25 to make the water storage tank 37 and the water supply pump 15 communicate with each other. Is supplied to the reaction vessel 1 to generate hydrogen and increase the pressure.
[0035]
In the first and second embodiments, devices requiring hydrogen include a hydrogen engine.
[0036]
【The invention's effect】
According to the present invention, a hydrogen supply method capable of stably supplying hydrogen to equipment requiring hydrogen and suppressing generation of water vapor in a reaction vessel as much as possible by employing the above-described means. Can be provided.
[Brief description of the drawings]
FIG. 1 is a system diagram of an example of a hydrogen supply facility.
FIG. 2 is a graph showing a relationship between a temperature T of a metal hydride and a pressure P in a reaction vessel.
FIG. 3 is a graph showing a relationship between a fuel cell operation time and a generated hydrogen amount.
FIG. 4 is a system diagram of another example of a hydrogen supply facility.
A ............ hydrogen supplying area A 0 ......... optimal area A 1 ......... first zone A 2 ......... second zone A 3 ......... third area MH ......... metal hydride 1 ...... ... Reaction vessel 4 ... Hydrogen deriving section 6 ... Fuel cell (equipment requiring hydrogen)
7 First on-off valve 8 Regulator 15 Water supply pump 19 Cooling pipe 20 Cooling water tank 22 Cooling water pump 24 Thermocouple 27 ... pressure gauge 28 ... heater 29 ... heat source 32 ... third discharge pipe 33 ... hydrogen recovery unit

Claims (5)

圧力容器(1)内において,金属水素化物(MH)と水との反応により発生した水素を,水素を必要とする機器(6)に供給するに当り,直交座標のx軸に前記金属水素化物(MH)の温度Tを,またy軸に前記反応容器(1)内の圧力Pをそれぞれとって,前記金属水素化物(MH)の許容温度下限値をT,その許容温度上限値をTとし,また前記反応容器(1)内の許容圧力下限値をP,その許容圧力上限値をPとしたとき,座標(T,P),(T,P),(T,P),(T,P),(T,P)を結んで形成される四角形の範囲を水素供給可能領域(A)とし,前記金属水素化物(MH)の温度Tを測定すると共に前記反応容器(1)内の圧力Pを測定して,それら温度Tおよび圧力Pの少なくとも一方が前記水素供給可能領域(A)から逸脱したときは,その逸脱状態に対応して,水素の外部への放出,前記金属水素化物(MH)の加熱,前記反応容器(1)への水供給および前記反応容器(1)の冷却の何れか1つを実行して,前記温度Tおよび前記圧力Pの少なくとも一方を前記水素供給可能領域(A)に戻し,また前記反応容器(1)への水供給に際し,その水の気化による過剰な水蒸気発生のおそれがあるときは前記反応容器(1)を冷却して過剰な水蒸気の発生を回避することを特徴とする,水素を必要とする機器への水素供給方法。In supplying hydrogen generated by the reaction between metal hydride (MH) and water in the pressure vessel (1) to a device (6) requiring hydrogen, the metal hydride is placed on the x-axis of the orthogonal coordinates. By taking the temperature T of (MH) and the pressure P in the reaction vessel (1) on the y-axis, the lower limit of the allowable temperature of the metal hydride (MH) is T 1 , and the upper limit of the allowable temperature is T 1 . 4, and when the lower limit of the allowable pressure in the reaction vessel (1) is P 1 and the upper limit of the allowable pressure is P 3 , the coordinates (T 1 , P 1 ), (T 4 , P 1 ), (T 4 ) A rectangular area formed by connecting T 4 , P 3 ), (T 1 , P 3 ), and (T 1 , P 1 ) is defined as a hydrogen supplyable area (A), and the temperature of the metal hydride (MH) T and the pressure P in the reaction vessel (1) were measured. When at least one deviates from the hydrogen supplyable area (A), the hydrogen is released to the outside, the metal hydride (MH) is heated, and the hydrogen is supplied to the reaction vessel (1) in accordance with the departure state. By performing one of water supply and cooling of the reaction vessel (1), at least one of the temperature T and the pressure P is returned to the hydrogen supplyable area (A), and the reaction vessel (1) When there is a possibility that excessive steam is generated due to the vaporization of the water when supplying water to the reactor, the reaction vessel (1) is cooled to avoid generation of excessive steam, and hydrogen is required. How to supply hydrogen to equipment. 前記水素供給可能領域(A)において,前記金属水素化物(MH)の温度TおよびTと,前記許容温度下限値Tおよび許容温度上限値Tとの間に,T<T<T<Tの関係が成立し,また前記反応容器(1)内の圧力Pと,前記許容圧力下限値Pおよび許容圧力上限値Pとの間にP<P<Pの関係が成立するとき,座標(T,P),(T,P),(T,P),(T,P),(T,P)を結んで形成される小四角形の範囲を前記水素供給可能領域(A)の最適区域(A)とし,前記金属水素化物(MH)の温度Tおよび前記反応容器(1)内の圧力Pが座標(T,P),(T,P),(T,P),(T,P),(T,P)を結んで形成される小四角形の第1区域[ただし,座標(T,P),(T,P)を結ぶ線分および座標(T,P),(T,P)を結ぶ線分を含まない](A)に在るときは,前記反応容器(1)内に水を供給して水素発生による圧力上昇によりその反応容器内(1)の圧力Pを,前記最適区域(A)の圧力範囲であるP≦P≦Pとし,また前記金属水素化物(MH)の温度Tおよび前記反応容器(1)内の圧力Pが座標(T,P),(T,P),(T,P),(T,P),(T,P)を結んで形成される小四角形の第2区域[ただし,座標(T,P),(T,P)を結ぶ線分を含まない](A)に在るときは,前記反応容器(1)内に水を供給して水素発生による圧力上昇によりその反応容器(1)内の圧力Pを,前記最適区域(A)の圧力範囲であるP≦P≦Pとし,且つ前記金属水素化物(MH)の温度TがT>Tであるときは前記反応容器(1)を冷却して前記温度Tを,前記最適区域(A)の温度範囲であるT≦T≦Tとし,さらに前記金属水素化物(MH)の温度Tおよび前記反応容器(1)内の圧力Pが座標(T,P),(T,P),(T,P),(T,P),(T,P)を結んで形成される小四角形の第3区域[ただし,座標(T,P),(T,P)を結ぶ線分を含まない](A)に在るときは,前記反応容器(1)を冷却して前記温度Tを,前記最適区域(A)の温度範囲であるT≦T≦Tとする,請求項1記載の水素を必要とする機器への水素供給方法。In the hydrogen supply possible region (A), T 1 <T 2 between the temperatures T 2 and T 3 of the metal hydride (MH) and the allowable temperature lower limit value T 1 and the allowable temperature upper limit value T 4. <T 3 <T 4 holds, and P 1 <P 2 <between the pressure P 2 in the reaction vessel (1) and the allowable pressure lower limit value P 1 and the allowable pressure upper limit value P 3. When the relationship of P 3 is established, the coordinates (T 1 , P 2 ), (T 3 , P 2 ), (T 3 , P 3 ), (T 1 , P 3 ), (T 1 , P 2 ) are calculated. The range of the small rectangle formed by the connection is defined as the optimum area (A 0 ) of the hydrogen supplyable area (A), and the temperature T of the metal hydride (MH) and the pressure P in the reaction vessel (1) are coordinated. (T 1 , P 1 ), (T 2 , P 1 ), (T 2 , P 2 ), (T 1 , P 2 ), (T 1 , P 1 ) A first area of a small rectangle formed by connecting [a line segment connecting coordinates (T 2 , P 1 ), (T 2 , P 2 ) and coordinates (T 2 , P 2 ), (T 1 , P 2) Is not included) (A 1 ), water is supplied into the reaction vessel (1), and the pressure P in the reaction vessel (1) is increased by increasing the pressure due to hydrogen generation. The pressure range of the optimal zone (A 0 ) is P 2 ≦ P ≦ P 3, and the temperature T of the metal hydride (MH) and the pressure P in the reaction vessel (1) are represented by coordinates (T 2 , P 1 ), (T 4 , P 1 ), (T 4 , P 2 ), (T 2 , P 2 ), (T 2 , P 1 ), a second small rectangular area [coordinates] (T 4, P 2), when in the (T 2, P 2) does not contain a line segment connecting] (a 2), supplying water to said reaction vessel (1) Te pressure P of the reaction vessel (1) by a pressure rise due to hydrogen generation, and P 2 ≦ P ≦ P 3 is the pressure range of the optimum zone (A 0), and the temperature of the metal hydride (MH) When T is T> T 3 , the reaction vessel (1) is cooled to set the temperature T to T 1 ≦ T ≦ T 3 which is the temperature range of the optimal zone (A 0 ). The temperature T of the compound (MH) and the pressure P in the reaction vessel (1) are coordinates (T 3 , P 2 ), (T 4 , P 2 ), (T 4 , P 3 ), (T 3 , P 3). ), (T 3 , P 2 ), a small rectangular third area formed by connecting the coordinates (T 3 , P 3 ) and (T 3 , P 2 ). 3 ) When the reaction vessel (1) is cooled, the temperature T is reduced to T 1 which is the temperature range of the optimal zone (A 0 ). ≦ a T ≦ T 3, the hydrogen supply method for devices requiring hydrogen according to claim 1, wherein. 前記金属水素化物(MH)の前記許容温度下限値TがT=50℃であり,またその許容温度上限値TがT=110℃であり,一方,前記反応容器(1)内の前記許容圧力下限値PがP=0.2MPaであり,またその許容圧力上限値PがP=1MPaである,請求項1または2記載の水素を必要とする機器への水素供給方法。The lower limit of the allowable temperature T 1 of the metal hydride (MH) is T 1 = 50 ° C., and the upper limit of the allowable temperature T 4 is T 4 = 110 ° C., while the inside of the reaction vessel (1) is the permissible a pressure lower limit value P 1 is P 1 = 0.2 MPa, also the allowable upper pressure limit P 3 is P 3 = 1 MPa, hydrogen into devices requiring hydrogen according to claim 1 or 2, wherein the Supply method. 前記金属水素化物(MH)の前記温度TがT=73℃であり,またそれの前記温度TがT=80℃であり,一方,前記反応容器(1)内の前記圧力PがP=0.66MPaである,請求項3記載の水素を必要とする機器への水素供給方法。The temperature T 2 of the metal hydride (MH) is T 2 = 73 ° C. and its temperature T 3 is T 3 = 80 ° C., while the pressure P in the reaction vessel (1) is The method for supplying hydrogen to equipment requiring hydrogen according to claim 3, wherein 2 is P 2 = 0.66 MPa. 前記金属水素化物(MH)は,MgH,NaBH,LiBH,Mg(BH,NaAlH,LiAlH,Mg(AlHおよびNaHから選択される少なくとも一種である,請求項1,2,3または4記載の水素を必要とする機器への水素供給方法。The metal hydride (MH) is at least one selected from MgH 2 , NaBH 4 , LiBH 4 , Mg (BH 4 ) 2 , NaAlH 4 , LiAlH 4 , Mg (AlH 4 ) 2 and NaH. The method for supplying hydrogen to equipment requiring hydrogen according to 1, 2, 3, or 4.
JP2002330672A 2002-11-14 2002-11-14 Method for supplying hydrogen to equipment requiring hydrogen Pending JP2004161554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002330672A JP2004161554A (en) 2002-11-14 2002-11-14 Method for supplying hydrogen to equipment requiring hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002330672A JP2004161554A (en) 2002-11-14 2002-11-14 Method for supplying hydrogen to equipment requiring hydrogen

Publications (1)

Publication Number Publication Date
JP2004161554A true JP2004161554A (en) 2004-06-10

Family

ID=32808305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002330672A Pending JP2004161554A (en) 2002-11-14 2002-11-14 Method for supplying hydrogen to equipment requiring hydrogen

Country Status (1)

Country Link
JP (1) JP2004161554A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104017A (en) * 2004-10-05 2006-04-20 Nitto Denko Corp Hydrogen generation device and method
JP2007045646A (en) * 2005-08-08 2007-02-22 Hitachi Maxell Ltd Hydrogen producing method and hydrogen producing apparatus
JP2008522933A (en) * 2004-12-14 2008-07-03 ゲーカーエスエス−フォルシュンクスツェントルム ゲーストアッハト ゲーエムベーハー Hydrogen storage composite material and hydrogen reversible storage device
JP2010159192A (en) * 2009-01-09 2010-07-22 Toyota Motor Corp Device for determining condition of hydrogen-containing metal material and hydrogen generator
US20110243836A1 (en) * 2008-12-23 2011-10-06 Societe Bic Hydrogen Generator with Aerogel Catalyst

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104017A (en) * 2004-10-05 2006-04-20 Nitto Denko Corp Hydrogen generation device and method
JP2008522933A (en) * 2004-12-14 2008-07-03 ゲーカーエスエス−フォルシュンクスツェントルム ゲーストアッハト ゲーエムベーハー Hydrogen storage composite material and hydrogen reversible storage device
JP4764885B2 (en) * 2004-12-14 2011-09-07 ゲーカーエスエス−フォルシュンクスツェントルム ゲーストアッハト ゲーエムベーハー Hydrogen storage composite material and hydrogen reversible storage device
JP2007045646A (en) * 2005-08-08 2007-02-22 Hitachi Maxell Ltd Hydrogen producing method and hydrogen producing apparatus
JP4574487B2 (en) * 2005-08-08 2010-11-04 日立マクセル株式会社 Hydrogen production method, hydrogen production apparatus and power supply
US20110243836A1 (en) * 2008-12-23 2011-10-06 Societe Bic Hydrogen Generator with Aerogel Catalyst
US8821834B2 (en) * 2008-12-23 2014-09-02 Societe Bic Hydrogen generator with aerogel catalyst
JP2010159192A (en) * 2009-01-09 2010-07-22 Toyota Motor Corp Device for determining condition of hydrogen-containing metal material and hydrogen generator

Similar Documents

Publication Publication Date Title
US5593640A (en) Portable hydrogen generator
US10322932B2 (en) Method and generator for hydrogen production
KR101102750B1 (en) Production method of hydrogen-generating substance
US6195999B1 (en) Electrochemical engine
EP1081780A2 (en) Hydrogen supply system for fuel cell
US20020025462A1 (en) Fuel gas generation system and generation method thereof
KR102274017B1 (en) Heat management system for fuel cell vehicle
EP3208877B1 (en) Solid state hydrogen storage device
JP3702121B2 (en) Power generator
JP2010225406A (en) Fuel cell cogeneration system
CN215756432U (en) Hydrogen production system
JP2004161554A (en) Method for supplying hydrogen to equipment requiring hydrogen
US8864855B2 (en) Portable hydrogen generator
CN113428836B (en) Hydrogen production device capable of operating in low-temperature environment and control method thereof
JP2811905B2 (en) Steam generator for fuel cell power generation system
CN115548374A (en) System for improving thermal efficiency of fuel cell auxiliary system of underwater carrying platform
EP3392947B1 (en) Fuel cell system and control method therefor
JP5907372B2 (en) Fuel cell system
JP2008081381A (en) Hydrogen producing apparatus and fuel cell
CN212503984U (en) Hydrogen production device and electric energy control system
Hovland et al. Water and heat balance in a fuel cell vehicle with a sodium borohydride hydrogen fuel processor
CN218582892U (en) Hydrogen storage system and vehicle
JP2012052686A (en) Fuel cell cogeneration system
JPS6110875A (en) Fuel cell system
KR20220080637A (en) Container of hydrogen storing alloy for homogeneous control of outlet pressure with heater