JP3734949B2 - Heat utilization system container using hydrogen storage alloy and method of filling hydrogen into the container - Google Patents

Heat utilization system container using hydrogen storage alloy and method of filling hydrogen into the container Download PDF

Info

Publication number
JP3734949B2
JP3734949B2 JP01415398A JP1415398A JP3734949B2 JP 3734949 B2 JP3734949 B2 JP 3734949B2 JP 01415398 A JP01415398 A JP 01415398A JP 1415398 A JP1415398 A JP 1415398A JP 3734949 B2 JP3734949 B2 JP 3734949B2
Authority
JP
Japan
Prior art keywords
hydrogen
container
heat
storage alloy
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01415398A
Other languages
Japanese (ja)
Other versions
JPH11211268A (en
Inventor
勤 丸橋
繁 角掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Rinnai Corp
Original Assignee
Japan Metals and Chemical Co Ltd
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd, Rinnai Corp filed Critical Japan Metals and Chemical Co Ltd
Priority to JP01415398A priority Critical patent/JP3734949B2/en
Publication of JPH11211268A publication Critical patent/JPH11211268A/en
Application granted granted Critical
Publication of JP3734949B2 publication Critical patent/JP3734949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【0001】
【発明の属する技術分野】
本発明は、水素吸蔵合金の水素の吸蔵と放出とを繰り返して行わせ、水素の放出時に生じる吸熱作用を利用して冷熱を得る、あるいは水素の吸蔵時に生じる放熱作用を利用して温熱を得る水素吸蔵合金を利用した熱利用システムにおいて水素吸蔵合金を封入する容器、およびその容器への水素充填方法に関する。
【0002】
【従来の技術】
従来の水素吸蔵合金を利用した熱利用システムは、水素吸蔵合金が封入され、水素が充填された容器を複数連通して用いている。水素吸蔵合金が封入された容器内を真空引きした後に開口穴から水素を高圧充填し、その後に開口穴を閉塞する技術は、開口穴を溶接作業で閉じるものであった。
【0003】
【発明が解決しようとする課題】
溶接によって容器の開口穴を塞ぐ際、容器内の高圧水素が開口穴から漏れ出る不具合があり、水素吸蔵合金の水素放出と吸蔵の能力が低下し、熱利用システムの能力が低下する不具合があった。
また、開口穴の閉塞作業時に、溶接時の熱が容器内の水素に引火する可能性があった。
【0004】
【発明の目的】
本発明は上記の事情に鑑みてなされたもので、その目的は、水素吸蔵合金を封入する容器内に水素を充填して開口穴を閉塞する際の水素漏れを抑えるとともに、内部の水素への引火を無くすことのできる水素吸蔵合金を利用した熱利用システムの容器、およびその容器への水素充填方法の提供にある。
【0005】
【課題を解決するための手段】
本発明の水素吸蔵合金を利用した熱利用システムは、上記の目的を達成するために、次の技術的手段を採用した。
(請求項1の手段)
水素吸蔵合金の水素の放出時の吸熱、あるいは水素吸蔵合金の水素の吸蔵時の放熱を利用した水素吸蔵合金を利用した熱利用システムに用いる水素吸蔵合金を封入する容器であって、
前記水素吸蔵合金を封入する容器は、前記容器の外方へ向かう外筒を備えた水素を充填する開口穴が設けられ、
この外筒の内径に一致する内筒を備える蓋によって閉塞されるもので、
前記外筒および前記内筒は熱容量が大きい材料により形成され、
前記開口穴内に前記蓋が圧入されて、
前記外筒と前記内筒との重なり代が溶接によって接合されたことを特徴とする。
【0006】
(請求項2の手段)
水素吸蔵合金の水素の放出時の吸熱、あるいは水素吸蔵合金の水素の吸蔵時の放熱を利用した水素吸蔵合金を利用した熱利用システムに用いる容器への水素充填方法であって、 水素吸蔵合金を封入する容器は、蓋によって閉塞される水素を充填する開口穴が設けられ、
前記容器内に内蔵される前記水素吸蔵合金を水素吸蔵温度以下に冷却して水素を前記水素吸蔵合金に吸蔵させて前記容器内を大気圧と等しくした状態で、前記開口穴が溶接によって前記蓋と接合されることを特徴とする。
【0007】
【発明の作用および効果】
(請求項1の作用および効果)
開口穴に蓋を圧入した後、開口穴の外筒と蓋の内筒との重なり代の溶接を行うため、溶接時に漏れがない。このため、水素漏れによる水素吸蔵合金の水素放出と吸蔵の能力低下を防ぐことができる。
溶接が行われる重なり代は、容器内から外側に離れており、且つ、熱容量が大きいため、溶接時の高熱が容器内の水素へ伝熱しにくい。このため、容器内に充満する水素に引火しないとともに、容器の内部に封入された水素吸蔵合金の昇温が抑制できる。
【0008】
(請求項2の作用および効果)
溶接の際、水素が水素吸蔵合金に吸蔵されて、容器内は大気圧となり、容器内から水素の漏れ、容器内への空気の進入がともに生じないので、水素吸蔵合金の水素放出と吸蔵の能力低下を防ぐことができる。
水素が水素吸蔵合金に吸蔵されて容器内に充満する水素量が少なくなるため、水素への引火が防止される。
【0009】
【発明の実施の形態】
次に、本発明の実施の形態を、実施例および変形例に基づき説明する。
〔第1実施例の構成〕
第1実施例は、本発明の水素吸蔵合金を利用した熱利用システムを、室内空調用の冷房装置に適用したもので、この第1実施例を図1ないし図7を用いて説明する。
【0010】
(冷房装置1の概略説明)
本実施例の冷房装置1の概略構成を、図4を用いて説明する。この実施例では、水素吸蔵合金を用いたヒートポンプサイクル2の一例として2段式サイクルを用いた。
【0011】
本実施例の適用される冷房装置1は、大別して、水素吸蔵合金を用いたヒートポンプサイクル2と、水素吸蔵合金を加熱する加熱水(加熱用の熱媒体に相当する、本実施例では水)を作り出す燃焼装置3と、水素吸蔵合金を冷却させる放熱水(放熱用の熱媒体に相当する、本実施例では水)を放熱によって冷却する放熱水冷却手段4と、水素吸蔵合金の水素放出作用によって生じた吸熱によって冷却された冷熱出力水(冷熱出力用の熱媒体に相当する、本実施例では水)で室内を空調する室内空調機5と、搭載された各電気機能部品を制御する制御装置6とから構成される。
【0012】
なお、ヒートポンプサイクル2、燃焼装置3、放熱水冷却手段4および制御装置6は、室外機7として室外に設置されるもので、室内には室内空調機5が配置される。また、本実施例に示す冷房装置1は、1つの室外機7に対して、複数の室内空調機5が接続可能な所謂マルチエアコンである。
【0013】
(ヒートポンプサイクル2の説明)
本実施例のヒートポンプサイクル2は、上述のように2段式サイクルを用いたもので、図5に示すように、水素吸蔵合金が封入された上段容器S1 、この上段容器S1 内に水素通路S4 を介して連通し、水素吸蔵合金が封入された中段容器S2 、中段容器S2 内に水素通路S4 を介して連通し、水素吸蔵合金が封入された下段容器S3 を備えたセルSを複数用いる。なお、この実施例では、12〜18個のセルSを用いた。
【0014】
水素吸蔵合金は、水素平衡圧力が異なる3種を用いたもので、上段容器S1 内には同一平衡水素圧で水素平衡温度が最も高い高温度水素吸蔵合金(以下、高温合金HM)の粉末を封入し、中段容器S2 内には中温度水素吸蔵合金(以下、中温合金MM)の粉末を封入し、下段容器S3 内には同一平衡水素圧で水素平衡温度が最も低い低温度水素吸蔵合金(以下、低温合金LM)の粉末を封入したものである。
このことを図7のPT冷凍サイクル線図を用いて説明すると、水素吸蔵合金の特性が、相対的に高温側(図示左側)にあるのが高温合金HM、低温側にあるのが低温合金LM、両者の中間にあるのが中温合金MMである。
【0015】
1つのセルSは、ステンレスあるいは銅など、水素透過の無い金属を用いて、真空ろう付けや溶接等の接合方法により上、中、下段容器S1 、S2 、S3 を偏平容器の最中状に成形し、各容器の内部に水素吸蔵合金を入れた後に、各容器を水素通路S4 を構成する連結部S5 によって結合した後に、セルSの一部に形成された開口穴Aから内部の真空引きを行ったのち、活性化処理を施し、水素を高圧充填して開口穴Aに蓋Bをして溶接により密封したものである。
【0016】
この構造を、図1の(b)を用いて具体的に説明する。
本実施例の開口穴Aは、連結部S5 に接合された活性化接合金具Gに設けられている。この活性化接合金具Gは、熱容量の大きいステンレス製ブロックを削り出し加工によって形成したもので、開口穴Aの外側には、削り出しによって外側に向かう円筒状の外筒A1 が設けられている。
この開口穴Aを塞ぐ蓋Bも、熱容量の大きいステンレス製ブロックを削り出し加工によって形成したもので、外筒A1 の内径より僅かに大きい外径に設けられるとともに、外筒A1 の内側に重なる内筒B1 が設けられており、蓋Bを開口穴A内に圧入するとセルS内が簡易密閉されるように設けられている。そして、圧入されて重なる外筒A1 と内筒B1 との重なり代がレーザ溶接やTIG溶接等の溶接技術によって接合されており、セルS内が密閉状態に設けられている。
【0017】
セルS内への水素充填方法を、図1の(a)を用いて説明する。
まず、図1の(a)に示すように、活性化接合金具Gが接合された連結部S5 を治具Jで挟み込む。この治具Jには、開口穴A内に蓋Bを圧入するための圧入用のピストンJ1 が設けられており、蓋BはピストンJ1 の後退位置では、蓋挿入通路J2 の内部にセットされる。この蓋挿入通路J2 には、開口穴Aに連通する連通通路J3 が設けられており、蓋挿入通路J2 内に蓋がセットされた状態(ピストンJ1 の後退位置、破線位置参照)では連通通路J3 は開口穴Aに連通した状態になる。なお、図中符号J4 、J5 は、治具Jで活性化接合金具Gを挟み込んだ際に治具Jと活性化接合金具Gを密着させるためのOリングである。
次に、連通通路J3 からセルS内の真空引きを行ったのち、活性化処理を施し、水素を高圧充填する。
次に、ピストンJ1 を移動させて、蓋Bを開口穴Aに圧入する。この結果、上述のように、セルS内が簡易密閉される。この状態で、セルSを冷却し、内部の水素吸蔵合金を、高温合金HMの水素吸蔵温度以下(例えば、4℃以下)に冷やす。すると、セルS内に充填された水素が水素吸蔵合金に吸蔵された状態になり、セルS内の圧力が大気圧と同じになる。
【0018】
この状態でセルSを治具Jから外し、外筒A1 と内筒B1 との重なり代を溶接技術によって接合する。外筒A1 と内筒B1 との重なり代が熱容量の大きいステンレス製であり、溶接の熱が内部に伝達し難いとともに、セルS内に充填された水素が水素吸蔵合金に吸蔵されて内部に充満する水素量が減少しているため、溶接時の引火が防止される。また、この溶接時は、セルS内の圧力が大気圧と同じであるため、溶接が完了する前にセルSから水素が漏れたり、逆にセルS内に空気が進入しない。つまり、治具Jを外してから溶接が完了する前の水素漏れ等を防ぐことができ、水素吸蔵合金の水素放出と吸蔵の能力低下を防ぐことができる。
【0019】
各上、中、下段容器S1 、S2 、S3 の内部にはフィン(図示しない)が挿入され、対向面とフィンとがろう付けにより接合されて、水素吸蔵合金から容器へ伝える伝熱量を増大させている。また、フィンは容器の対向面に亘って配置されてフィンと対向面が接合されているため、各容器の内部に封入された水素吸蔵合金に水素を付与するための真空引きや水素の高圧充填を行ったり、また、サイクル作動中の高圧の水素平衡圧力によって高圧に容器内が上昇しても、接合されたフィンが容器の対向面の距離を一定に保ち、容器の変形を抑えている。
【0020】
また、偏平形状を呈する各上、中、下段容器S1 、S2 、S3 は、回転軸8の周囲に巻き付けられた状態に設けられている。このため、各容器の一方の面が凸状に湾曲するとともに、対向する他方の面が凹状に湾曲している。このように、各容器の対向面を同方向に湾曲して設けることにより、真空引き時の低圧下、および水素充填時、サイクル作動時の高圧の水素平衡圧力の高圧下において、各容器の対向面に引っ張り応力と圧縮応力がかかり、この結果からも各容器の変形が小さく抑えられる。
【0021】
複数のセルSは、略円柱形状を呈する回転軸8の周囲に複数のセルSの各連結部S5 が固定されている。この回転軸8は、図示しないセル移動手段によって回転駆動されるもので、このセル移動手段は、例えばモータで、ゆっくりと連続的に複数のセルSを回転させるものである(例えば、1時間に20周ほど)。
【0022】
各上、中、下段容器S1 、S2 、S3 は、図3に示すようにデバイダー9によって覆われている。このデバイダー9は、熱媒体を各容器に沿って流すことによって熱媒体の放熱ロスを減少させるとともに、熱媒体の流れを整流させて流速を速くして熱交換量を増大させることで熱交換効率をアップさせるもので、さらにセルSが後述する水素駆動部α→第1冷熱出力部β→第2冷熱出力部γに移動する境界において容器の対向面が異なった熱媒体に触れる不具合を回避して熱交換効率をアップさせるものである。
【0023】
このデバイダー9は、各上、中、下段容器S1 、S2 、S3 を覆うもので、断熱性に優れた樹脂材料等によって設けられている。このデバイダー9の内面には、熱媒体を容器に沿って流す熱媒体通路9aが形成されている。この熱媒体通路9aは、略溝状に設けられたもので、熱媒体の流れを整流させて流速を速くするために、浅く設けられている。また、デバイダー9の外端と中心側上部には、熱媒体通路9aへ熱媒体の供給を行うとともに、熱媒体通路9aを通過した熱媒体を排出する給排口9bが設けられている。
なお、この実施例では、外端の給排口9bが熱媒体を熱媒体通路9aへ供給する供給口であり、中心側の給排口9bが熱媒体通路9aを通過した熱媒体を外部へ排出する排出口である。
【0024】
2段式サイクルのヒートポンプサイクル2は、図5に示すように、上段容器S1 内の水素を強制的に下段容器S3 内に移動させる水素駆動部αと、下段容器S3 内に移動した水素を中段容器S2 に移動させる第1冷熱出力部βと、中段容器S2 内に移動した水素を上段容器S1 に移動させる第2冷熱出力部γとを備える。
なお、水素駆動部α、第1冷熱出力部β、第2冷熱出力部γは、略120°間隔に設けられたもので、後述する凹部M1 、M2 の配置によって区画されている。
【0025】
水素駆動部αは、上段容器S1 と接触する加熱水(例えば80℃ほど)が供給される加熱域α1 、中段容器S2 と接触する昇圧水(例えば56℃ほど)が供給される中段昇圧域α2 、下段容器S3 と接触する放熱水(例えば28℃ほど)が供給される下段放熱域α3 を備える。
第1冷熱出力部βは、上段容器S1 と接触する昇圧水(例えば58℃ほど)が供給される上段昇圧域β1 、中段容器S2 と接触する放熱水(例えば28℃ほど)が供給される中段放熱域β2 、下段容器S3 と接触した冷熱出力水(例えば7℃ほど)が出力される下段冷熱出力域β3 を備える。
第2冷熱出力部γは、上段容器S1 と接触する放熱水(例えば28℃ほど)が供給される上段放熱域γ1 、中段容器S2 と接触する冷熱出力水(例えば7℃ほど)が出力される中段冷熱出力域γ2 を備える。なお、第2冷熱出力部γにおいて下段容器S3 と接触する熱媒体の温度は不問であり、その部分を不問域γ3 とする。
【0026】
そして、図示しないセル移動手段により回転軸8が回転することにより、上段容器S1 の群が加熱域α1 →上段昇圧域β1 →上段放熱域γ1 を循環するものであり、中段容器S2 の群が中段昇圧域α2 →中段放熱域β2 →中段冷熱出力域γ2 を循環するものであり、下段容器S3 の群が下段放熱域α3 →下段冷熱出力域β3 →不問域γ3 を循環するものである。
【0027】
上段容器S1 の群は、上段水槽K1 に覆われ、内部に加熱域α1 、上段昇圧域β1 、上段放熱域γ1 が設けられている。また、中段容器S2 の群は、中段水槽K2 に覆われ、内部に中段昇圧域α2 、中段放熱域β2 、中段冷熱出力域γ2 が設けられている。さらに、下段容器S3 の群は、下段水槽K3 に覆われ、内部に下段放熱域α3 、下段冷熱出力域β3 、不問域γ3 が設けられている。
【0028】
上段水槽K1 、中段水槽K2 、下段水槽K3 は、連続的に繋がって設けられた水槽K(例えば、樹脂製の容器)で、この水槽Kには、図6に示すように、上、中、下段水槽K1 、K2 、K3 内に熱媒体を給排する16本の熱媒体配管10が接続されている。具体的には、上段水槽K1 には加熱域α1 、上段昇圧域β1 、上段放熱域γ1 のための6本の熱媒体配管10が接続され、中段水槽K2 には中段昇圧域α2 、中段放熱域β2 、中段冷熱出力域γ2 のための6本の熱媒体配管10が接続され、下段水槽K3 には下段放熱域α3 、下段冷熱出力域β3 のための4本の熱媒体配管10が接続されている。
【0029】
上、中、下段水槽K1 、K2 、K3 には、熱媒体配管10によって供給される熱媒体を、水素駆動部α、第1冷熱出力部β、第2冷熱出力部γの上、中、下各域内のデバイダー9の外端の給排口9bに導く凹部M1 が設けられるとともに、中心側の給排口9bから排出される熱媒体を収集させる凹部M2 が設けられており、この凹部M1 、M2 の配置および長さにより略120°間隔の水素駆動部α、第1冷熱出力部β、第2冷熱出力部γが決定される。
各デバイダー9に設けられた給排口9bは、凹部M1 、M2 が設けられていない水槽Kの内壁に接触、あるいは接近して回転し、凹部M1 、M2 が設けられていない水槽Kの内壁が水素駆動部α、第1冷熱出力部β、第2冷熱出力部γの仕切りとなっている。
なお、この実施例では、図5に示すように熱媒体を、外側の給排口9b→熱媒体通路9a→中心側の給排口9bに流す例を示すが、逆に中心側から外側へ流しても良い。
【0030】
(ヒートポンプサイクル2における上記以外の構成部品の説明)
図4に示す符号11は、上段昇圧域β1 と中段昇圧域α2 とに昇圧水を循環させる昇圧水循環路で、途中に設けられた昇圧水循環ポンプP1 ’によって昇圧水が循環する。なお、昇圧水は、加熱域α1 で温度上昇した上段容器S1 、上段水槽K1 からの伝熱により温度上昇した水を用いたもので、ヒートポンプサイクル2の作動中、上段昇圧域β1 の昇圧水の温度は例えば58℃程で、中段昇圧域α2 の昇圧水の温度は例えば56℃程になる。
【0031】
(燃焼装置3の説明)
本実施例の燃焼装置3は、燃料であるガスを燃焼して熱を発生させ、発生した熱によって加熱水を加熱するガス燃焼装置を用いたもので、ガスの燃焼を行うガスバーナ12、このガスバーナ12へガスの供給を行うガス量調節弁13およびガス開閉弁14を備えたガス供給回路15、ガスバーナ12へ燃焼用の空気を供給する燃焼ファン16、ガスの燃焼熱と加熱水とを熱交換する熱交換器17等から構成される。
そして、ガスバーナ12のガス燃焼で得られた熱で、加熱水を例えば80℃程に加熱し、加熱された加熱水を加熱水循環ポンプP1 を備えた加熱水循環路18を介して加熱域α1 に供給するものである。
なお、本実施例の加熱水循環ポンプP1 は、昇圧水循環ポンプP1 ’を駆動する兼用のモータによって駆動されるタンデムポンプである。このため、燃焼装置3から加熱水がヒートポンプサイクル2に供給される際は、昇圧水も循環作動するように設けられている。
【0032】
(室内空調機5の説明)
室内空調機5は、上述のように室内に配置されるもので、内部に室内熱交換器19、この室内熱交換器19に供給される冷熱出力水と室内空気とを強制的に熱交換し、熱交換後の空気を室内に吹き出させるための室内ファン20を備える。室内熱交換器19には、下段冷熱出力域β3 および中段冷熱出力域γ2 から供給される冷熱出力水を循環させる冷熱出力水循環路21が接続され、この冷熱出力水循環路21の途中(室外機7内)には、冷熱出力水を循環させる冷熱出力水ポンプP2 が設けられている。
【0033】
(放熱水冷却手段4の説明)
放熱水冷却手段4は、水冷開放型の冷却塔であり、この放熱水冷却手段4によって冷却された放熱水は、放熱水循環ポンプP3 を備えた放熱水循環路22によって下段放熱域α3 、中段放熱域β2 、上段放熱域γ1 に供給される。
放熱水冷却手段4は、下段放熱域α3 、中段放熱域β2 、上段放熱域γ1 を通過した放熱水を、上方から下方へ流し、流れている間に外気と熱交換して放熱するとともに、流れている間に一部蒸発させて、蒸発時に流れている放熱水から気化熱を奪い、流れている放熱水を冷却するものである。また、この放熱水冷却手段4は、図示しない放熱ファンを備え、この放熱ファンの生じる空気流によって放熱水の蒸発および冷却を促進するように設けられている。
なお、この実施例では、放熱水冷却手段4として水冷開放型の冷却塔を示したが、放熱水(放熱用の熱媒体)が空気に触れずに熱交換する水冷密閉型あるいは空冷密閉型の冷却手段を用いても良い。
【0034】
ここで、上記に示す加熱水循環路18、冷熱出力水循環路21および放熱水循環路22は、それぞれシスターンT1 、T2 、T3 を備えており、シスターンT1 、T2 、T3 内の水位が所定水位以下に低下すると、それぞれに設けられた給水バルブT4 、T5 、T6 が開き、給水管23から供給される水道水をシスターンT1 、T2 、T3 内に補充するように設けられている。
また、ヒートポンプサイクル2の下部にはドレンパンPが配置され、ヒートポンプサイクル2に発生したドレン水を排水管24から排水するように設けられている。なお、放熱水冷却手段4で溢れた水も排水管24から排水するように設けられている。
【0035】
(制御装置6の説明)
制御装置6は、室内空調機5に設けられたコントローラ(図示しない)からの操作指示や、複数設けられた各センサの入力信号に応じて、上述の加熱水循環ポンプP1 (昇圧水循環ポンプP1 ’)、冷熱出力水ポンプP2 、放熱水循環ポンプP3 、給水バルブT4 、T5 、T6 、放熱水冷却手段4の放熱ファンなどの電気機能部品、および燃焼装置3の電気機能部品(燃焼ファン16、ガス量調節弁13、ガス開閉弁14、図示しない点火装置等)を制御するとともに、室内空調機5に室内ファン20の作動指示を与えるものである。
【0036】
(冷房運転の作動説明)
上記の冷房装置1による冷房運転の作動を、図7のPT冷凍サイクル線図を参照して説明する。
冷房運転が室内空調機5のコントローラによって指示されると、制御装置6によって、燃焼装置3、セル移動手段、放熱ファンおよび加熱水循環ポンプP1 (昇圧水循環ポンプP1 ’)、冷熱出力水ポンプP2 、放熱水循環ポンプP3 が作動するとともに、冷房が指示された室内空調機5の室内ファン20をONする。
【0037】
セル移動手段によって、複数のセルSがゆっくりと連続的に回転移動する。これによって、複数のセルSが、水素駆動部α→第1冷熱出力部β→第2冷熱出力部γの順で移動する。
つまり、各上段容器S1 が加熱域α1 →上段昇圧域β1 →上段放熱域γ1 の順で移動し、各中段容器S2 が中段昇圧域α2 →中段放熱域β2 →中段冷熱出力域γ2 の順で移動し、各下段容器S3 が下段放熱域α3 →下段冷熱出力域β3 →不問域γ3 の順で移動する。
【0038】
水素駆動部αへ進入したセルSは、上段容器S1 が加熱水に触れ、中段容器S2 が昇圧水に触れ、下段容器S3 が放熱水に触れる。
上段容器S1 が加熱水(80℃)に触れることにより、上段容器S1 の内圧が上昇し、高温合金HMが水素を放出する。
中段容器S2 が昇圧水(56℃)に触れることにより、中段容器S2 の内圧が中温合金MMが水素を吸蔵しない圧力まで上昇する。
下段容器S3 が放熱水(28℃)に触れることにより、下段容器S3 の内圧が下がり、低温合金LMが水素を吸蔵する。
【0039】
このように、上段容器S1 が加熱域α1 で加熱水に触れ、中段容器S2 が中段昇圧域α2 で昇圧水に触れ、下段容器S3 が下段放熱域α3 の放熱水に触れることにより、上段容器S1 内が80℃:1.0MPa、中段容器S2 内が56℃:1.0MPa、下段容器S3 内が28℃:0.9MPaとなり、上段容器S1 の高温合金HMが水素を放出し(図7の▲1▼)、下段容器S3 の低温合金LMが水素を吸蔵する(図7の▲2▼)。なお、中段容器S2 は昇圧水によって加熱されて内圧が高く、中温合金MMは水素の吸蔵は行わない。
そして、水素駆動部αを通過したセルSは、その後第1冷熱出力部βへ移動する。
【0040】
第1冷熱出力部βへ進入したセルSは、上段容器S1 が昇圧水に触れ、中段容器S2 が放熱水に触れ、下段容器S3 が冷熱出力水に触れる。
上段容器S1 が昇圧水(58℃)に触れることにより、上段容器S1 の内圧が高温合金HMが水素を吸蔵しない圧力まで上昇する。
中段容器S2 が放熱水(28℃)に触れることにより、中段容器S2 の内圧が下がり、中温合金MMが水素を吸蔵し、下段容器S3 の低温合金LMが水素を放出する。
低温合金LMが水素を放出するため、下段容器S3 内で吸熱が生じ、下段容器S3 に触れる冷熱出力水が例えば入水時に13℃のものが7℃まで冷やされる。なお、低温合金LMは、冷熱出力水が13℃くらいでは、下段容器S3 の内圧が中段容器S2 の内圧より高くなるように設けられている。
【0041】
このように、上段容器S1 が上段昇圧域β1 で昇圧水に触れ、中段容器S2 が中段放熱域β2 で放熱水に触れ、下段容器S3 が下段冷熱出力域β3 の冷熱出力水に触れることにより、上段容器S1 内が58℃:0.5MPa、中段容器S2 内が28℃:0.4MPa、下段容器S3 内が13℃:0.5MPaとなり、下段容器S3 の低温合金LMが水素を放出し(図7の▲3▼)、中段容器S2 の中温合金MMが水素を吸蔵する(図7の▲4▼)。下段容器S3 の低温合金LMが水素を放出する際、吸熱作用により下段容器S3 に触れる冷熱出力水から熱を奪い冷熱出力水の温度を低下させる。なお、上段容器S1 は、昇圧水によって加熱されて内圧が高く、高温合金HMは水素の吸蔵は行わない。
そして、第1冷熱出力部βを通過したセルSは、その後第2冷熱出力部γへ移動する。
【0042】
第2冷熱出力部γへ進入したセルSは、上段容器S1 が放熱水に触れ、中段容器S2 が冷熱出力水に触れ、下段容器S3 が不問水に触れる。
上段容器S1 が放熱水(28℃)に触れることにより、上段容器S1 の内圧が下がり、高温合金HMが水素を吸蔵し、中段容器S2 の中温合金MMが水素を放出する。
中温合金MMが水素を放出するため、中段容器S2 内で吸熱が生じ、中段容器S2 に触れる冷熱出力水が例えば入水時に13℃のものが7℃まで冷やされる。なお、中温合金MMは、冷熱出力水が13℃くらいでは、中段容器S2 の内圧が上段容器S1 の内圧より高くなるように設けられている。
【0043】
このように、上段容器S1 が上段放熱域γ1 で放熱水に触れることにより、上段容器S1 内が28℃:0.1MPa、中段容器S2 内が13℃:0.2MPa、下段容器S3 内は不問状態となり、中段容器S2 の中温合金MMが水素を放出し(図7の▲5▼)、上段容器S1 の高温合金HMが水素を吸蔵する(図7の▲6▼)。中段容器S2 の中温合金MMが水素を放出する際、吸熱作用により中段容器S2 に触れる冷熱出力水から熱を奪い冷熱出力水の温度を低下させる。なお、下段容器S3 の温度は無関係で、下段容器S3 の低温合金LMは水素の吸蔵は行わない。
そして、第2冷熱出力部γを通過したセルSは、その後水素駆動部αへ移動する。
【0044】
なお、ヒートポンプサイクル2の下段冷熱出力域β3 および中段冷熱出力域γ2 で熱を奪われた低温の冷熱出力水は、冷熱出力水循環路21を介して室内空調機5の室内熱交換器19に供給されて、室内に吹き出される空気と熱交換されて室内を冷房する。
【0045】
〔実施例の効果〕
開口穴Aに蓋Bを圧入して内部を簡易密封した後、開口穴Aに外筒A1 と蓋Bの内筒B1 との重なり代の溶接を行うため、溶接時に漏れがない。特に、セルS内の圧力が大気圧と同じになってから治具Jを外しているため、開口穴Aに蓋Bを圧入してから外筒A1 と内筒B1 との重なり代の溶接を行うまでの間に、セルSから水素が漏れたり、逆にセルS内に空気が進入する不具合がなく、水素吸蔵合金の水素放出と吸蔵の能力低下が防がれる。
また、外筒A1 と内筒B1 との重なり代が熱容量の大きいステンレス製であるため、溶接の熱が内部に伝達し難いとともに、溶接時はセルSが冷却されてセルS内に充填された水素が水素吸蔵合金に吸蔵されて内部に充満する水素量が減少している。このように、溶接の熱が内部に伝わり難く、内部に充満する水素量が少ないため、溶接時の引火が防止される。
【0046】
〔第2実施例〕
図8はセルSの要部断面図である。
上記の第1実施例では、開口穴Aおよび外筒A1 が形成された活性化接続金具GをセルSに接合して、セルSに外筒A1 付きの開口穴Aを設けた例を示したが、この実施例では、バーリング加工によって開口穴Aの外側に外筒A1 を設けたものである。
【0047】
〔第3実施例〕
図9はセルSの要部断面図である。
本実施例は、連結部S5 の端部を開口穴A兼外筒A1 として用い、真空引き、活性化処理、水素充填を行い、蓋Bを圧入して外筒A1 と内筒B1 との重なり代を溶接したものである。
【0048】
〔第4実施例〕
次に、本発明の水素吸蔵合金を利用した熱利用システムを冷暖房装置に適用した第4実施例を示す。なお、図10は本発明を適用した冷暖房装置の概略構成図である。
本実施例の冷暖房装置30は、上記の実施例で示した冷房運転の実施に加え、暖房運転時に、燃焼装置3で加熱された加熱水を室内空調機5の室内熱交換器19に導いて室内暖房を行うもので、第1実施例で示した加熱水循環路18と冷熱出力水循環路21とを接続し、その接続部分に流路切替用の3つの切替バルブV1 、V2 、V3 (冷房と暖房の切替バルブ)を設けたものである。
なお、室内空調機5の他に、床暖房マット、浴室乾燥機などに接続し、加熱水の供給によって床暖房、浴室暖房などを行うように設けても良い。
【0049】
〔第5実施例〕
図11および図12は第5実施例を示すもので、図11はセルSが固定されるタイプの冷房装置の概略構成図である。
上記の実施例では、複数のセルSを水槽K内で回転させることで各容器に触れる熱媒体の種類を切り替える例を示したが、この第3実施例では複数(この実施例では3つ)のセルSを固定し、回転によって複数の熱媒体を切り替えて出力する回転式の分配器40と、分配された複数の熱媒体を再び収集して熱媒体源へ戻す収集器41とによって、デバイダー9の内側の熱媒体通路9a(図12参照)に熱媒体の種類を切り替えて供給するものである。
なお、図12に示すように、この第3実施例の各上、中、下段容器S1 、S2 、S3 は、デバイダー9によって覆われるとともに、デバイダー9はハウジング42に覆われており、デバイダー9とハウジング42との間には断熱材43が配されている。
【0050】
〔変形例〕
上記の実施例では、各容器の周囲にデバイダー9を設けた例を示したが、デバイダー9を用いなくても良い。具体的な一例を示すと、図13に示すように、各上、中、下段容器S1 、S2 、S3 を回転軸8の回りに巻き付けた状態で配置するとともに、上、中、下段容器S1 、S2 、S3 と、これに隣接する他の上、中、下段容器S1 、S2 、S3 との間に略同幅の隙間を設け、その隙間に熱媒体が流れるように設けても良い。このようにデバイダー9を廃止しても、水槽K内の水素吸蔵合金の分布密度が高まる効果を有するとともに、隙間が同幅であるため、その隙間を流れる熱媒体の流れが整流されて流れが速くなり、水素吸蔵合金と熱交換を行う熱媒体の量が増えて熱交換効率を高めることができる。
【0051】
上記の第1、第2実施例では、複数のセルSをセル移動手段によって連続的に回転させた例を示したが、セルSを間欠的に回転移動させても良い。
上記の実施例では、説明を容易化するために、図面の上下に応じて上段容器S1 、中段容器S2 、下段容器S3 とした例を示したが、上下の配置を変更したり横に配置するなどしても良い。このような場合は、勿論、各容器に供給する各熱媒体もヒートポンプサイクルが成り立つように入れ替える。
【0052】
上記の実施例では、昇圧用の熱媒体として、加熱域α1 で温度上昇した上段容器S1 を冷却して温度上昇した熱媒体(実施例中では昇圧水)を用いた例を示したが、加熱手段(例えば、燃焼装置による昇温、電気ヒータによる昇温、排熱を利用した昇温など)によって昇温した熱媒体を用いても良い。
上記の実施例では、ヒートポンプサイクル2の一例として、2段式サイクルを用いた例を示したが、1段式サイクルに用いても良いし、第2容器を3つ以上分割して3段式以上のサイクルとして用いても良い。
【0053】
上記の実施例では、1つの室外機7に複数の室内空調機5が接続可能なマルチエアコンを示したが、1つの室外機7に1つの室内空調機5が接続されるエアコンに本発明を適用しても良い。
上記の実施例では、ヒートポンプサイクル2によって得られた冷熱出力用の熱媒体(実施例中では冷熱水)で室内を冷房する例を示したが、冷熱出力用の熱媒体で冷蔵運転や冷凍運転に用いるなど、本発明を他の冷却装置として用いても良い。
上記の実施例では、1つのヒートポンプユニット(1つの水槽K内に複数のセルSを収納したユニット)を用いた例を示したが、複数のヒートポンプユニットを搭載して冷却能力を増大させ、ビル用空調システムなど大きな冷却能力が要求される冷却装置に用いても良い。
【0054】
上記の実施例では、加熱用の熱媒体(実施例中では加熱水)を加熱する加熱手段として、ガスを燃焼するガス燃焼装置を用いたが、石油を燃焼する石油燃焼装置など、他の燃焼装置を用いても良いし、内燃機関の排熱によって加熱用の熱媒体を加熱する加熱手段、ボイラーによる蒸気、電気ヒータを用いた加熱手段など、他の加熱手段を用いても良い。なお、内燃機関の排熱を利用する際は、車両用に用いることもできる。
【0055】
上記の実施例では、各熱媒体の一例として、水道水を用いたが、不凍液やオイルなど他の液体の熱媒体を用いても良いし、空気など気体の熱媒体を用いても良い。
上記の実施例では、水素吸蔵合金が水素を放出する際の吸熱作用により冷熱出力を得る冷却装置を例に示したが、水素吸蔵合金が水素を吸蔵する際の放熱作用により温熱出力を得る加熱装置(例えば暖房装置など)に本発明を適用しても良い。
【図面の簡単な説明】
【図1】開口穴と蓋との接合部分を示す断面図である(第1実施例)。
【図2】セルの部分斜視図である(第1実施例)。
【図3】デバイダーが設けられたセルの斜視図である(第1実施例)。
【図4】冷房装置の概略構成図である(第1実施例)。
【図5】ヒートポンプサイクルの作動説明図である(第1実施例)。
【図6】ヒートポンプユニットの斜視図である(第1実施例)。
【図7】PT冷凍サイクル線図である(第1実施例)。
【図8】開口穴と蓋との接合部分を示す断面図である(第2実施例)。
【図9】開口穴と蓋との接合部分を示す断面図である(第3実施例)。
【図10】冷暖房装置の概略構成図である(第4実施例)。
【図11】冷房装置の概略構成図である(第5実施例)。
【図12】ハウジングの断面図である(第5実施例)。
【図13】容器内を示す断面図である(変形例)。
【符号の説明】
A 開口穴
B 蓋
A1 外筒
B1 内筒
HM 高温合金(水素吸蔵合金)
MM 中温合金(水素吸蔵合金)
LM 低温合金(水素吸蔵合金)
S セル
S1 上段容器
S2 中段容器
S3 下段容器
[0001]
BACKGROUND OF THE INVENTION
The present invention repeatedly stores and releases hydrogen in a hydrogen storage alloy to obtain cold using the endothermic effect that occurs during the release of hydrogen, or obtains warmth using the heat dissipation effect that occurs during the storage of hydrogen. The present invention relates to a container for enclosing a hydrogen storage alloy in a heat utilization system using a hydrogen storage alloy, and a method for filling the container with hydrogen.
[0002]
[Prior art]
A conventional heat utilization system using a hydrogen storage alloy uses a plurality of containers filled with hydrogen filled with a hydrogen storage alloy. A technique of evacuating a container filled with a hydrogen storage alloy and then filling hydrogen with high pressure from the opening hole and then closing the opening hole is to close the opening hole by a welding operation.
[0003]
[Problems to be solved by the invention]
When the opening hole of the container is closed by welding, there is a problem that high-pressure hydrogen in the container leaks from the opening hole, the hydrogen release and storage capacity of the hydrogen storage alloy decreases, and the capacity of the heat utilization system decreases. It was.
In addition, during the operation of closing the opening hole, there is a possibility that heat during welding may ignite hydrogen in the container.
[0004]
OBJECT OF THE INVENTION
The present invention has been made in view of the above circumstances, and the purpose thereof is to suppress hydrogen leakage when filling a hydrogen container containing hydrogen and closing the opening hole, and to introduce hydrogen into the internal hydrogen. It is in providing the container of the heat | fever utilization system using the hydrogen storage alloy which can eliminate a flash, and the hydrogen filling method to the container.
[0005]
[Means for Solving the Problems]
The heat utilization system using the hydrogen storage alloy of the present invention employs the following technical means in order to achieve the above object.
(Means of Claim 1)
A container that encloses a hydrogen storage alloy used in a heat utilization system using a hydrogen storage alloy that utilizes heat absorption during hydrogen release of the hydrogen storage alloy or heat dissipation during hydrogen storage of the hydrogen storage alloy,
The container that encloses the hydrogen storage alloy is provided with an opening hole that is filled with hydrogen with an outer cylinder that faces the outside of the container,
It is closed by a lid having an inner cylinder that matches the inner diameter of this outer cylinder,
The outer cylinder and the inner cylinder are formed of a material having a large heat capacity,
The lid is press-fitted into the opening hole,
The overlap margin between the outer cylinder and the inner cylinder is joined by welding.
[0006]
(Means of Claim 2)
A method of filling hydrogen into a container used in a heat utilization system using a hydrogen storage alloy utilizing heat absorption during hydrogen release of the hydrogen storage alloy or heat dissipation during hydrogen storage of the hydrogen storage alloy, wherein the hydrogen storage alloy is The container to be sealed is provided with an opening hole filled with hydrogen closed by a lid,
The hydrogen storage alloy contained in the container is absorbed by hydrogen. Warehouse temperature The opening hole is joined to the lid by welding in a state in which the hydrogen is occluded in the hydrogen storage alloy and the inside of the container is made equal to the atmospheric pressure.
[0007]
Operation and effect of the invention
(Operation and effect of claim 1)
After the lid is press-fitted into the opening hole, the overlap of the outer cylinder of the opening hole and the inner cylinder of the lid is welded, so there is no leakage during welding. For this reason, it is possible to prevent the hydrogen release and storage capacity of the hydrogen storage alloy from being reduced due to hydrogen leakage.
The overlap margin at which welding is performed is away from the inside of the container and has a large heat capacity, so that high heat during welding is difficult to transfer to hydrogen in the container. Therefore, the hydrogen filling the container is not ignited, and the temperature rise of the hydrogen storage alloy enclosed in the container can be suppressed.
[0008]
(Operation and effect of claim 2)
During welding, hydrogen is occluded in the hydrogen storage alloy, and the inside of the container becomes atmospheric pressure, and neither hydrogen leaks from the container nor air enters the container. Capability reduction can be prevented.
Since hydrogen is stored in the hydrogen storage alloy and the amount of hydrogen that fills the container is reduced, ignition of hydrogen is prevented.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described based on examples and modifications.
[Configuration of the first embodiment]
In the first embodiment, the heat utilization system using the hydrogen storage alloy of the present invention is applied to a cooling device for indoor air conditioning. This first embodiment will be described with reference to FIGS.
[0010]
(General description of the cooling device 1)
A schematic configuration of the cooling device 1 of the present embodiment will be described with reference to FIG. In this example, a two-stage cycle was used as an example of the heat pump cycle 2 using a hydrogen storage alloy.
[0011]
The cooling device 1 to which the present embodiment is applied is broadly divided into a heat pump cycle 2 using a hydrogen storage alloy, and heated water for heating the hydrogen storage alloy (corresponding to a heating medium for heating, water in this embodiment). , A facility water cooling means 4 that cools the facility water for cooling the hydrogen storage alloy (which corresponds to a heat medium for heat dissipation, water in this embodiment) by radiation, and a hydrogen release action of the hydrogen storage alloy The indoor air conditioner 5 for air-conditioning the room with cold output water cooled by the heat absorption generated by the water (corresponding to a heat medium for cold output, in this embodiment, water), and control for controlling each mounted electric functional component The apparatus 6 is comprised.
[0012]
The heat pump cycle 2, the combustion device 3, the facility water cooling means 4, and the control device 6 are installed outdoors as an outdoor unit 7, and an indoor air conditioner 5 is arranged indoors. The cooling device 1 shown in the present embodiment is a so-called multi-air conditioner in which a plurality of indoor air conditioners 5 can be connected to one outdoor unit 7.
[0013]
(Description of heat pump cycle 2)
The heat pump cycle 2 of this embodiment uses a two-stage cycle as described above. As shown in FIG. 5, an upper vessel S1 in which a hydrogen storage alloy is sealed, and a hydrogen passage S4 in the upper vessel S1. A plurality of cells S including a middle vessel S2 in which a hydrogen storage alloy is enclosed, and a lower vessel S3 in which a hydrogen storage alloy is enclosed, communicated through the hydrogen passage S4 in the middle vessel S2 are used. In this embodiment, 12 to 18 cells S were used.
[0014]
Three types of hydrogen storage alloys with different hydrogen equilibrium pressures are used. In the upper vessel S1, high temperature hydrogen storage alloy (hereinafter referred to as high temperature alloy HM) powder with the same equilibrium hydrogen pressure and the highest hydrogen equilibrium temperature is contained. The intermediate vessel S2 is filled with powder of medium temperature hydrogen storage alloy (hereinafter referred to as intermediate temperature alloy MM), and the lower vessel S3 is filled with low temperature hydrogen storage alloy with the same equilibrium hydrogen pressure and the lowest hydrogen equilibrium temperature ( Hereinafter, the powder of the low temperature alloy LM) is encapsulated.
This will be described with reference to the PT refrigeration cycle diagram of FIG. 7. The characteristics of the hydrogen storage alloy are relatively high temperature side (left side in the drawing), high temperature alloy HM, and low temperature side is low temperature alloy LM. The intermediate temperature alloy MM is between the two.
[0015]
One cell S is formed of stainless, copper, or other metal that does not permeate hydrogen, and the upper, middle, and lower containers S1, S2, and S3 are formed in the middle of a flat container by a joining method such as vacuum brazing or welding. Then, after putting the hydrogen storage alloy inside each container, each container is joined by the connecting portion S5 constituting the hydrogen passage S4, and then the inside vacuum is drawn from the opening hole A formed in a part of the cell S. After the activation, an activation treatment is performed, hydrogen is filled at a high pressure, the opening B is covered with a lid B, and the resultant is sealed by welding.
[0016]
This structure will be specifically described with reference to FIG.
The opening hole A of this embodiment is provided in the activated joint fitting G joined to the connecting portion S5. This activated joint fitting G is formed by machining a stainless steel block having a large heat capacity, and a cylindrical outer cylinder A1 is provided outside the opening hole A toward the outside by machining.
The lid B that closes the opening hole A is also formed by machining a stainless steel block having a large heat capacity, and is provided with an outer diameter slightly larger than the inner diameter of the outer cylinder A1, and overlaps the inner side of the outer cylinder A1. A cylinder B1 is provided so that the inside of the cell S is simply sealed when the lid B is press-fitted into the opening hole A. The overlap margin between the outer cylinder A1 and the inner cylinder B1 which are press-fitted and overlapped is joined by a welding technique such as laser welding or TIG welding, and the inside of the cell S is provided in a sealed state.
[0017]
A method for filling hydrogen into the cell S will be described with reference to FIG.
First, as shown in FIG. 1A, the connecting portion S5 to which the activated joint fitting G is joined is sandwiched by a jig J. The jig J is provided with a press-fitting piston J1 for press-fitting the lid B into the opening hole A, and the lid B is set inside the lid insertion passage J2 at the retracted position of the piston J1. . The lid insertion passage J2 is provided with a communication passage J3 communicating with the opening hole A. When the lid is set in the lid insertion passage J2 (see the retracted position of the piston J1 and the broken line position), the communication passage J3 is provided. Is in a state of communicating with the opening hole A. Reference numerals J4 and J5 in the figure denote O-rings for bringing the jig J and the activated joint fitting G into close contact when the activation joint fitting G is sandwiched by the jig J.
Next, after the inside of the cell S is evacuated from the communication passage J3, an activation process is performed, and hydrogen is charged at a high pressure.
Next, the piston J1 is moved to press-fit the lid B into the opening hole A. As a result, the inside of the cell S is simply sealed as described above. In this state, the cell S is cooled, and the internal hydrogen storage alloy is cooled below the hydrogen storage temperature of the high temperature alloy HM (for example, 4 ° C. or less). Then, the hydrogen filled in the cell S is stored in the hydrogen storage alloy, and the pressure in the cell S becomes the same as the atmospheric pressure.
[0018]
In this state, the cell S is removed from the jig J, and the overlap margin between the outer cylinder A1 and the inner cylinder B1 is joined by a welding technique. The overlap between the outer cylinder A1 and the inner cylinder B1 is made of stainless steel with a large heat capacity, it is difficult for the heat of welding to be transferred to the inside, and the hydrogen filled in the cell S is occluded by the hydrogen storage alloy to fill the inside. Since the amount of hydrogen to be reduced is reduced, ignition during welding is prevented. Further, during this welding, since the pressure in the cell S is the same as the atmospheric pressure, hydrogen does not leak from the cell S before the welding is completed, or air does not enter the cell S. That is, it is possible to prevent hydrogen leakage and the like before the welding is completed after the jig J is removed, and it is possible to prevent the hydrogen release and storage capacity of the hydrogen storage alloy from being lowered.
[0019]
Fins (not shown) are inserted into the upper, middle, and lower containers S1, S2, and S3, and the opposing surface and the fins are joined by brazing to increase the amount of heat transferred from the hydrogen storage alloy to the container. ing. In addition, since the fins are arranged across the opposing surfaces of the container and the fins and the opposing surface are joined, evacuation or high-pressure filling of hydrogen is performed to give hydrogen to the hydrogen storage alloy enclosed in each container. In addition, even when the inside of the container rises to a high pressure due to a high-pressure hydrogen equilibrium pressure during cycle operation, the joined fins keep the distance between the opposing surfaces of the container constant and suppress deformation of the container.
[0020]
The upper, middle, and lower containers S1, S2, and S3 having a flat shape are provided in a state of being wound around the rotary shaft 8. Therefore, one surface of each container is curved in a convex shape, and the other surface facing each other is curved in a concave shape. In this way, the opposing surfaces of each container are curved in the same direction, so that the respective containers face each other under a low pressure during evacuation and under a high hydrogen equilibrium pressure during hydrogen filling and cycle operation. A tensile stress and a compressive stress are applied to the surface, and the deformation of each container is suppressed to a small value from this result.
[0021]
In each of the plurality of cells S, the connecting portions S5 of the plurality of cells S are fixed around the rotation shaft 8 having a substantially cylindrical shape. The rotating shaft 8 is rotationally driven by a cell moving means (not shown). The cell moving means rotates a plurality of cells S slowly and continuously with, for example, a motor (for example, in one hour). 20 laps).
[0022]
Each of the upper, middle, and lower containers S1, S2, and S3 are covered with a divider 9 as shown in FIG. The divider 9 reduces the heat dissipation loss of the heat medium by flowing the heat medium along each container, and rectifies the flow of the heat medium to increase the heat exchange efficiency by increasing the flow rate by increasing the flow rate. Furthermore, the problem that the opposite surface of the container touches a different heat medium at the boundary where the cell S moves from the hydrogen driving unit α to the first cooling output unit β to the second cooling output unit γ, which will be described later, is avoided. This improves the heat exchange efficiency.
[0023]
The divider 9 covers the upper, middle, and lower containers S1, S2, and S3, and is provided with a resin material having excellent heat insulation. A heat medium passage 9 a for flowing the heat medium along the container is formed on the inner surface of the divider 9. The heat medium passage 9a is provided in a substantially groove shape, and is shallowly provided to rectify the flow of the heat medium and increase the flow velocity. In addition, a supply / exhaust port 9b that supplies the heat medium to the heat medium passage 9a and discharges the heat medium that has passed through the heat medium passage 9a is provided at the outer end and the upper center side of the divider 9.
In this embodiment, the supply / exhaust port 9b at the outer end is a supply port for supplying the heat medium to the heat medium passage 9a, and the heat supply passage through the heat medium passage 9a is sent to the outside by the central supply / discharge port 9b. It is a discharge outlet.
[0024]
As shown in FIG. 5, the two-stage heat pump cycle 2 includes a hydrogen driving unit α for forcibly moving the hydrogen in the upper vessel S1 into the lower vessel S3 and the hydrogen moved in the lower vessel S3 in the middle stage. A first cold output unit β that moves to the container S2 and a second cold output unit γ that moves the hydrogen moved into the middle vessel S2 to the upper vessel S1 are provided.
The hydrogen driving unit α, the first cooling output unit β, and the second cooling output unit γ are provided at approximately 120 ° intervals, and are partitioned by the arrangement of recesses M1 and M2 to be described later.
[0025]
The hydrogen drive unit α has a heating area α1 in which heated water (for example, about 80 ° C.) is supplied in contact with the upper container S1, and a middle pressure area α2 in which pressurized water (for example, about 56 ° C.) in contact with the middle container S2 is supplied. A lower heat radiation area α3 to which facility water (for example, about 28 ° C.) in contact with the lower container S3 is supplied.
The first cooling / heating unit β is supplied with an upper pressure increasing region β1 that is supplied with pressurized water (for example, about 58 ° C.) in contact with the upper vessel S1, and a middle portion that is supplied with facility water (for example, about 28 ° C.) that is in contact with the middle vessel S2. A heat radiation area β2 and a lower-stage cold / heat output area β3 in which cold-heat output water (for example, about 7 ° C.) in contact with the lower container S3 is output.
The second cooling output unit γ outputs the upper heat radiation area γ1 to which the facility water (for example, about 28 ° C.) is in contact with the upper container S1, and the cold output water (for example, about 7 ° C.) to be in contact with the middle container S2. It has a middle-stage cooling / heating output region γ2. It should be noted that the temperature of the heat medium in contact with the lower vessel S3 in the second cold output part γ is not questioned, and that part is designated as an unquestioned area γ3.
[0026]
Then, when the rotating shaft 8 is rotated by a cell moving means (not shown), the group of the upper container S1 circulates in the heating area α1 → the upper pressure increasing area β1 → the upper heat radiation area γ1, and the group of the middle container S2 is changed to the middle stage. The booster region α2 → the middle heat radiation region β2 → the middle cooling / heating output region γ2 circulates, and the group of the lower vessel S3 circulates in the lower heat radiation region α3 → the lower cooling energy output region β3 → the unquestioned region γ3.
[0027]
The group of the upper container S1 is covered with the upper water tank K1, and is provided with a heating area α1, an upper pressure increasing area β1, and an upper heat radiation area γ1. Further, the group of middle-stage containers S2 is covered with a middle-stage water tank K2, and is provided with a middle-stage boosting area α2, a middle-stage heat radiation area β2, and a middle-stage cooling / heating output area γ2. Further, the group of the lower containers S3 is covered by the lower water tank K3, and a lower heat radiation area α3, a lower cooling output area β3, and an unquestioned area γ3 are provided therein.
[0028]
The upper water tank K1, the middle water tank K2, and the lower water tank K3 are water tanks K (for example, resin containers) that are continuously connected to each other. As shown in FIG. Sixteen heat medium pipes 10 for supplying and discharging the heat medium are connected to the lower water tanks K1, K2, and K3. Specifically, six heating medium pipes 10 are connected to the upper water tank K1 for the heating area α1, the upper pressure increasing area β1, and the upper heat radiating area γ1, and the middle water tank K2 is connected to the middle pressure increasing area α2, β2 is connected with six heat medium pipes 10 for the intermediate cooling power output area γ2, and the lower water tank K3 is connected with four heat medium pipes 10 for the lower heat radiation area α3 and the lower cooling power output area β3. Yes.
[0029]
In the upper, middle, and lower water tanks K1, K2, and K3, the heat medium supplied by the heat medium pipe 10 is connected to the hydrogen drive unit α, the first cold output unit β, and the second cold output unit γ. A recess M1 leading to the supply / discharge port 9b at the outer end of the divider 9 in each region is provided, and a recess M2 for collecting the heat medium discharged from the center supply / discharge port 9b is provided. Depending on the arrangement and length of M2, the hydrogen driving unit α, the first cooling output unit β, and the second cooling output unit γ, which are spaced approximately 120 ° apart, are determined.
The supply / exhaust port 9b provided in each divider 9 rotates in contact with or close to the inner wall of the water tank K where the recesses M1 and M2 are not provided, and the inner wall of the water tank K where the recesses M1 and M2 are not provided. It is a partition for the hydrogen drive unit α, the first cold output unit β, and the second cold output unit γ.
In this embodiment, as shown in FIG. 5, an example is shown in which the heat medium flows from the outer supply / discharge port 9b → the heat medium passage 9a → the central supply / discharge port 9b. May be flushed.
[0030]
(Description of other components in the heat pump cycle 2)
Reference numeral 11 shown in FIG. 4 is a booster water circulation path for circulating the booster water to the upper booster region β1 and the middle booster region α2, and the booster water is circulated by the booster water circulation pump P1 ′ provided in the middle. Note that the pressurized water is water that has risen in temperature due to heat transfer from the upper vessel S1 and the upper water tank K1 that has risen in the heating zone α1. The temperature is, for example, about 58 ° C., and the temperature of the pressurized water in the middle stage boosted region α 2 is, for example, about 56 ° C.
[0031]
(Description of combustion device 3)
The combustion apparatus 3 of the present embodiment uses a gas combustion apparatus that burns gas as a fuel to generate heat, and heats heated water with the generated heat. The gas burner 12 performs gas combustion, and the gas burner. A gas supply circuit 15 having a gas amount adjusting valve 13 and a gas opening / closing valve 14 for supplying gas to the gas 12, a combustion fan 16 for supplying combustion air to the gas burner 12, and heat exchange between the combustion heat of the gas and the heating water It comprises a heat exchanger 17 and the like.
The heated water is heated to, for example, about 80 ° C. with the heat obtained by gas combustion of the gas burner 12, and the heated heated water is supplied to the heating zone α1 through the heated water circulation path 18 equipped with the heated water circulation pump P1. To do.
The heating water circulation pump P1 of this embodiment is a tandem pump that is driven by a dual-purpose motor that drives the pressurized water circulation pump P1 '. For this reason, when heated water is supplied from the combustion device 3 to the heat pump cycle 2, the pressurized water is also circulated.
[0032]
(Description of indoor air conditioner 5)
The indoor air conditioner 5 is arranged indoors as described above, and forcibly exchanges heat between the indoor heat exchanger 19 and cold output water supplied to the indoor heat exchanger 19 and indoor air. An indoor fan 20 is provided for blowing the air after heat exchange into the room. The indoor heat exchanger 19 is connected with a cooling output water circulation path 21 for circulating cooling output water supplied from the lower cooling output area β3 and the middle cooling output area γ2, and in the middle of the cooling output water circulation path 21 (the outdoor unit 7 The inside) is provided with a cold output water pump P2 for circulating the cold output water.
[0033]
(Description of facility water cooling means 4)
The facility water cooling means 4 is a water-cooled open type cooling tower, and the facility water cooled by the facility water cooling means 4 is converted into a lower radiating area α3 and a middle radiating area by a facility water circulation path 22 equipped with a facility water circulation pump P3. β2 is supplied to the upper heat radiation area γ1.
The facility water cooling means 4 flows the facility water that has passed through the lower radiating region α3, the middle radiating region β2, and the upper radiating region γ1 from the upper side to the lower side, and exchanges heat with the outside air while flowing to dissipate heat. In the meantime, it is partially evaporated to remove the heat of vaporization from the facility water flowing at the time of evaporation and cool the flowing facility water. The facility water cooling means 4 includes a heat dissipation fan (not shown), and is provided so as to promote evaporation and cooling of the facility water by an air flow generated by the heat dissipation fan.
In this embodiment, a water-cooled open type cooling tower is shown as the facility water cooling means 4, but a water-cooled sealed type or an air-cooled sealed type in which the facility water (heat-dissipating heat medium) exchanges heat without touching the air. A cooling means may be used.
[0034]
Here, the heating water circulation path 18, the cooling / heating output water circulation path 21 and the facility water circulation path 22 described above are provided with cis-turns T 1, T 2, T 3, respectively, and the water levels in the cis-turns T 1, T 2, T 3 are lowered below a predetermined water level. Then, the water supply valves T4, T5, and T6 provided to the respective valves are opened to replenish the tap water supplied from the water supply pipe 23 into the cisterns T1, T2, and T3.
Further, a drain pan P is disposed at the lower part of the heat pump cycle 2 and is provided so as to drain the drain water generated in the heat pump cycle 2 from the drain pipe 24. The water overflowing from the facility water cooling means 4 is also provided to drain from the drain pipe 24.
[0035]
(Description of the control device 6)
The control device 6 responds to an operation instruction from a controller (not shown) provided in the indoor air conditioner 5 and an input signal of each of a plurality of sensors provided, and the above-described heated water circulation pump P1 (pressurized water circulation pump P1 ′). , Cooling output water pump P2, facility water circulation pump P3, water supply valves T4, T5, T6, electrical function components such as the heat dissipation fan of the facility water cooling means 4, and electrical function components of the combustion device 3 (combustion fan 16, gas amount adjustment) Valve 13, gas on-off valve 14, ignition device (not shown), and the like, and an operation instruction for the indoor fan 20 is given to the indoor air conditioner 5.
[0036]
(Description of cooling operation)
The operation of the cooling operation by the cooling device 1 will be described with reference to the PT refrigeration cycle diagram of FIG.
When the cooling operation is instructed by the controller of the indoor air conditioner 5, the control device 6 causes the combustion device 3, the cell moving means, the heat radiating fan, the heating water circulation pump P1 (pressure-boosting water circulation pump P1 '), the cold heat output water pump P2, and the heat radiation. The water circulation pump P3 is activated and the indoor fan 20 of the indoor air conditioner 5 instructed to be cooled is turned on.
[0037]
The plurality of cells S rotate and move slowly and continuously by the cell moving means. As a result, the plurality of cells S move in the order of the hydrogen driving unit α → the first cooling output unit β → the second cooling output unit γ.
That is, each upper vessel S1 moves in the order of heating zone α1 → upper pressure boosting region β1 → upper heat dissipation region γ1, and each middle vessel S2 moves in the order of middle pressure boosting region α2 → middle heat dissipation zone β2 → middle heating power output region γ2. Then, each lower container S3 moves in the order of the lower radiating area α3 → the lower cooling output area β3 → the unquestioned area γ3.
[0038]
In the cell S that has entered the hydrogen drive unit α, the upper vessel S1 touches the heated water, the middle vessel S2 touches the pressurized water, and the lower vessel S3 touches the facility water.
When the upper vessel S1 comes into contact with heated water (80 ° C.), the internal pressure of the upper vessel S1 rises and the high temperature alloy HM releases hydrogen.
When the middle vessel S2 comes into contact with the pressurized water (56 ° C.), the internal pressure of the middle vessel S2 rises to a pressure at which the intermediate temperature alloy MM does not occlude hydrogen.
When the lower container S3 comes in contact with the facility water (28 ° C.), the internal pressure of the lower container S3 decreases, and the low temperature alloy LM occludes hydrogen.
[0039]
Thus, the upper vessel S1 touches the heated water in the heating zone α1, the middle vessel S2 touches the pressurized water in the middle pressure zone α2, and the lower vessel S3 touches the facility water in the lower heat radiating zone α3. The inside is 80 ° C .: 1.0 MPa, the inside of the middle vessel S 2 is 56 ° C .: 1.0 MPa, the inside of the lower vessel S 3 is 28 ° C .: 0.9 MPa, and the high temperature alloy HM in the upper vessel S 1 releases hydrogen (see FIG. 7). (1)), the low temperature alloy LM in the lower container S3 occludes hydrogen ((2) in FIG. 7). The intermediate vessel S2 is heated by the pressurized water and has a high internal pressure, and the intermediate temperature alloy MM does not occlude hydrogen.
And the cell S which passed the hydrogen drive part (alpha) moves to the 1st cold-heat output part (beta) after that.
[0040]
In the cell S that has entered the first cold output unit β, the upper vessel S1 touches the pressurized water, the middle vessel S2 touches the facility water, and the lower vessel S3 touches the cold output water.
When the upper vessel S1 touches the pressurized water (58 ° C.), the internal pressure of the upper vessel S1 rises to a pressure at which the high temperature alloy HM does not occlude hydrogen.
When the middle vessel S2 touches the facility water (28 ° C.), the internal pressure of the middle vessel S2 decreases, the intermediate temperature alloy MM occludes hydrogen, and the low temperature alloy LM in the lower vessel S3 releases hydrogen.
Since the low temperature alloy LM releases hydrogen, an endotherm is generated in the lower vessel S3, and the cold output water that touches the lower vessel S3 is cooled to 7 ° C, for example, at 13 ° C when it enters. The low temperature alloy LM is provided so that the internal pressure of the lower vessel S3 is higher than the internal pressure of the intermediate vessel S2 when the cold output water is about 13 ° C.
[0041]
Thus, when the upper vessel S1 touches the pressurized water in the upper pressure boosting region β1, the middle vessel S2 touches the facility water in the middle heat radiating region β2, and the lower vessel S3 touches the cold heat output water in the lower chilling heat output region β3, The inside of the upper vessel S1 is 58 ° C .: 0.5 MPa, the inside of the middle vessel S2 is 28 ° C .: 0.4 MPa, the inside of the lower vessel S3 is 13 ° C .: 0.5 MPa, and the low temperature alloy LM of the lower vessel S3 releases hydrogen ( (3) in FIG. 7), the medium temperature alloy MM in the middle vessel S2 occludes hydrogen ((4) in FIG. 7). When the low temperature alloy LM in the lower vessel S3 releases hydrogen, heat is taken from the cold output water that touches the lower vessel S3 due to the endothermic effect, and the temperature of the cold output water is lowered. The upper vessel S1 is heated by the pressurized water and has a high internal pressure, and the high temperature alloy HM does not occlude hydrogen.
And the cell S which passed the 1st cold output part (beta) moves to the 2nd cold output part (gamma) after that.
[0042]
In the cell S that has entered the second cold output unit γ, the upper vessel S1 touches the facility water, the middle vessel S2 touches the cold output water, and the lower vessel S3 touches unquestioned water.
When the upper vessel S1 touches the facility water (28 ° C.), the internal pressure of the upper vessel S1 decreases, the high temperature alloy HM occludes hydrogen, and the intermediate temperature alloy MM in the middle vessel S2 releases hydrogen.
Since the intermediate temperature alloy MM releases hydrogen, heat is generated in the middle vessel S2, and the cold heat output water that touches the middle vessel S2 is cooled to 7 ° C, for example, at 13 ° C when it enters. The intermediate temperature alloy MM is provided so that the internal pressure of the middle vessel S2 is higher than the internal pressure of the upper vessel S1 when the cold output water is about 13 ° C.
[0043]
In this way, when the upper container S1 touches the facility water in the upper radiating zone γ1, the inside of the upper container S1 is 28 ° C .: 0.1 MPa, the inside of the middle container S2 is 13 ° C .: 0.2 MPa, and the inside of the lower container S3 is unquestioned. Then, the intermediate temperature alloy MM in the middle vessel S2 releases hydrogen ((5) in FIG. 7), and the high temperature alloy HM in the upper vessel S1 occludes hydrogen ((6) in FIG. 7). When the medium temperature alloy MM in the middle vessel S2 releases hydrogen, heat is taken from the cold output water that touches the middle vessel S2 due to the endothermic effect, and the temperature of the cold output water is lowered. The temperature of the lower container S3 is irrelevant, and the low temperature alloy LM of the lower container S3 does not occlude hydrogen.
And the cell S which passed the 2nd cold-power output part (gamma) moves to the hydrogen drive part (alpha) after that.
[0044]
The low-temperature cold output water that has been deprived of heat in the lower and middle cooling output areas β3 and γ2 of the heat pump cycle 2 is supplied to the indoor heat exchanger 19 of the indoor air conditioner 5 via the cooling output water circulation path 21. Then, heat is exchanged with the air blown into the room to cool the room.
[0045]
[Effects of Examples]
After the lid B is press-fitted into the opening hole A and the inside is simply sealed, the overlap of the outer cylinder A1 and the inner cylinder B1 of the lid B is welded to the opening hole A, so there is no leakage during welding. In particular, since the jig J is removed after the pressure in the cell S becomes the same as the atmospheric pressure, the lid B is press-fitted into the opening hole A, and then the welding for the overlap of the outer cylinder A1 and the inner cylinder B1 is performed. There is no problem that hydrogen leaks from the cell S or air enters the cell S before the process is performed, and the hydrogen release and storage capacity of the hydrogen storage alloy are prevented from being lowered.
Further, since the overlap between the outer cylinder A1 and the inner cylinder B1 is made of stainless steel having a large heat capacity, the heat of welding is difficult to transfer to the inside, and the cell S is cooled and filled in the cell S during welding. Hydrogen is stored in the hydrogen storage alloy and the amount of hydrogen that fills the inside is reduced. In this way, the heat of welding is hardly transmitted to the inside, and the amount of hydrogen filling the inside is small, so that ignition during welding is prevented.
[0046]
[Second Embodiment]
FIG. 8 is a cross-sectional view of the main part of the cell S.
In the first embodiment described above, an example is shown in which the activation connecting fitting G in which the opening hole A and the outer cylinder A1 are formed is joined to the cell S, and the opening hole A with the outer cylinder A1 is provided in the cell S. However, in this embodiment, the outer cylinder A1 is provided outside the opening hole A by burring.
[0047]
[Third embodiment]
FIG. 9 is a cross-sectional view of the main part of the cell S.
In this embodiment, the end portion of the connecting portion S5 is used as the opening hole A / outer cylinder A1, vacuuming, activation treatment, hydrogen filling is performed, and the lid B is press-fitted to overlap the outer cylinder A1 and the inner cylinder B1. It is what welded the bill.
[0048]
[Fourth embodiment]
Next, a fourth embodiment in which the heat utilization system using the hydrogen storage alloy of the present invention is applied to an air conditioner will be described. In addition, FIG. 10 is a schematic block diagram of the air conditioning apparatus to which this invention is applied.
The air conditioner 30 of the present embodiment guides the heated water heated by the combustion device 3 to the indoor heat exchanger 19 of the indoor air conditioner 5 during the heating operation in addition to the cooling operation shown in the above embodiment. This is for room heating. The heating water circulation path 18 and the cold output water circulation path 21 shown in the first embodiment are connected, and three switching valves V1, V2, V3 (cooling and Heating switching valve).
In addition to the indoor air conditioner 5, it may be connected to a floor heating mat, a bathroom dryer or the like so as to perform floor heating, bathroom heating, etc. by supplying heated water.
[0049]
[Fifth embodiment]
FIG. 11 and FIG. 12 show a fifth embodiment, and FIG. 11 is a schematic configuration diagram of a type of cooling device to which the cell S is fixed.
In the above-described embodiment, an example in which the type of the heat medium that touches each container is switched by rotating the plurality of cells S in the water tank K has been shown. However, in the third embodiment, a plurality (three in this embodiment) are used. A divider 40 that fixes and outputs a plurality of heat mediums by rotation, and a collector 41 that collects the distributed heat mediums again and returns them to the heat medium source. The type of the heat medium is switched and supplied to the heat medium passage 9a (see FIG. 12) on the inside.
As shown in FIG. 12, the upper, middle, and lower containers S1, S2, and S3 of the third embodiment are covered with a divider 9, and the divider 9 is covered with a housing 42. A heat insulating material 43 is arranged between the housing 42.
[0050]
[Modification]
In the above-described embodiment, an example in which the divider 9 is provided around each container has been described. However, the divider 9 may not be used. As a specific example, as shown in FIG. 13, the upper, middle, and lower containers S1, S2, and S3 are arranged around the rotation shaft 8, and the upper, middle, and lower containers S1,. A gap having substantially the same width may be provided between S2, S3 and the other upper, middle, and lower containers S1, S2, S3 adjacent thereto, so that the heat medium flows in the gap. Even if the divider 9 is eliminated in this manner, the distribution density of the hydrogen storage alloy in the water tank K is increased, and the gap has the same width. Therefore, the flow of the heat medium flowing through the gap is rectified and the flow is increased. The speed is increased, and the amount of the heat medium that exchanges heat with the hydrogen storage alloy is increased, so that the heat exchange efficiency can be improved.
[0051]
In the first and second embodiments, the example in which the plurality of cells S are continuously rotated by the cell moving unit has been described. However, the cells S may be intermittently rotated.
In the above embodiment, in order to facilitate the explanation, the upper container S1, the middle container S2, and the lower container S3 are shown according to the upper and lower sides of the drawing. However, the upper and lower arrangements are changed or arranged horizontally. You may do it. In such a case, of course, each heat medium supplied to each container is replaced so that a heat pump cycle is established.
[0052]
In the above-described embodiment, an example is shown in which the heating medium (the pressurized water in the embodiment) whose temperature has been increased by cooling the upper vessel S1 whose temperature has increased in the heating region α1 is used as the heating medium for increasing the pressure. You may use the thermal medium heated up by the means (For example, the temperature rise by a combustion apparatus, the temperature rise by an electric heater, the temperature rise using exhaust heat, etc.).
In the above embodiment, an example using a two-stage cycle was shown as an example of the heat pump cycle 2, but it may be used in a one-stage cycle, or three or more second containers may be divided into three stages. You may use as the above cycle.
[0053]
In the above embodiment, a multi air conditioner in which a plurality of indoor air conditioners 5 can be connected to one outdoor unit 7 is shown. However, the present invention is applied to an air conditioner in which one indoor air conditioner 5 is connected to one outdoor unit 7. It may be applied.
In the above-described embodiment, an example in which the room is cooled with the heat medium for cooling output (cold water in the embodiment) obtained by the heat pump cycle 2 is shown. The present invention may be used as another cooling device.
In the above embodiment, an example using one heat pump unit (a unit in which a plurality of cells S are accommodated in one water tank K) is shown. However, a plurality of heat pump units are mounted to increase cooling capacity, It may be used for a cooling device that requires a large cooling capacity, such as an air conditioning system for an automobile.
[0054]
In the above embodiment, the gas combustion apparatus for burning gas is used as the heating means for heating the heating medium (heating water in the embodiment), but other combustion such as an oil combustion apparatus for burning oil is used. An apparatus may be used, and other heating means such as a heating means for heating a heat medium for heating by exhaust heat of the internal combustion engine, a steam by a boiler, a heating means using an electric heater, or the like may be used. In addition, when utilizing the exhaust heat of an internal combustion engine, it can also use for vehicles.
[0055]
In the above embodiment, tap water is used as an example of each heat medium, but other liquid heat medium such as antifreeze liquid or oil may be used, or a gas heat medium such as air may be used.
In the above embodiment, the cooling device that obtains the cold output by the endothermic action when the hydrogen storage alloy releases hydrogen is shown as an example, but the heating that obtains the thermal output by the heat release action when the hydrogen storage alloy absorbs hydrogen. The present invention may be applied to a device (for example, a heating device).
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a joint portion between an opening hole and a lid (first embodiment).
FIG. 2 is a partial perspective view of a cell (first embodiment).
FIG. 3 is a perspective view of a cell provided with a divider (first embodiment).
FIG. 4 is a schematic configuration diagram of a cooling device (first embodiment).
FIG. 5 is an operation explanatory diagram of a heat pump cycle (first embodiment).
FIG. 6 is a perspective view of a heat pump unit (first embodiment).
FIG. 7 is a PT refrigeration cycle diagram (first embodiment).
FIG. 8 is a cross-sectional view showing a joint portion between an opening hole and a lid (second embodiment).
FIG. 9 is a cross-sectional view showing a joint portion between an opening hole and a lid (third embodiment).
FIG. 10 is a schematic configuration diagram of an air conditioner (fourth embodiment).
FIG. 11 is a schematic configuration diagram of a cooling device (fifth embodiment).
FIG. 12 is a sectional view of a housing (fifth embodiment).
FIG. 13 is a cross-sectional view showing the inside of the container (modified example).
[Explanation of symbols]
A Open hole
B lid
A1 outer cylinder
B1 inner cylinder
HM high temperature alloy (hydrogen storage alloy)
MM Medium temperature alloy (hydrogen storage alloy)
LM Low temperature alloy (hydrogen storage alloy)
S cell
S1 Upper container
S2 Middle container
S3 Lower container

Claims (2)

水素吸蔵合金の水素の放出時の吸熱、あるいは水素吸蔵合金の水素の吸蔵時の放熱を利用した水素吸蔵合金を利用した熱利用システムに用いる水素吸蔵合金を封入する容器であって、
前記水素吸蔵合金を封入する容器は、前記容器の外方へ向かう外筒を備えた水素を充填する開口穴が設けられ、
この外筒の内径に一致する内筒を備える蓋によって閉塞されるもので、
前記外筒および前記内筒は熱容量が大きい材料により形成され、
前記開口穴内に前記蓋が圧入されて、
前記外筒と前記内筒との重なり代が溶接によって接合された
ことを特徴とする水素吸蔵合金を利用した熱利用システムの容器。
A container that encloses a hydrogen storage alloy used in a heat utilization system using a hydrogen storage alloy that utilizes heat absorption during hydrogen release of the hydrogen storage alloy or heat dissipation during hydrogen storage of the hydrogen storage alloy,
The container that encloses the hydrogen storage alloy is provided with an opening hole that is filled with hydrogen with an outer cylinder that faces the outside of the container,
It is closed by a lid having an inner cylinder that matches the inner diameter of this outer cylinder,
The outer cylinder and the inner cylinder are formed of a material having a large heat capacity,
The lid is press-fitted into the opening hole,
A container for a heat utilization system using a hydrogen storage alloy, characterized in that an overlap margin between the outer cylinder and the inner cylinder is joined by welding.
水素吸蔵合金の水素の放出時の吸熱、あるいは水素吸蔵合金の水素の吸蔵時の放熱を利用した水素吸蔵合金を利用した熱利用システムに用いる容器への水素充填方法であって、 水素吸蔵合金を封入する容器は、蓋によって閉塞される水素を充填する開口穴が設けられ、
前記容器内に内蔵される前記水素吸蔵合金を水素吸蔵温度以下に冷却して水素を前記水素吸蔵合金に吸蔵させて前記容器内を大気圧と等しくした状態で、前記開口穴が溶接によって前記蓋と接合される
ことを特徴とする水素吸蔵合金を利用した熱利用システムの容器への水素充填方法。
A method of filling hydrogen into a container used in a heat utilization system using a hydrogen storage alloy utilizing heat absorption during hydrogen release of the hydrogen storage alloy or heat dissipation during hydrogen storage of the hydrogen storage alloy, wherein the hydrogen storage alloy is The container to be sealed is provided with an opening hole filled with hydrogen closed by a lid,
While equal to the hydrogen storage alloy hydrogen occluding the temperature is cooled below the hydrogen by absorbing the hydrogen absorbing alloy in the container atmosphere to be built into the container, said opening hole by welding A method for filling hydrogen into a container of a heat utilization system using a hydrogen storage alloy, which is joined to the lid.
JP01415398A 1998-01-27 1998-01-27 Heat utilization system container using hydrogen storage alloy and method of filling hydrogen into the container Expired - Fee Related JP3734949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01415398A JP3734949B2 (en) 1998-01-27 1998-01-27 Heat utilization system container using hydrogen storage alloy and method of filling hydrogen into the container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01415398A JP3734949B2 (en) 1998-01-27 1998-01-27 Heat utilization system container using hydrogen storage alloy and method of filling hydrogen into the container

Publications (2)

Publication Number Publication Date
JPH11211268A JPH11211268A (en) 1999-08-06
JP3734949B2 true JP3734949B2 (en) 2006-01-11

Family

ID=11853215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01415398A Expired - Fee Related JP3734949B2 (en) 1998-01-27 1998-01-27 Heat utilization system container using hydrogen storage alloy and method of filling hydrogen into the container

Country Status (1)

Country Link
JP (1) JP3734949B2 (en)

Also Published As

Publication number Publication date
JPH11211268A (en) 1999-08-06

Similar Documents

Publication Publication Date Title
JP3734949B2 (en) Heat utilization system container using hydrogen storage alloy and method of filling hydrogen into the container
JP3850558B2 (en) Heat utilization system using hydrogen storage alloy
JP3694571B2 (en) Cooling system using hydrogen storage alloy
JP3644661B2 (en) Heat utilization system using hydrogen storage alloy
JP3694577B2 (en) Heat utilization system using hydrogen storage alloy
JP3694575B2 (en) Heat utilization system using hydrogen storage alloy
JP3355116B2 (en) Heat utilization system using hydrogen storage alloy
JP3813340B2 (en) Heat utilization system using hydrogen storage alloy
JP3734950B2 (en) Heat utilization system using hydrogen storage alloy
JP3594435B2 (en) Hydrogen storage type cooling device
JP3926038B2 (en) Heat utilization system using hydrogen storage alloy
JP3594436B2 (en) Hydrogen storage type cooling device
JP3734960B2 (en) Heat utilization system using hydrogen storage alloy
JP3872913B2 (en) Heat utilization system using hydrogen storage alloy
JP3534559B2 (en) Hydrogen storage type cooling device
JPH11294888A (en) Heat harnessing system utilizing alloy for storing hydrogen
JP3534560B2 (en) Hydrogen storage type cooling device
JP2000111194A (en) Heat utilization system using hydrogen storage alloy
JP3850587B2 (en) Heat utilization system using hydrogen storage alloy
JP3911364B2 (en) Heat utilization system using hydrogen storage alloy
JP2000039225A (en) Heat utilizing system utilizing hydrogen storage alloys
JP3859379B2 (en) Heat utilization system using hydrogen storage alloy
JPH11190565A (en) Heat utilizing system using hydrogen occlusion alloy
JPH11118285A (en) Heat utilizing system utilizing hydrogen absorbing alloy
JPH11142014A (en) Heat-harnessed system utilizing alloy for hydrogen storage

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees