JPH11211268A - Container of heat harnessed system utilizing alloy for storing hydrogen and method of filling the container with hydrogen - Google Patents

Container of heat harnessed system utilizing alloy for storing hydrogen and method of filling the container with hydrogen

Info

Publication number
JPH11211268A
JPH11211268A JP10014153A JP1415398A JPH11211268A JP H11211268 A JPH11211268 A JP H11211268A JP 10014153 A JP10014153 A JP 10014153A JP 1415398 A JP1415398 A JP 1415398A JP H11211268 A JPH11211268 A JP H11211268A
Authority
JP
Japan
Prior art keywords
hydrogen
heat
container
storage alloy
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10014153A
Other languages
Japanese (ja)
Other versions
JP3734949B2 (en
Inventor
Tsutomu Maruhashi
勤 丸橋
Shigeru Tsunokake
繁 角掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Rinnai Corp
Original Assignee
Japan Metals and Chemical Co Ltd
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd, Rinnai Corp filed Critical Japan Metals and Chemical Co Ltd
Priority to JP01415398A priority Critical patent/JP3734949B2/en
Publication of JPH11211268A publication Critical patent/JPH11211268A/en
Application granted granted Critical
Publication of JP3734949B2 publication Critical patent/JP3734949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent inflammation of hydrogen inside during the welding by filling with hydrogen a container into which is sealed an alloy for storing hydrogen to restrict the leakage of hydrogen in the closing of an open hole. SOLUTION: A link part S5 of a cell S is provided with an open hole A for evacuation or the filling of hydrogen. An outer cylinder A1 outward is provided on the perimeter of the open hole A. The open hole A is closed by a lid B, which B is provided with an inner cylinder B1 overlapping the inside of the outer cylinder A1. After the filling of the hydrogen, the lid B is pressed into the open hole A to close the open hole A simply. After the cooling, the lap margin between the outer cylinder A1 and the inner cylinder B1 is welded, a process in which an internal pressure drops to eliminate the leakage of hydrogen before the welding. The outer cylinder A1 and the inner cylinder B1 are made of stainless steel with a large heat capacity and the heat during the welding is hard to transmit internally while a cooling is made during the welding to minimize the amount of hydrogen to fill the interior thereby preventing inflammation of hydrogen as caused by the heat of welding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金の水
素の吸蔵と放出とを繰り返して行わせ、水素の放出時に
生じる吸熱作用を利用して冷熱を得る、あるいは水素の
吸蔵時に生じる放熱作用を利用して温熱を得る水素吸蔵
合金を利用した熱利用システムにおいて水素吸蔵合金を
封入する容器、およびその容器への水素充填方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy which repeatedly absorbs and releases hydrogen and obtains cold heat by utilizing an endothermic effect generated when hydrogen is released, or a heat radiating effect generated when storing hydrogen. TECHNICAL FIELD The present invention relates to a container for enclosing a hydrogen storage alloy in a heat utilization system using a hydrogen storage alloy that obtains heat by using a hydrogen storage alloy, and a method for filling the container with hydrogen.

【0002】[0002]

【従来の技術】従来の水素吸蔵合金を利用した熱利用シ
ステムは、水素吸蔵合金が封入され、水素が充填された
容器を複数連通して用いている。水素吸蔵合金が封入さ
れた容器内を真空引きした後に開口穴から水素を高圧充
填し、その後に開口穴を閉塞する技術は、開口穴を溶接
作業で閉じるものであった。
2. Description of the Related Art A conventional heat utilization system using a hydrogen storage alloy uses a plurality of containers filled with hydrogen, in which a hydrogen storage alloy is sealed. The technique of closing the opening hole by welding after filling the container with the hydrogen storage alloy therein with a vacuum and then filling the opening hole with hydrogen at a high pressure and then closing the opening hole has been known.

【0003】[0003]

【発明が解決しようとする課題】溶接によって容器の開
口穴を塞ぐ際、容器内の高圧水素が開口穴から漏れ出る
不具合があり、水素吸蔵合金の水素放出と吸蔵の能力が
低下し、熱利用システムの能力が低下する不具合があっ
た。また、開口穴の閉塞作業時に、溶接時の熱が容器内
の水素に引火する可能性があった。
When the opening hole of the container is closed by welding, there is a problem that high-pressure hydrogen in the container leaks from the opening hole, the ability of the hydrogen storage alloy to release and occlude hydrogen is reduced, and heat is utilized. There was a problem that the performance of the system was reduced. In addition, during the operation of closing the opening hole, there is a possibility that heat during welding may ignite hydrogen in the container.

【0004】[0004]

【発明の目的】本発明は上記の事情に鑑みてなされたも
ので、その目的は、水素吸蔵合金を封入する容器内に水
素を充填して開口穴を閉塞する際の水素漏れを抑えると
ともに、内部の水素への引火を無くすことのできる水素
吸蔵合金を利用した熱利用システムの容器、およびその
容器への水素充填方法の提供にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to suppress hydrogen leakage when filling a container for enclosing a hydrogen storage alloy with hydrogen and closing an opening hole. An object of the present invention is to provide a container of a heat utilization system using a hydrogen storage alloy capable of eliminating ignition of hydrogen inside, and a method of filling the container with hydrogen.

【0005】[0005]

【課題を解決するための手段】本発明の水素吸蔵合金を
利用した熱利用システムは、上記の目的を達成するため
に、次の技術的手段を採用した。 (請求項1の手段)水素吸蔵合金の水素の放出時の吸
熱、あるいは水素吸蔵合金の水素の吸蔵時の放熱を利用
した水素吸蔵合金を利用した熱利用システムに用いる水
素吸蔵合金を封入する容器であって、前記水素吸蔵合金
を封入する容器は、前記容器の外方へ向かう外筒を備え
た水素を充填する開口穴が設けられ、この外筒の内径に
一致する内筒を備える蓋によって閉塞されるもので、前
記外筒および前記内筒は熱容量が大きい材料により形成
され、前記開口穴内に前記蓋が圧入されて、前記外筒と
前記内筒との重なり代が溶接によって接合されたことを
特徴とする。
The heat utilization system using the hydrogen storage alloy according to the present invention employs the following technical means to achieve the above object. (Means of Claim 1) A container for enclosing a hydrogen storage alloy for use in a heat utilization system utilizing a hydrogen storage alloy utilizing heat absorption of the hydrogen storage alloy at the time of releasing hydrogen or heat release at the time of hydrogen storage of the hydrogen storage alloy. The container for enclosing the hydrogen storage alloy is provided with an opening hole for filling hydrogen with an outer cylinder directed outward of the container, and a lid including an inner cylinder that matches the inner diameter of the outer cylinder. The outer cylinder and the inner cylinder were formed of a material having a large heat capacity, and the lid was press-fitted into the opening hole, and the overlap of the outer cylinder and the inner cylinder was joined by welding. It is characterized by the following.

【0006】(請求項2の手段)水素吸蔵合金の水素の
放出時の吸熱、あるいは水素吸蔵合金の水素の吸蔵時の
放熱を利用した水素吸蔵合金を利用した熱利用システム
に用いる容器への水素充填方法であって、水素吸蔵合金
を封入する容器は、蓋によって閉塞される水素を充填す
る開口穴が設けられ、前記容器内に内蔵される前記水素
吸蔵合金を水素吸蔵合金温度以下に冷却して水素を前記
水素吸蔵合金に吸蔵させて前記容器内を大気圧と等しく
した状態で、前記開口穴が溶接によって前記蓋と接合さ
れることを特徴とする。
(Means of Claim 2) Hydrogen to a container used in a heat utilization system utilizing a hydrogen storage alloy utilizing heat absorption during release of hydrogen of the hydrogen storage alloy or heat release during storage of hydrogen of the hydrogen storage alloy. In the filling method, a container for enclosing the hydrogen storage alloy is provided with an opening hole for filling hydrogen closed by a lid, and cooling the hydrogen storage alloy contained in the container to a temperature equal to or lower than the hydrogen storage alloy temperature. The opening hole is joined to the lid by welding in a state in which hydrogen is occluded in the hydrogen storage alloy to make the inside of the container equal to the atmospheric pressure.

【0007】[0007]

【発明の作用および効果】(請求項1の作用および効
果)開口穴に蓋を圧入した後、開口穴の外筒と蓋の内筒
との重なり代の溶接を行うため、溶接時に漏れがない。
このため、水素漏れによる水素吸蔵合金の水素放出と吸
蔵の能力低下を防ぐことができる。溶接が行われる重な
り代は、容器内から外側に離れており、且つ、熱容量が
大きいため、溶接時の高熱が容器内の水素へ伝熱しにく
い。このため、容器内に充満する水素に引火しないとと
もに、容器の内部に封入された水素吸蔵合金の昇温が抑
制できる。
(Operation and Effect of Claim 1) After the lid is press-fitted into the opening hole, the overlap margin between the outer cylinder of the opening hole and the inner cylinder of the lid is welded, so that there is no leakage at the time of welding. .
For this reason, it is possible to prevent a decrease in the capacity of the hydrogen storage alloy to release and store hydrogen due to hydrogen leakage. The overlap margin at which welding is performed is away from the inside of the container to the outside and has a large heat capacity, so that high heat during welding is difficult to transfer to hydrogen in the container. For this reason, the hydrogen filling the container is not ignited, and the temperature rise of the hydrogen storage alloy sealed in the container can be suppressed.

【0008】(請求項2の作用および効果)溶接の際、
水素が水素吸蔵合金に吸蔵されて、容器内は大気圧とな
り、容器内から水素の漏れ、容器内への空気の進入がと
もに生じないので、水素吸蔵合金の水素放出と吸蔵の能
力低下を防ぐことができる。水素が水素吸蔵合金に吸蔵
されて容器内に充満する水素量が少なくなるため、水素
への引火が防止される。
(Operation and Effect of Claim 2) At the time of welding,
Hydrogen is occluded by the hydrogen storage alloy, and the inside of the container is at atmospheric pressure. Hydrogen does not leak from the container and air does not enter the container, preventing the hydrogen storage alloy from desorbing hydrogen and reducing the storage capacity. be able to. Since hydrogen is occluded by the hydrogen storage alloy and the amount of hydrogen filling the container is reduced, ignition of hydrogen is prevented.

【0009】[0009]

【発明の実施の形態】次に、本発明の実施の形態を、実
施例および変形例に基づき説明する。 〔第1実施例の構成〕第1実施例は、本発明の水素吸蔵
合金を利用した熱利用システムを、室内空調用の冷房装
置に適用したもので、この第1実施例を図1ないし図7
を用いて説明する。
Next, embodiments of the present invention will be described based on examples and modifications. [Configuration of First Embodiment] In the first embodiment, the heat utilization system using the hydrogen storage alloy of the present invention is applied to a cooling device for indoor air conditioning. 7
This will be described with reference to FIG.

【0010】(冷房装置1の概略説明)本実施例の冷房
装置1の概略構成を、図4を用いて説明する。この実施
例では、水素吸蔵合金を用いたヒートポンプサイクル2
の一例として2段式サイクルを用いた。
(Schematic Description of Cooling Apparatus 1) The schematic configuration of the cooling apparatus 1 of the present embodiment will be described with reference to FIG. In this embodiment, a heat pump cycle 2 using a hydrogen storage alloy was performed.
As an example, a two-stage cycle was used.

【0011】本実施例の適用される冷房装置1は、大別
して、水素吸蔵合金を用いたヒートポンプサイクル2
と、水素吸蔵合金を加熱する加熱水(加熱用の熱媒体に
相当する、本実施例では水)を作り出す燃焼装置3と、
水素吸蔵合金を冷却させる放熱水(放熱用の熱媒体に相
当する、本実施例では水)を放熱によって冷却する放熱
水冷却手段4と、水素吸蔵合金の水素放出作用によって
生じた吸熱によって冷却された冷熱出力水(冷熱出力用
の熱媒体に相当する、本実施例では水)で室内を空調す
る室内空調機5と、搭載された各電気機能部品を制御す
る制御装置6とから構成される。
The cooling apparatus 1 to which the present embodiment is applied is roughly classified into a heat pump cycle 2 using a hydrogen storage alloy.
And a combustion device 3 for producing heated water (corresponding to a heating medium for heating, water in this embodiment) for heating the hydrogen storage alloy;
Facility water cooling means 4 for cooling the hydrogen storage alloy by cooling the facility water (corresponding to a heat medium for heat dissipation, water in this embodiment) for cooling the hydrogen storage alloy, and cooling by the heat absorption generated by the hydrogen releasing action of the hydrogen storage alloy. An indoor air conditioner 5 for air-conditioning the room with cold heat output water (corresponding to a heat medium for cold heat output, in this embodiment, water), and a control device 6 for controlling each mounted electric functional component. .

【0012】なお、ヒートポンプサイクル2、燃焼装置
3、放熱水冷却手段4および制御装置6は、室外機7と
して室外に設置されるもので、室内には室内空調機5が
配置される。また、本実施例に示す冷房装置1は、1つ
の室外機7に対して、複数の室内空調機5が接続可能な
所謂マルチエアコンである。
The heat pump cycle 2, the combustion device 3, the facility water cooling means 4 and the control device 6 are installed outdoors as an outdoor unit 7, and an indoor air conditioner 5 is disposed indoors. The cooling device 1 according to the present embodiment is a so-called multi-air conditioner in which a plurality of indoor air conditioners 5 can be connected to one outdoor unit 7.

【0013】(ヒートポンプサイクル2の説明)本実施
例のヒートポンプサイクル2は、上述のように2段式サ
イクルを用いたもので、図5に示すように、水素吸蔵合
金が封入された上段容器S1 、この上段容器S1 内に水
素通路S4 を介して連通し、水素吸蔵合金が封入された
中段容器S2 、中段容器S2 内に水素通路S4 を介して
連通し、水素吸蔵合金が封入された下段容器S3 を備え
たセルSを複数用いる。なお、この実施例では、12〜
18個のセルSを用いた。
(Explanation of Heat Pump Cycle 2) The heat pump cycle 2 of this embodiment uses a two-stage cycle as described above. As shown in FIG. 5, an upper vessel S1 in which a hydrogen storage alloy is sealed is used. A middle vessel S2 which communicates with the upper vessel S1 through a hydrogen passage S4 and in which a hydrogen storage alloy is sealed, and a lower vessel which communicates with the middle vessel S2 via a hydrogen passage S4 and in which the hydrogen storage alloy is sealed. A plurality of cells S having S3 are used. In this embodiment, 12 to
Eighteen cells S were used.

【0014】水素吸蔵合金は、水素平衡圧力が異なる3
種を用いたもので、上段容器S1 内には同一平衡水素圧
で水素平衡温度が最も高い高温度水素吸蔵合金(以下、
高温合金HM)の粉末を封入し、中段容器S2 内には中
温度水素吸蔵合金(以下、中温合金MM)の粉末を封入
し、下段容器S3 内には同一平衡水素圧で水素平衡温度
が最も低い低温度水素吸蔵合金(以下、低温合金LM)
の粉末を封入したものである。このことを図7のPT冷
凍サイクル線図を用いて説明すると、水素吸蔵合金の特
性が、相対的に高温側(図示左側)にあるのが高温合金
HM、低温側にあるのが低温合金LM、両者の中間にあ
るのが中温合金MMである。
The hydrogen storage alloy has different hydrogen equilibrium pressures.
A high-temperature hydrogen storage alloy having the highest hydrogen equilibrium temperature at the same equilibrium hydrogen pressure in the upper vessel S1
High-temperature alloy HM) powder is sealed in the middle vessel S2, and a medium-temperature hydrogen storage alloy (hereinafter, medium-temperature alloy MM) powder is sealed in the middle vessel S2. Low-temperature low-temperature hydrogen storage alloy (hereinafter, low-temperature alloy LM)
Is sealed. This will be described with reference to the PT refrigeration cycle diagram of FIG. 7. The characteristics of the hydrogen storage alloy are relatively high on the high temperature side (left side in the drawing) and high temperature alloy LM on the low temperature side. The middle temperature alloy MM is between the two.

【0015】1つのセルSは、ステンレスあるいは銅な
ど、水素透過の無い金属を用いて、真空ろう付けや溶接
等の接合方法により上、中、下段容器S1 、S2 、S3
を偏平容器の最中状に成形し、各容器の内部に水素吸蔵
合金を入れた後に、各容器を水素通路S4 を構成する連
結部S5 によって結合した後に、セルSの一部に形成さ
れた開口穴Aから内部の真空引きを行ったのち、活性化
処理を施し、水素を高圧充填して開口穴Aに蓋Bをして
溶接により密封したものである。
One cell S is made of a metal having no hydrogen permeability, such as stainless steel or copper, and is connected to the upper, middle, and lower vessels S1, S2, S3 by a joining method such as vacuum brazing or welding.
Was formed in the middle of a flat container, a hydrogen-absorbing alloy was put in each container, and then each container was connected by a connecting portion S5 constituting a hydrogen passage S4, and then formed in a part of the cell S. After evacuating the interior from the opening A, an activation process is performed, hydrogen is filled at a high pressure, the opening A is covered with a lid B, and the opening A is sealed by welding.

【0016】この構造を、図1の(b)を用いて具体的
に説明する。本実施例の開口穴Aは、連結部S5 に接合
された活性化接合金具Gに設けられている。この活性化
接合金具Gは、熱容量の大きいステンレス製ブロックを
削り出し加工によって形成したもので、開口穴Aの外側
には、削り出しによって外側に向かう円筒状の外筒A1
が設けられている。この開口穴Aを塞ぐ蓋Bも、熱容量
の大きいステンレス製ブロックを削り出し加工によって
形成したもので、外筒A1 の内径より僅かに大きい外径
に設けられるとともに、外筒A1 の内側に重なる内筒B
1 が設けられており、蓋Bを開口穴A内に圧入するとセ
ルS内が簡易密閉されるように設けられている。そし
て、圧入されて重なる外筒A1 と内筒B1 との重なり代
がレーザ溶接やTIG溶接等の溶接技術によって接合さ
れており、セルS内が密閉状態に設けられている。
This structure will be specifically described with reference to FIG. The opening A of the present embodiment is provided in the activation joint fitting G joined to the connecting portion S5. The activation joining metal fitting G is formed by cutting a stainless steel block having a large heat capacity by machining, and a cylindrical outer cylinder A1 facing outward by machining is provided outside the opening hole A.
Is provided. The lid B that closes the opening A is also formed by cutting out a stainless steel block having a large heat capacity, is provided with an outer diameter slightly larger than the inner diameter of the outer cylinder A1, and is formed inside the outer cylinder A1. Tube B
1 is provided so that when the cover B is pressed into the opening A, the inside of the cell S is easily sealed. The overlap between the outer cylinder A1 and the inner cylinder B1 which is press-fitted and overlapped is joined by a welding technique such as laser welding or TIG welding, and the inside of the cell S is provided in a sealed state.

【0017】セルS内への水素充填方法を、図1の
(a)を用いて説明する。まず、図1の(a)に示すよ
うに、活性化接合金具Gが接合された連結部S5を治具
Jで挟み込む。この治具Jには、開口穴A内に蓋Bを圧
入するための圧入用のピストンJ1 が設けられており、
蓋BはピストンJ1 の後退位置では、蓋挿入通路J2 の
内部にセットされる。この蓋挿入通路J2 には、開口穴
Aに連通する連通通路J3 が設けられており、蓋挿入通
路J2 内に蓋がセットされた状態(ピストンJ1 の後退
位置、破線位置参照)では連通通路J3 は開口穴Aに連
通した状態になる。なお、図中符号J4 、J5 は、治具
Jで活性化接合金具Gを挟み込んだ際に治具Jと活性化
接合金具Gを密着させるためのOリングである。次に、
連通通路J3 からセルS内の真空引きを行ったのち、活
性化処理を施し、水素を高圧充填する。次に、ピストン
J1 を移動させて、蓋Bを開口穴Aに圧入する。この結
果、上述のように、セルS内が簡易密閉される。この状
態で、セルSを冷却し、内部の水素吸蔵合金を、高温合
金HMの水素吸蔵温度以下(例えば、4℃以下)に冷や
す。すると、セルS内に充填された水素が水素吸蔵合金
に吸蔵された状態になり、セルS内の圧力が大気圧と同
じになる。
A method for filling hydrogen into the cell S will be described with reference to FIG. First, as shown in FIG. 1A, the connecting portion S5 to which the activation bonding metal G is bonded is sandwiched between jigs J. The jig J is provided with a press-fitting piston J1 for press-fitting the lid B into the opening A.
The lid B is set inside the lid insertion passage J2 at the retracted position of the piston J1. The lid insertion passage J2 is provided with a communication passage J3 communicating with the opening A. When the lid is set in the lid insertion passage J2 (the retreat position of the piston J1; see the broken line position), the communication passage J3 is provided. Is in communication with the opening A. Reference numerals J4 and J5 in the figure denote O-rings for bringing the jig J into close contact with the activation joint G when the jig J sandwiches the activation joint G therebetween. next,
After the inside of the cell S is evacuated from the communication passage J3, an activation process is performed and hydrogen is filled at a high pressure. Next, the piston J1 is moved, and the lid B is pressed into the opening A. As a result, the inside of the cell S is simply sealed as described above. In this state, the cell S is cooled to cool the internal hydrogen storage alloy to a temperature equal to or lower than the hydrogen storage temperature of the high-temperature alloy HM (for example, 4 ° C. or lower). Then, the hydrogen filled in the cell S is stored in the hydrogen storage alloy, and the pressure in the cell S becomes equal to the atmospheric pressure.

【0018】この状態でセルSを治具Jから外し、外筒
A1 と内筒B1 との重なり代を溶接技術によって接合す
る。外筒A1 と内筒B1 との重なり代が熱容量の大きい
ステンレス製であり、溶接の熱が内部に伝達し難いとと
もに、セルS内に充填された水素が水素吸蔵合金に吸蔵
されて内部に充満する水素量が減少しているため、溶接
時の引火が防止される。また、この溶接時は、セルS内
の圧力が大気圧と同じであるため、溶接が完了する前に
セルSから水素が漏れたり、逆にセルS内に空気が進入
しない。つまり、治具Jを外してから溶接が完了する前
の水素漏れ等を防ぐことができ、水素吸蔵合金の水素放
出と吸蔵の能力低下を防ぐことができる。
In this state, the cell S is removed from the jig J, and the overlap between the outer cylinder A1 and the inner cylinder B1 is joined by a welding technique. The overlap between the outer cylinder A1 and the inner cylinder B1 is made of stainless steel having a large heat capacity, so that the heat of welding is difficult to be transferred to the inside, and the hydrogen filled in the cell S is occluded by the hydrogen storage alloy to fill the inside. Since the amount of generated hydrogen is reduced, ignition during welding is prevented. At the time of this welding, since the pressure in the cell S is the same as the atmospheric pressure, hydrogen does not leak from the cell S before welding is completed, and conversely, air does not enter the cell S. That is, it is possible to prevent a hydrogen leak or the like before the welding is completed after the jig J is removed, and it is possible to prevent a reduction in the hydrogen release and storage capacity of the hydrogen storage alloy.

【0019】各上、中、下段容器S1 、S2 、S3 の内
部にはフィン(図示しない)が挿入され、対向面とフィ
ンとがろう付けにより接合されて、水素吸蔵合金から容
器へ伝える伝熱量を増大させている。また、フィンは容
器の対向面に亘って配置されてフィンと対向面が接合さ
れているため、各容器の内部に封入された水素吸蔵合金
に水素を付与するための真空引きや水素の高圧充填を行
ったり、また、サイクル作動中の高圧の水素平衡圧力に
よって高圧に容器内が上昇しても、接合されたフィンが
容器の対向面の距離を一定に保ち、容器の変形を抑えて
いる。
Fins (not shown) are inserted into the upper, middle, and lower vessels S1, S2, and S3, and the opposed surfaces and the fins are joined by brazing to transfer heat from the hydrogen storage alloy to the vessels. Is increasing. In addition, since the fins are arranged over the opposing surface of the container and the fins and the opposing surface are joined, the fins are evacuated or hydrogen is charged at a high pressure to apply hydrogen to the hydrogen storage alloy sealed in each container. In addition, even if the pressure inside the vessel rises due to the high hydrogen equilibrium pressure during the cycle operation, the bonded fins keep the distance between the opposed surfaces of the vessel constant and suppress the deformation of the vessel.

【0020】また、偏平形状を呈する各上、中、下段容
器S1 、S2 、S3 は、回転軸8の周囲に巻き付けられ
た状態に設けられている。このため、各容器の一方の面
が凸状に湾曲するとともに、対向する他方の面が凹状に
湾曲している。このように、各容器の対向面を同方向に
湾曲して設けることにより、真空引き時の低圧下、およ
び水素充填時、サイクル作動時の高圧の水素平衡圧力の
高圧下において、各容器の対向面に引っ張り応力と圧縮
応力がかかり、この結果からも各容器の変形が小さく抑
えられる。
The upper, middle, and lower containers S1, S2, S3 each having a flat shape are provided so as to be wound around the rotating shaft 8. Therefore, one surface of each container is curved in a convex shape, and the other opposing surface is curved in a concave shape. In this manner, by providing the facing surfaces of the containers in the same direction, the containers face each other under a low pressure at the time of evacuation, and at a high hydrogen equilibrium pressure at the time of hydrogen filling and high pressure during the cycle operation. A tensile stress and a compressive stress are applied to the surface, and from this result, the deformation of each container is suppressed to a small value.

【0021】複数のセルSは、略円柱形状を呈する回転
軸8の周囲に複数のセルSの各連結部S5 が固定されて
いる。この回転軸8は、図示しないセル移動手段によっ
て回転駆動されるもので、このセル移動手段は、例えば
モータで、ゆっくりと連続的に複数のセルSを回転させ
るものである(例えば、1時間に20周ほど)。
In each of the plurality of cells S, each connecting portion S5 of the plurality of cells S is fixed around a rotary shaft 8 having a substantially cylindrical shape. The rotating shaft 8 is driven to rotate by cell moving means (not shown). The cell moving means rotates a plurality of cells S slowly and continuously by, for example, a motor (for example, in one hour). 20 laps).

【0022】各上、中、下段容器S1 、S2 、S3 は、
図3に示すようにデバイダー9によって覆われている。
このデバイダー9は、熱媒体を各容器に沿って流すこと
によって熱媒体の放熱ロスを減少させるとともに、熱媒
体の流れを整流させて流速を速くして熱交換量を増大さ
せることで熱交換効率をアップさせるもので、さらにセ
ルSが後述する水素駆動部α→第1冷熱出力部β→第2
冷熱出力部γに移動する境界において容器の対向面が異
なった熱媒体に触れる不具合を回避して熱交換効率をア
ップさせるものである。
Each of the upper, middle and lower vessels S1, S2, S3 is
It is covered by a divider 9 as shown in FIG.
The divider 9 reduces heat dissipation loss of the heat medium by flowing the heat medium along each container, and rectifies the flow of the heat medium to increase the flow rate and increase the heat exchange efficiency, thereby increasing the heat exchange efficiency. And the cell S further includes a hydrogen driving section α → first cooling / heating section β → second section.
The purpose is to avoid the problem that the opposing surface of the container comes into contact with a different heat medium at the boundary moving to the cold heat output portion γ to increase the heat exchange efficiency.

【0023】このデバイダー9は、各上、中、下段容器
S1 、S2 、S3 を覆うもので、断熱性に優れた樹脂材
料等によって設けられている。このデバイダー9の内面
には、熱媒体を容器に沿って流す熱媒体通路9aが形成
されている。この熱媒体通路9aは、略溝状に設けられ
たもので、熱媒体の流れを整流させて流速を速くするた
めに、浅く設けられている。また、デバイダー9の外端
と中心側上部には、熱媒体通路9aへ熱媒体の供給を行
うとともに、熱媒体通路9aを通過した熱媒体を排出す
る給排口9bが設けられている。なお、この実施例で
は、外端の給排口9bが熱媒体を熱媒体通路9aへ供給
する供給口であり、中心側の給排口9bが熱媒体通路9
aを通過した熱媒体を外部へ排出する排出口である。
The divider 9 covers the upper, middle and lower containers S1, S2 and S3, and is made of a resin material having excellent heat insulation. On the inner surface of the divider 9, a heat medium passage 9a for flowing the heat medium along the container is formed. The heat medium passage 9a is provided in a substantially groove shape and is provided shallowly in order to rectify the flow of the heat medium and increase the flow velocity. In addition, a supply / discharge port 9b for supplying the heat medium to the heat medium passage 9a and discharging the heat medium passing through the heat medium passage 9a is provided at the outer end and the upper portion on the center side of the divider 9. In this embodiment, the supply / discharge port 9b at the outer end is a supply port for supplying the heat medium to the heat medium passage 9a, and the supply / discharge port 9b on the center side is the heat medium passage 9a.
This is a discharge port for discharging the heat medium that has passed through a to the outside.

【0024】2段式サイクルのヒートポンプサイクル2
は、図5に示すように、上段容器S1 内の水素を強制的
に下段容器S3 内に移動させる水素駆動部αと、下段容
器S3 内に移動した水素を中段容器S2 に移動させる第
1冷熱出力部βと、中段容器S2 内に移動した水素を上
段容器S1 に移動させる第2冷熱出力部γとを備える。
なお、水素駆動部α、第1冷熱出力部β、第2冷熱出力
部γは、略120°間隔に設けられたもので、後述する
凹部M1 、M2 の配置によって区画されている。
Heat pump cycle 2 of two-stage cycle
As shown in FIG. 5, a hydrogen driver α for forcibly moving the hydrogen in the upper vessel S1 into the lower vessel S3, and a first cooling device for moving the hydrogen in the lower vessel S3 to the middle vessel S2. An output section β, and a second cooling output section γ for moving the hydrogen moved into the middle vessel S2 to the upper vessel S1.
The hydrogen drive section α, the first cooling output section β, and the second cooling output section γ are provided at intervals of approximately 120 °, and are defined by the arrangement of concave portions M1 and M2 described later.

【0025】水素駆動部αは、上段容器S1 と接触する
加熱水(例えば80℃ほど)が供給される加熱域α1 、
中段容器S2 と接触する昇圧水(例えば56℃ほど)が
供給される中段昇圧域α2 、下段容器S3 と接触する放
熱水(例えば28℃ほど)が供給される下段放熱域α3
を備える。第1冷熱出力部βは、上段容器S1 と接触す
る昇圧水(例えば58℃ほど)が供給される上段昇圧域
β1 、中段容器S2 と接触する放熱水(例えば28℃ほ
ど)が供給される中段放熱域β2 、下段容器S3 と接触
した冷熱出力水(例えば7℃ほど)が出力される下段冷
熱出力域β3 を備える。第2冷熱出力部γは、上段容器
S1 と接触する放熱水(例えば28℃ほど)が供給され
る上段放熱域γ1 、中段容器S2 と接触する冷熱出力水
(例えば7℃ほど)が出力される中段冷熱出力域γ2 を
備える。なお、第2冷熱出力部γにおいて下段容器S3
と接触する熱媒体の温度は不問であり、その部分を不問
域γ3 とする。
The hydrogen driving section α has a heating zone α 1 to which heated water (for example, about 80 ° C.) which comes into contact with the upper vessel S 1 is supplied.
Middle-stage pressurized region α2 to which pressurized water (for example, about 56 ° C.) contacting with middle container S2 is supplied, and lower-stage heat-dissipating region α3 to which facility water (for example, approximately 28 ° C.) to be contacted with lower container S3 is supplied.
Is provided. The first cooling / heat output section β is provided with an upper boosting region β1 to which pressurized water (for example, at about 58 ° C.) that comes into contact with the upper vessel S1, and a middle stage to be supplied with facility water (for example, at about 28 ° C.) that comes into contact with the middle vessel S2 A heat radiation region β2 and a lower cooling power output region β3 for outputting cooling water (for example, about 7 ° C.) in contact with the lower container S3 are provided. The second cooling output section γ outputs an upper radiating region γ1 to which radiating water (for example, about 28 ° C.) that comes into contact with the upper vessel S1 and a cold output water (for example, about 7 ° C.) that contacts the middle vessel S2. Equipped with a middle cooling power output area γ2. In the second cooling output section γ, the lower vessel S3
The temperature of the heat medium that comes into contact with is not questionable, and that portion is referred to as an unquestionable area γ3.

【0026】そして、図示しないセル移動手段により回
転軸8が回転することにより、上段容器S1 の群が加熱
域α1 →上段昇圧域β1 →上段放熱域γ1 を循環するも
のであり、中段容器S2 の群が中段昇圧域α2 →中段放
熱域β2 →中段冷熱出力域γ2 を循環するものであり、
下段容器S3 の群が下段放熱域α3 →下段冷熱出力域β
3 →不問域γ3 を循環するものである。
When the rotating shaft 8 is rotated by a cell moving means (not shown), the group of upper vessels S1 circulates from the heating zone α1, the upper pressure boosting zone β1, and the upper heat radiation area γ1. The group circulates in the middle step-up area α2 → middle heat radiation area β2 → middle cooling output area γ2,
The group of lower vessels S3 is lower heat radiation area α3 → lower heat output area β
3 → circulates in the unquestioned area γ3.

【0027】上段容器S1 の群は、上段水槽K1 に覆わ
れ、内部に加熱域α1 、上段昇圧域β1 、上段放熱域γ
1 が設けられている。また、中段容器S2 の群は、中段
水槽K2 に覆われ、内部に中段昇圧域α2 、中段放熱域
β2 、中段冷熱出力域γ2 が設けられている。さらに、
下段容器S3 の群は、下段水槽K3 に覆われ、内部に下
段放熱域α3 、下段冷熱出力域β3 、不問域γ3 が設け
られている。
The group of upper vessels S1 is covered with an upper water tank K1 and has a heating zone α1, an upper boost zone β1, and an upper heat radiation zone γ.
1 is provided. The group of middle vessels S2 is covered with a middle water tank K2, and is provided with a middle pressure rising area α2, a middle heat radiation area β2, and a middle cooling power output area γ2. further,
The group of lower vessels S3 is covered by a lower water tank K3, and has a lower heat radiation area α3, a lower cooling / heat output area β3, and a non-interest area γ3.

【0028】上段水槽K1 、中段水槽K2 、下段水槽K
3 は、連続的に繋がって設けられた水槽K(例えば、樹
脂製の容器)で、この水槽Kには、図6に示すように、
上、中、下段水槽K1 、K2 、K3 内に熱媒体を給排す
る16本の熱媒体配管10が接続されている。具体的に
は、上段水槽K1 には加熱域α1 、上段昇圧域β1 、上
段放熱域γ1 のための6本の熱媒体配管10が接続さ
れ、中段水槽K2 には中段昇圧域α2 、中段放熱域β2
、中段冷熱出力域γ2 のための6本の熱媒体配管10
が接続され、下段水槽K3 には下段放熱域α3 、下段冷
熱出力域β3 のための4本の熱媒体配管10が接続され
ている。
Upper water tank K1, middle water tank K2, lower water tank K
3 is a water tank K (for example, a container made of resin) provided continuously and connected to the water tank K, as shown in FIG.
Sixteen heat medium pipes 10 for supplying and discharging the heat medium are connected to the upper, middle, and lower water tanks K1, K2, and K3. Specifically, six heating medium pipes 10 are connected to the upper water tank K1 for the heating zone α1, the upper boosting zone β1, and the upper heat dissipation zone γ1, and the middle water tank K2 is connected to the middle boosting zone α2 and the middle heat dissipation zone. β2
, 6 heat medium pipes 10 for the middle cooling power output area γ2
Are connected to the lower water tank K3, and four heat medium pipes 10 for a lower heat radiation area α3 and a lower cooling power output area β3 are connected.

【0029】上、中、下段水槽K1 、K2 、K3 には、
熱媒体配管10によって供給される熱媒体を、水素駆動
部α、第1冷熱出力部β、第2冷熱出力部γの上、中、
下各域内のデバイダー9の外端の給排口9bに導く凹部
M1 が設けられるとともに、中心側の給排口9bから排
出される熱媒体を収集させる凹部M2 が設けられてお
り、この凹部M1 、M2 の配置および長さにより略12
0°間隔の水素駆動部α、第1冷熱出力部β、第2冷熱
出力部γが決定される。各デバイダー9に設けられた給
排口9bは、凹部M1 、M2 が設けられていない水槽K
の内壁に接触、あるいは接近して回転し、凹部M1 、M
2 が設けられていない水槽Kの内壁が水素駆動部α、第
1冷熱出力部β、第2冷熱出力部γの仕切りとなってい
る。なお、この実施例では、図5に示すように熱媒体
を、外側の給排口9b→熱媒体通路9a→中心側の給排
口9bに流す例を示すが、逆に中心側から外側へ流して
も良い。
The upper, middle, and lower water tanks K1, K2, and K3 include:
The heating medium supplied by the heating medium pipe 10 is supplied to the hydrogen driving unit α, the first cooling output unit β, the second cooling output unit γ,
A concave portion M1 is provided to lead to the supply / discharge port 9b at the outer end of the divider 9 in each lower region, and a concave portion M2 for collecting the heat medium discharged from the central supply / discharge port 9b is provided. , M2 depending on the arrangement and length.
The hydrogen driving unit α, the first cooling / cooling output unit β, and the second cooling / cooling output unit γ at 0 ° intervals are determined. The supply / drain port 9b provided in each divider 9 is provided with a water tank K having no concave portions M1, M2.
Rotating in contact with or close to the inner wall of the
The inner wall of the water tank K in which 2 is not provided serves as a partition between the hydrogen driving section α, the first cooling output section β, and the second cooling output section γ. In this embodiment, as shown in FIG. 5, an example is shown in which the heat medium flows from the outer supply / discharge port 9b → the heat medium passage 9a → the center supply / discharge port 9b. You may shed.

【0030】(ヒートポンプサイクル2における上記以
外の構成部品の説明)図4に示す符号11は、上段昇圧
域β1 と中段昇圧域α2 とに昇圧水を循環させる昇圧水
循環路で、途中に設けられた昇圧水循環ポンプP1 ’に
よって昇圧水が循環する。なお、昇圧水は、加熱域α1
で温度上昇した上段容器S1 、上段水槽K1 からの伝熱
により温度上昇した水を用いたもので、ヒートポンプサ
イクル2の作動中、上段昇圧域β1 の昇圧水の温度は例
えば58℃程で、中段昇圧域α2 の昇圧水の温度は例え
ば56℃程になる。
(Explanation of Other Components in Heat Pump Cycle 2) Reference numeral 11 shown in FIG. 4 is a pressurized water circuit for circulating pressurized water in the upper pressure step region β1 and the middle pressure step region α2, and is provided in the middle. Pressurized water is circulated by the pressurized water circulation pump P1 '. Note that the pressurized water is supplied to the heating area α1
The temperature of the pressurized water in the upper pressurized region β1 is, for example, about 58 ° C. during the operation of the heat pump cycle 2, and the temperature of the pressurized water is about 58 ° C. The temperature of the pressurized water in the pressurized region α2 is, for example, about 56 ° C.

【0031】(燃焼装置3の説明)本実施例の燃焼装置
3は、燃料であるガスを燃焼して熱を発生させ、発生し
た熱によって加熱水を加熱するガス燃焼装置を用いたも
ので、ガスの燃焼を行うガスバーナ12、このガスバー
ナ12へガスの供給を行うガス量調節弁13およびガス
開閉弁14を備えたガス供給回路15、ガスバーナ12
へ燃焼用の空気を供給する燃焼ファン16、ガスの燃焼
熱と加熱水とを熱交換する熱交換器17等から構成され
る。そして、ガスバーナ12のガス燃焼で得られた熱
で、加熱水を例えば80℃程に加熱し、加熱された加熱
水を加熱水循環ポンプP1 を備えた加熱水循環路18を
介して加熱域α1 に供給するものである。なお、本実施
例の加熱水循環ポンプP1 は、昇圧水循環ポンプP1 ’
を駆動する兼用のモータによって駆動されるタンデムポ
ンプである。このため、燃焼装置3から加熱水がヒート
ポンプサイクル2に供給される際は、昇圧水も循環作動
するように設けられている。
(Explanation of Combustion Apparatus 3) The combustion apparatus 3 of this embodiment uses a gas combustion apparatus that generates heat by burning gas as a fuel and heats heated water by the generated heat. A gas burner 12 for burning gas, a gas supply circuit 15 including a gas amount control valve 13 and a gas on-off valve 14 for supplying gas to the gas burner 12, a gas burner 12
It comprises a combustion fan 16 for supplying combustion air to the heat exchanger, a heat exchanger 17 for exchanging heat between gas combustion heat and heating water, and the like. Then, the heating water is heated to, for example, about 80 ° C. by the heat obtained by the gas combustion of the gas burner 12, and the heated heating water is supplied to the heating zone α1 via the heating water circulation path 18 provided with the heating water circulation pump P1. Is what you do. The heated water circulation pump P1 of this embodiment is the same as the pressurized water circulation pump P1 '
Is a tandem pump driven by a dual-purpose motor. Therefore, when the heating water is supplied from the combustion device 3 to the heat pump cycle 2, the pressurized water is also provided so as to circulate.

【0032】(室内空調機5の説明)室内空調機5は、
上述のように室内に配置されるもので、内部に室内熱交
換器19、この室内熱交換器19に供給される冷熱出力
水と室内空気とを強制的に熱交換し、熱交換後の空気を
室内に吹き出させるための室内ファン20を備える。室
内熱交換器19には、下段冷熱出力域β3 および中段冷
熱出力域γ2 から供給される冷熱出力水を循環させる冷
熱出力水循環路21が接続され、この冷熱出力水循環路
21の途中(室外機7内)には、冷熱出力水を循環させ
る冷熱出力水ポンプP2 が設けられている。
(Explanation of the indoor air conditioner 5)
As described above, the indoor heat exchanger 19 is provided inside the indoor heat exchanger 19, and the cold output water supplied to the indoor heat exchanger 19 and the indoor air are forcibly exchanged heat, and the air after the heat exchange Indoor fan 20 for blowing air into the room. The indoor heat exchanger 19 is connected to a cold output water circulation path 21 for circulating the cold output water supplied from the lower cooling output area β3 and the middle cooling output area γ2. (Inside) is provided with a chilled water output pump P2 for circulating chilled output water.

【0033】(放熱水冷却手段4の説明)放熱水冷却手
段4は、水冷開放型の冷却塔であり、この放熱水冷却手
段4によって冷却された放熱水は、放熱水循環ポンプP
3 を備えた放熱水循環路22によって下段放熱域α3 、
中段放熱域β2 、上段放熱域γ1 に供給される。放熱水
冷却手段4は、下段放熱域α3 、中段放熱域β2 、上段
放熱域γ1 を通過した放熱水を、上方から下方へ流し、
流れている間に外気と熱交換して放熱するとともに、流
れている間に一部蒸発させて、蒸発時に流れている放熱
水から気化熱を奪い、流れている放熱水を冷却するもの
である。また、この放熱水冷却手段4は、図示しない放
熱ファンを備え、この放熱ファンの生じる空気流によっ
て放熱水の蒸発および冷却を促進するように設けられて
いる。なお、この実施例では、放熱水冷却手段4として
水冷開放型の冷却塔を示したが、放熱水(放熱用の熱媒
体)が空気に触れずに熱交換する水冷密閉型あるいは空
冷密閉型の冷却手段を用いても良い。
(Explanation of the facility water cooling means 4) The facility water cooling means 4 is a water cooling open type cooling tower, and the facility water cooled by the facility water cooling means 4 is a facility water circulation pump P
3, the lower heat radiation area α3,
The heat is supplied to the middle heat radiation area β2 and the upper heat radiation area γ1. The facility water cooling means 4 allows the facility water flowing through the lower heat radiation area α3, the middle heat radiation area β2, and the upper heat radiation area γ1 to flow downward from above,
While exchanging heat with the outside air during the flow to radiate heat, it also partially evaporates during the flow, deprives the radiating water flowing during evaporation of heat of vaporization, and cools the flowing radiating water. . The radiating water cooling means 4 includes a radiating fan (not shown), and is provided so as to promote evaporation and cooling of the radiating water by an air flow generated by the radiating fan. In this embodiment, a water-cooled open-type cooling tower is shown as the facility water cooling means 4. However, a water-cooled hermetic type or an air-cooled hermetic type in which facility water (heat medium for heat radiation) exchanges heat without contacting air. Cooling means may be used.

【0034】ここで、上記に示す加熱水循環路18、冷
熱出力水循環路21および放熱水循環路22は、それぞ
れシスターンT1 、T2 、T3 を備えており、シスター
ンT1 、T2 、T3 内の水位が所定水位以下に低下する
と、それぞれに設けられた給水バルブT4 、T5 、T6
が開き、給水管23から供給される水道水をシスターン
T1 、T2 、T3 内に補充するように設けられている。
また、ヒートポンプサイクル2の下部にはドレンパンP
が配置され、ヒートポンプサイクル2に発生したドレン
水を排水管24から排水するように設けられている。な
お、放熱水冷却手段4で溢れた水も排水管24から排水
するように設けられている。
Here, the above-mentioned heated water circulation path 18, cold heat output water circulation path 21 and facility water circulation path 22 are provided with cisterns T1, T2 and T3, respectively, and the water levels in the cisterns T1, T2 and T3 are at predetermined water levels. When it falls below, the water supply valves T4, T5, T6 provided respectively.
Is opened to supply tap water supplied from the water supply pipe 23 into the cisterns T1, T2, and T3.
A drain pan P is provided at the lower part of the heat pump cycle 2.
Is disposed to drain the drain water generated in the heat pump cycle 2 from the drain pipe 24. The water overflowing from the facility water cooling means 4 is also drained from the drain pipe 24.

【0035】(制御装置6の説明)制御装置6は、室内
空調機5に設けられたコントローラ(図示しない)から
の操作指示や、複数設けられた各センサの入力信号に応
じて、上述の加熱水循環ポンプP1 (昇圧水循環ポンプ
P1 ’)、冷熱出力水ポンプP2 、放熱水循環ポンプP
3 、給水バルブT4 、T5 、T6 、放熱水冷却手段4の
放熱ファンなどの電気機能部品、および燃焼装置3の電
気機能部品(燃焼ファン16、ガス量調節弁13、ガス
開閉弁14、図示しない点火装置等)を制御するととも
に、室内空調機5に室内ファン20の作動指示を与える
ものである。
(Explanation of the control device 6) The control device 6 responds to an operation instruction from a controller (not shown) provided in the indoor air conditioner 5 or an input signal of each of a plurality of sensors to perform the above-described heating. Water circulating pump P1 (Pressurized water circulating pump P1 '), Cooling / heat output water pump P2, Facility water circulating pump P
3, electric function parts such as water supply valves T4, T5, T6, heat radiation fan of facility water cooling means 4, and electric function parts of combustion device 3 (combustion fan 16, gas amount control valve 13, gas on-off valve 14, not shown) In addition to controlling the ignition device, the operation instruction of the indoor fan 20 is given to the indoor air conditioner 5.

【0036】(冷房運転の作動説明)上記の冷房装置1
による冷房運転の作動を、図7のPT冷凍サイクル線図
を参照して説明する。冷房運転が室内空調機5のコント
ローラによって指示されると、制御装置6によって、燃
焼装置3、セル移動手段、放熱ファンおよび加熱水循環
ポンプP1 (昇圧水循環ポンプP1 ’)、冷熱出力水ポ
ンプP2 、放熱水循環ポンプP3 が作動するとともに、
冷房が指示された室内空調機5の室内ファン20をONす
る。
(Explanation of Cooling Operation) The cooling device 1 described above
The operation of the cooling operation according to the above will be described with reference to the PT refrigeration cycle diagram of FIG. When the cooling operation is instructed by the controller of the indoor air conditioner 5, the control device 6 controls the combustion device 3, the cell moving means, the radiating fan and the heated water circulating pump P1 (pressurized water circulating pump P1 '), the cooling water output water pump P2, and the radiating heat. When the water circulation pump P3 operates,
The indoor fan 20 of the indoor air conditioner 5 for which cooling is instructed is turned on.

【0037】セル移動手段によって、複数のセルSがゆ
っくりと連続的に回転移動する。これによって、複数の
セルSが、水素駆動部α→第1冷熱出力部β→第2冷熱
出力部γの順で移動する。つまり、各上段容器S1 が加
熱域α1 →上段昇圧域β1 →上段放熱域γ1 の順で移動
し、各中段容器S2 が中段昇圧域α2 →中段放熱域β2
→中段冷熱出力域γ2 の順で移動し、各下段容器S3 が
下段放熱域α3 →下段冷熱出力域β3 →不問域γ3 の順
で移動する。
The plurality of cells S are slowly and continuously rotated by the cell moving means. As a result, the plurality of cells S move in the order of the hydrogen drive unit α → the first cold output unit β → the second cold output unit γ. That is, each upper vessel S1 moves in the order of the heating zone α1, the upper pressure boosting area β1, and the upper heat radiation area γ1, and each middle vessel S2 moves in the middle pressure boosting area α2 → the middle heat radiation area β2.
→ Movement in the order of the middle cooling power output area γ2, and each lower vessel S3 moves in the order of the lower heat radiation area α3 → the lower cooling power output area β3 → the unrelated area γ3.

【0038】水素駆動部αへ進入したセルSは、上段容
器S1 が加熱水に触れ、中段容器S2 が昇圧水に触れ、
下段容器S3 が放熱水に触れる。上段容器S1 が加熱水
(80℃)に触れることにより、上段容器S1 の内圧が
上昇し、高温合金HMが水素を放出する。中段容器S2
が昇圧水(56℃)に触れることにより、中段容器S2
の内圧が中温合金MMが水素を吸蔵しない圧力まで上昇
する。下段容器S3 が放熱水(28℃)に触れることに
より、下段容器S3 の内圧が下がり、低温合金LMが水
素を吸蔵する。
In the cell S that has entered the hydrogen drive unit α, the upper vessel S1 contacts heated water, the middle vessel S2 contacts pressurized water,
The lower container S3 comes into contact with the facility water. When the upper vessel S1 comes into contact with heated water (80 ° C.), the internal pressure of the upper vessel S1 increases, and the high-temperature alloy HM releases hydrogen. Middle container S2
Comes into contact with the pressurized water (56 ° C), the middle vessel S2
Is increased to a pressure at which the intermediate temperature alloy MM does not absorb hydrogen. When the lower vessel S3 comes into contact with facility water (28 ° C.), the internal pressure of the lower vessel S3 decreases, and the low-temperature alloy LM absorbs hydrogen.

【0039】このように、上段容器S1 が加熱域α1 で
加熱水に触れ、中段容器S2 が中段昇圧域α2 で昇圧水
に触れ、下段容器S3 が下段放熱域α3 の放熱水に触れ
ることにより、上段容器S1 内が80℃:1.0MP
a、中段容器S2 内が56℃:1.0MPa、下段容器
S3 内が28℃:0.9MPaとなり、上段容器S1 の
高温合金HMが水素を放出し(図7の)、下段容器S
3 の低温合金LMが水素を吸蔵する(図7の)。な
お、中段容器S2 は昇圧水によって加熱されて内圧が高
く、中温合金MMは水素の吸蔵は行わない。そして、水
素駆動部αを通過したセルSは、その後第1冷熱出力部
βへ移動する。
As described above, the upper vessel S1 touches the heating water in the heating zone α1, the middle vessel S2 touches the pressurized water in the middle boosting area α2, and the lower vessel S3 touches the radiating water in the lower heat dissipation area α3. 80 ° C: 1.0MP in the upper vessel S1
a, the temperature in the middle vessel S2 is 56 ° C .: 1.0 MPa, the temperature in the lower vessel S3 is 28 ° C .: 0.9 MPa, the high-temperature alloy HM in the upper vessel S1 releases hydrogen (FIG. 7), and the lower vessel S
The low temperature alloy LM of No. 3 absorbs hydrogen (of FIG. 7). The middle vessel S2 is heated by the pressurized water and has a high internal pressure, and the middle temperature alloy MM does not occlude hydrogen. Then, the cell S that has passed through the hydrogen driving unit α moves to the first cooling / heating unit β.

【0040】第1冷熱出力部βへ進入したセルSは、上
段容器S1 が昇圧水に触れ、中段容器S2 が放熱水に触
れ、下段容器S3 が冷熱出力水に触れる。上段容器S1
が昇圧水(58℃)に触れることにより、上段容器S1
の内圧が高温合金HMが水素を吸蔵しない圧力まで上昇
する。中段容器S2 が放熱水(28℃)に触れることに
より、中段容器S2 の内圧が下がり、中温合金MMが水
素を吸蔵し、下段容器S3 の低温合金LMが水素を放出
する。低温合金LMが水素を放出するため、下段容器S
3 内で吸熱が生じ、下段容器S3 に触れる冷熱出力水が
例えば入水時に13℃のものが7℃まで冷やされる。な
お、低温合金LMは、冷熱出力水が13℃くらいでは、
下段容器S3 の内圧が中段容器S2 の内圧より高くなる
ように設けられている。
In the cell S that has entered the first cold output section β, the upper vessel S1 contacts the pressurized water, the middle vessel S2 contacts the facility water, and the lower vessel S3 contacts the cold output water. Upper container S1
Comes into contact with the pressurized water (58 ° C), so that the upper vessel S1
Is increased to a pressure at which the high-temperature alloy HM does not absorb hydrogen. When the middle vessel S2 comes into contact with facility water (28 ° C.), the internal pressure of the middle vessel S2 decreases, the middle temperature alloy MM absorbs hydrogen, and the low temperature alloy LM of the lower vessel S3 releases hydrogen. Since the low-temperature alloy LM releases hydrogen, the lower vessel S
Endothermic occurs in 3 and the cold output water coming into contact with the lower vessel S3 is cooled to 7 ° C, for example, when the temperature is 13 ° C at the time of entering water. The low-temperature alloy LM has a cooling output water of about 13 ° C.
The inner pressure of the lower vessel S3 is provided to be higher than the inner pressure of the middle vessel S2.

【0041】このように、上段容器S1 が上段昇圧域β
1 で昇圧水に触れ、中段容器S2 が中段放熱域β2 で放
熱水に触れ、下段容器S3 が下段冷熱出力域β3 の冷熱
出力水に触れることにより、上段容器S1 内が58℃:
0.5MPa、中段容器S2内が28℃:0.4MP
a、下段容器S3 内が13℃:0.5MPaとなり、下
段容器S3 の低温合金LMが水素を放出し(図7の
)、中段容器S2 の中温合金MMが水素を吸蔵する
(図7の)。下段容器S3 の低温合金LMが水素を放
出する際、吸熱作用により下段容器S3 に触れる冷熱出
力水から熱を奪い冷熱出力水の温度を低下させる。な
お、上段容器S1 は、昇圧水によって加熱されて内圧が
高く、高温合金HMは水素の吸蔵は行わない。そして、
第1冷熱出力部βを通過したセルSは、その後第2冷熱
出力部γへ移動する。
As described above, the upper vessel S1 is placed in the upper pressure step-up region β.
1 touches the pressurized water, the middle vessel S2 touches the facility water in the middle heat radiation area β2, and the lower vessel S3 touches the cold output water in the lower cold output area β3, so that the inside of the upper vessel S1 is 58 ° C .:
0.5MPa, 28 ℃ in the middle container S2: 0.4MP
a, The temperature in the lower vessel S3 is 13 ° C .: 0.5 MPa, the low-temperature alloy LM in the lower vessel S3 releases hydrogen (FIG. 7), and the medium-temperature alloy MM in the middle vessel S2 absorbs hydrogen (FIG. 7). . When the low-temperature alloy LM in the lower vessel S3 releases hydrogen, heat is taken from the cold output water that contacts the lower vessel S3 by an endothermic action to lower the temperature of the cold output water. The upper vessel S1 is heated by pressurized water and has a high internal pressure, and the high-temperature alloy HM does not occlude hydrogen. And
The cell S that has passed through the first cooling output unit β moves to the second cooling output unit γ.

【0042】第2冷熱出力部γへ進入したセルSは、上
段容器S1 が放熱水に触れ、中段容器S2 が冷熱出力水
に触れ、下段容器S3 が不問水に触れる。上段容器S1
が放熱水(28℃)に触れることにより、上段容器S1
の内圧が下がり、高温合金HMが水素を吸蔵し、中段容
器S2 の中温合金MMが水素を放出する。中温合金MM
が水素を放出するため、中段容器S2 内で吸熱が生じ、
中段容器S2 に触れる冷熱出力水が例えば入水時に13
℃のものが7℃まで冷やされる。なお、中温合金MM
は、冷熱出力水が13℃くらいでは、中段容器S2 の内
圧が上段容器S1 の内圧より高くなるように設けられて
いる。
In the cell S that has entered the second cold output section γ, the upper vessel S1 contacts the facility water, the middle vessel S2 contacts the cold output water, and the lower vessel S3 contacts the unaffected water. Upper container S1
Comes into contact with facility water (28 ° C), causing the upper vessel S1
, The high temperature alloy HM absorbs hydrogen, and the medium temperature alloy MM in the middle vessel S2 releases hydrogen. Medium temperature alloy MM
Releases hydrogen, so that heat is absorbed in the middle vessel S2,
The cold output water that touches the middle vessel S2 is, for example, 13
° C is cooled to 7 ° C. In addition, medium temperature alloy MM
Is provided so that the internal pressure of the middle vessel S2 becomes higher than the internal pressure of the upper vessel S1 when the cold output water is about 13 ° C.

【0043】このように、上段容器S1 が上段放熱域γ
1 で放熱水に触れることにより、上段容器S1 内が28
℃:0.1MPa、中段容器S2 内が13℃:0.2M
Pa、下段容器S3 内は不問状態となり、中段容器S2
の中温合金MMが水素を放出し(図7の)、上段容器
S1 の高温合金HMが水素を吸蔵する(図7の)。中
段容器S2 の中温合金MMが水素を放出する際、吸熱作
用により中段容器S2に触れる冷熱出力水から熱を奪い
冷熱出力水の温度を低下させる。なお、下段容器S3 の
温度は無関係で、下段容器S3 の低温合金LMは水素の
吸蔵は行わない。そして、第2冷熱出力部γを通過した
セルSは、その後水素駆動部αへ移動する。
As described above, the upper vessel S1 is provided with the upper heat radiation area γ.
By contacting the facility water with 1, the inside of the upper container S1
° C: 0.1MPa, 13 ° C in the middle vessel S2: 0.2M
Pa, the interior of the lower container S3 is in the unquestioned state,
The middle temperature alloy MM releases hydrogen (FIG. 7), and the high temperature alloy HM of the upper vessel S1 stores hydrogen (FIG. 7). When the middle temperature alloy MM in the middle vessel S2 releases hydrogen, heat is taken from the cold output water that touches the middle vessel S2 by the endothermic action to lower the temperature of the cold output water. The temperature of the lower vessel S3 is irrelevant, and the low-temperature alloy LM of the lower vessel S3 does not occlude hydrogen. Then, the cell S that has passed through the second cooling output unit γ moves to the hydrogen driving unit α.

【0044】なお、ヒートポンプサイクル2の下段冷熱
出力域β3 および中段冷熱出力域γ2 で熱を奪われた低
温の冷熱出力水は、冷熱出力水循環路21を介して室内
空調機5の室内熱交換器19に供給されて、室内に吹き
出される空気と熱交換されて室内を冷房する。
The low-temperature cold output water whose heat has been deprived in the lower-stage cold output region β3 and the middle-stage cold output region γ2 of the heat pump cycle 2 is passed through the cold output water circulation path 21 to the indoor heat exchanger of the indoor air conditioner 5. The heat is exchanged with the air blown into the room, and the room is cooled.

【0045】〔実施例の効果〕開口穴Aに蓋Bを圧入し
て内部を簡易密封した後、開口穴Aに外筒A1 と蓋Bの
内筒B1 との重なり代の溶接を行うため、溶接時に漏れ
がない。特に、セルS内の圧力が大気圧と同じになって
から治具Jを外しているため、開口穴Aに蓋Bを圧入し
てから外筒A1 と内筒B1 との重なり代の溶接を行うま
での間に、セルSから水素が漏れたり、逆にセルS内に
空気が進入する不具合がなく、水素吸蔵合金の水素放出
と吸蔵の能力低下が防がれる。また、外筒A1 と内筒B
1 との重なり代が熱容量の大きいステンレス製であるた
め、溶接の熱が内部に伝達し難いとともに、溶接時はセ
ルSが冷却されてセルS内に充填された水素が水素吸蔵
合金に吸蔵されて内部に充満する水素量が減少してい
る。このように、溶接の熱が内部に伝わり難く、内部に
充満する水素量が少ないため、溶接時の引火が防止され
る。
[Effects of the Embodiment] After the lid B is press-fitted into the opening A and the inside is simply sealed, the overlap margin between the outer cylinder A1 and the inner cylinder B1 of the lid B is welded to the opening A. No leakage during welding. In particular, since the jig J is removed after the pressure in the cell S becomes equal to the atmospheric pressure, welding of the overlap margin between the outer cylinder A1 and the inner cylinder B1 is performed after the lid B is pressed into the opening A. Until the operation, hydrogen does not leak from the cell S, and conversely, air does not enter the cell S, so that the ability of the hydrogen storage alloy to release and occlude hydrogen is prevented. The outer cylinder A1 and the inner cylinder B
Since the overlap with 1 is made of stainless steel with a large heat capacity, it is difficult for the heat of welding to be transmitted to the inside, and at the time of welding, the cell S is cooled and the hydrogen filled in the cell S is stored in the hydrogen storage alloy. The amount of hydrogen filling the inside has decreased. As described above, the heat of welding is hardly transmitted to the inside, and the amount of hydrogen filling the inside is small, so that ignition during welding is prevented.

【0046】〔第2実施例〕図8はセルSの要部断面図
である。上記の第1実施例では、開口穴Aおよび外筒A
1 が形成された活性化接続金具GをセルSに接合して、
セルSに外筒A1 付きの開口穴Aを設けた例を示した
が、この実施例では、バーリング加工によって開口穴A
の外側に外筒A1 を設けたものである。
[Second Embodiment] FIG. 8 is a sectional view of a main part of a cell S. In the first embodiment, the opening A and the outer cylinder A
1 is joined to the cell S with the activation connection fitting G formed therein,
Although an example in which the cell S is provided with the opening A with the outer cylinder A1 is shown, in this embodiment, the opening A is formed by burring.
Is provided with an outer cylinder A1 outside.

【0047】〔第3実施例〕図9はセルSの要部断面図
である。本実施例は、連結部S5 の端部を開口穴A兼外
筒A1 として用い、真空引き、活性化処理、水素充填を
行い、蓋Bを圧入して外筒A1 と内筒B1 との重なり代
を溶接したものである。
[Third Embodiment] FIG. 9 is a sectional view of a main part of a cell S. In this embodiment, the end of the connecting portion S5 is used as the opening hole A and the outer cylinder A1, and the evacuation, the activation process, and the hydrogen filling are performed, and the lid B is pressed in to overlap the outer cylinder A1 with the inner cylinder B1. It is the result of welding.

【0048】〔第4実施例〕次に、本発明の水素吸蔵合
金を利用した熱利用システムを冷暖房装置に適用した第
4実施例を示す。なお、図10は本発明を適用した冷暖
房装置の概略構成図である。本実施例の冷暖房装置30
は、上記の実施例で示した冷房運転の実施に加え、暖房
運転時に、燃焼装置3で加熱された加熱水を室内空調機
5の室内熱交換器19に導いて室内暖房を行うもので、
第1実施例で示した加熱水循環路18と冷熱出力水循環
路21とを接続し、その接続部分に流路切替用の3つの
切替バルブV1 、V2 、V3 (冷房と暖房の切替バル
ブ)を設けたものである。なお、室内空調機5の他に、
床暖房マット、浴室乾燥機などに接続し、加熱水の供給
によって床暖房、浴室暖房などを行うように設けても良
い。
Fourth Embodiment Next, a fourth embodiment in which the heat utilization system using the hydrogen storage alloy of the present invention is applied to a cooling and heating device will be described. FIG. 10 is a schematic configuration diagram of a cooling and heating apparatus to which the present invention is applied. Cooling and heating device 30 of the present embodiment
In addition to performing the cooling operation described in the above embodiment, during the heating operation, the heating water heated by the combustion device 3 is guided to the indoor heat exchanger 19 of the indoor air conditioner 5 to perform indoor heating.
The heating water circulation path 18 and the cooling / heating output water circulation path 21 shown in the first embodiment are connected, and three switching valves V1, V2, V3 (switching valves for cooling and heating) for switching the flow paths are provided at the connection portion. It is a thing. In addition to the indoor air conditioner 5,
It may be connected to a floor heating mat, a bathroom dryer, or the like, and provided so as to perform floor heating, bathroom heating, or the like by supplying heated water.

【0049】〔第5実施例〕図11および図12は第5
実施例を示すもので、図11はセルSが固定されるタイ
プの冷房装置の概略構成図である。上記の実施例では、
複数のセルSを水槽K内で回転させることで各容器に触
れる熱媒体の種類を切り替える例を示したが、この第3
実施例では複数(この実施例では3つ)のセルSを固定
し、回転によって複数の熱媒体を切り替えて出力する回
転式の分配器40と、分配された複数の熱媒体を再び収
集して熱媒体源へ戻す収集器41とによって、デバイダ
ー9の内側の熱媒体通路9a(図12参照)に熱媒体の
種類を切り替えて供給するものである。なお、図12に
示すように、この第3実施例の各上、中、下段容器S1
、S2、S3 は、デバイダー9によって覆われるととも
に、デバイダー9はハウジング42に覆われており、デ
バイダー9とハウジング42との間には断熱材43が配
されている。
[Fifth Embodiment] FIGS. 11 and 12 show a fifth embodiment.
FIG. 11 is a schematic configuration diagram of a cooling device of a type in which a cell S is fixed, showing an embodiment. In the above example,
The example in which the type of the heat medium that touches each container is switched by rotating the plurality of cells S in the water tank K has been described.
In the embodiment, a plurality of (three in this embodiment) cells S are fixed, a rotary distributor 40 for switching and outputting a plurality of heat mediums by rotation, and a plurality of heat mediums distributed are collected again. The type of the heat medium is switched and supplied to the heat medium passage 9a (see FIG. 12) inside the divider 9 by the collector 41 returned to the heat medium source. As shown in FIG. 12, the upper, middle, and lower containers S1 of the third embodiment are different from each other.
, S2, S3 are covered by a divider 9, and the divider 9 is covered by a housing 42. A heat insulating material 43 is disposed between the divider 9 and the housing 42.

【0050】〔変形例〕上記の実施例では、各容器の周
囲にデバイダー9を設けた例を示したが、デバイダー9
を用いなくても良い。具体的な一例を示すと、図13に
示すように、各上、中、下段容器S1 、S2 、S3 を回
転軸8の回りに巻き付けた状態で配置するとともに、
上、中、下段容器S1 、S2 、S3 と、これに隣接する
他の上、中、下段容器S1 、S2 、S3 との間に略同幅
の隙間を設け、その隙間に熱媒体が流れるように設けて
も良い。このようにデバイダー9を廃止しても、水槽K
内の水素吸蔵合金の分布密度が高まる効果を有するとと
もに、隙間が同幅であるため、その隙間を流れる熱媒体
の流れが整流されて流れが速くなり、水素吸蔵合金と熱
交換を行う熱媒体の量が増えて熱交換効率を高めること
ができる。
[Modification] In the above embodiment, the example in which the divider 9 is provided around each container has been described.
May not be used. As a specific example, as shown in FIG. 13, the upper, middle, and lower containers S1, S2, and S3 are arranged in a state of being wound around the rotation shaft 8, and
A gap of substantially the same width is provided between the upper, middle, and lower vessels S1, S2, S3 and the other adjacent upper, middle, and lower vessels S1, S2, S3 so that the heat medium flows through the gap. May be provided. Even if the divider 9 is abolished in this way, the water tank K
In addition to the effect of increasing the distribution density of the hydrogen storage alloy in the inside, the gap is the same width, so the flow of the heat medium flowing through the gap is rectified and the flow becomes faster, and the heat medium that exchanges heat with the hydrogen storage alloy And the heat exchange efficiency can be increased.

【0051】上記の第1、第2実施例では、複数のセル
Sをセル移動手段によって連続的に回転させた例を示し
たが、セルSを間欠的に回転移動させても良い。上記の
実施例では、説明を容易化するために、図面の上下に応
じて上段容器S1 、中段容器S2 、下段容器S3 とした
例を示したが、上下の配置を変更したり横に配置するな
どしても良い。このような場合は、勿論、各容器に供給
する各熱媒体もヒートポンプサイクルが成り立つように
入れ替える。
In the first and second embodiments, the example in which the plurality of cells S are continuously rotated by the cell moving means has been described. However, the cells S may be rotated intermittently. In the above embodiment, for ease of explanation, the upper container S1, the middle container S2, and the lower container S3 are shown as upper and lower parts in the drawing, but the upper and lower arrangement is changed or arranged horizontally. And so on. In such a case, of course, each heat medium supplied to each container is also replaced so that a heat pump cycle is established.

【0052】上記の実施例では、昇圧用の熱媒体とし
て、加熱域α1 で温度上昇した上段容器S1 を冷却して
温度上昇した熱媒体(実施例中では昇圧水)を用いた例
を示したが、加熱手段(例えば、燃焼装置による昇温、
電気ヒータによる昇温、排熱を利用した昇温など)によ
って昇温した熱媒体を用いても良い。上記の実施例で
は、ヒートポンプサイクル2の一例として、2段式サイ
クルを用いた例を示したが、1段式サイクルに用いても
良いし、第2容器を3つ以上分割して3段式以上のサイ
クルとして用いても良い。
In the above embodiment, an example was shown in which the heating medium (pressurized water in this embodiment) was used as the heating medium for pressurization, in which the temperature of the upper vessel S1 whose temperature was increased in the heating zone α1 was cooled to increase the temperature. Are heating means (for example, temperature rise by a combustion device,
A heat medium whose temperature has been increased by an electric heater, a temperature increase using exhaust heat, or the like may be used. In the above embodiment, an example in which a two-stage cycle is used as an example of the heat pump cycle 2 has been described. The above cycle may be used.

【0053】上記の実施例では、1つの室外機7に複数
の室内空調機5が接続可能なマルチエアコンを示した
が、1つの室外機7に1つの室内空調機5が接続される
エアコンに本発明を適用しても良い。上記の実施例で
は、ヒートポンプサイクル2によって得られた冷熱出力
用の熱媒体(実施例中では冷熱水)で室内を冷房する例
を示したが、冷熱出力用の熱媒体で冷蔵運転や冷凍運転
に用いるなど、本発明を他の冷却装置として用いても良
い。上記の実施例では、1つのヒートポンプユニット
(1つの水槽K内に複数のセルSを収納したユニット)
を用いた例を示したが、複数のヒートポンプユニットを
搭載して冷却能力を増大させ、ビル用空調システムなど
大きな冷却能力が要求される冷却装置に用いても良い。
In the above embodiment, a multi air conditioner in which a plurality of indoor air conditioners 5 can be connected to one outdoor unit 7 has been described, but an air conditioner in which one indoor air conditioner 5 is connected to one outdoor unit 7 is shown. The present invention may be applied. In the above-described embodiment, the example in which the room is cooled by the heat medium for cooling output (cooling water in the embodiment) obtained by the heat pump cycle 2 is described. However, the refrigeration operation or the freezing operation is performed by the heating medium for cooling output. The present invention may be used as another cooling device. In the above embodiment, one heat pump unit (a unit in which a plurality of cells S are stored in one water tank K)
Although an example using the above is shown, the cooling capacity may be increased by mounting a plurality of heat pump units, and the heat pump unit may be used for a cooling device requiring a large cooling capacity such as a building air-conditioning system.

【0054】上記の実施例では、加熱用の熱媒体(実施
例中では加熱水)を加熱する加熱手段として、ガスを燃
焼するガス燃焼装置を用いたが、石油を燃焼する石油燃
焼装置など、他の燃焼装置を用いても良いし、内燃機関
の排熱によって加熱用の熱媒体を加熱する加熱手段、ボ
イラーによる蒸気、電気ヒータを用いた加熱手段など、
他の加熱手段を用いても良い。なお、内燃機関の排熱を
利用する際は、車両用に用いることもできる。
In the above embodiment, a gas combustion device for burning gas is used as a heating means for heating a heating heat medium (heating water in the embodiment). Other combustion devices may be used, heating means for heating the heating medium for heating by exhaust heat of the internal combustion engine, steam by a boiler, heating means using an electric heater,
Other heating means may be used. When utilizing the exhaust heat of the internal combustion engine, it can also be used for vehicles.

【0055】上記の実施例では、各熱媒体の一例とし
て、水道水を用いたが、不凍液やオイルなど他の液体の
熱媒体を用いても良いし、空気など気体の熱媒体を用い
ても良い。上記の実施例では、水素吸蔵合金が水素を放
出する際の吸熱作用により冷熱出力を得る冷却装置を例
に示したが、水素吸蔵合金が水素を吸蔵する際の放熱作
用により温熱出力を得る加熱装置(例えば暖房装置な
ど)に本発明を適用しても良い。
In the above embodiment, tap water is used as an example of each heat medium. However, another heat medium such as antifreeze or oil may be used, or a gas heat medium such as air may be used. good. In the above embodiment, the cooling device that obtains a cold output by an endothermic action when the hydrogen storage alloy releases hydrogen is described as an example, but a heating apparatus that obtains a thermal output by a heat dissipation action when the hydrogen storage alloy absorbs hydrogen is described. The present invention may be applied to a device (for example, a heating device).

【図面の簡単な説明】[Brief description of the drawings]

【図1】開口穴と蓋との接合部分を示す断面図である
(第1実施例)。
FIG. 1 is a sectional view showing a joint portion between an opening hole and a lid (first embodiment).

【図2】セルの部分斜視図である(第1実施例)。FIG. 2 is a partial perspective view of a cell (first embodiment).

【図3】デバイダーが設けられたセルの斜視図である
(第1実施例)。
FIG. 3 is a perspective view of a cell provided with a divider (first embodiment).

【図4】冷房装置の概略構成図である(第1実施例)。FIG. 4 is a schematic configuration diagram of a cooling device (first embodiment).

【図5】ヒートポンプサイクルの作動説明図である(第
1実施例)。
FIG. 5 is a diagram illustrating the operation of a heat pump cycle (first embodiment).

【図6】ヒートポンプユニットの斜視図である(第1実
施例)。
FIG. 6 is a perspective view of a heat pump unit (first embodiment).

【図7】PT冷凍サイクル線図である(第1実施例)。FIG. 7 is a PT refrigeration cycle diagram (first embodiment).

【図8】開口穴と蓋との接合部分を示す断面図である
(第2実施例)。
FIG. 8 is a sectional view showing a joint portion between an opening hole and a lid (second embodiment).

【図9】開口穴と蓋との接合部分を示す断面図である
(第3実施例)。
FIG. 9 is a cross-sectional view showing a joint portion between an opening hole and a lid (third embodiment).

【図10】冷暖房装置の概略構成図である(第4実施
例)。
FIG. 10 is a schematic configuration diagram of a cooling / heating device (fourth embodiment).

【図11】冷房装置の概略構成図である(第5実施
例)。
FIG. 11 is a schematic configuration diagram of a cooling device (fifth embodiment).

【図12】ハウジングの断面図である(第5実施例)。FIG. 12 is a sectional view of a housing (fifth embodiment).

【図13】容器内を示す断面図である(変形例)。FIG. 13 is a sectional view showing the inside of a container (modification).

【符号の説明】[Explanation of symbols]

A 開口穴 B 蓋 A1 外筒 B1 内筒 HM 高温合金(水素吸蔵合金) MM 中温合金(水素吸蔵合金) LM 低温合金(水素吸蔵合金) S セル S1 上段容器 S2 中段容器 S3 下段容器 A Opening hole B Lid A1 Outer cylinder B1 Inner cylinder HM High temperature alloy (hydrogen storage alloy) MM Medium temperature alloy (hydrogen storage alloy) LM Low temperature alloy (hydrogen storage alloy) S cell S1 Upper container S2 Middle container S3 Lower container

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】水素吸蔵合金の水素の放出時の吸熱、ある
いは水素吸蔵合金の水素の吸蔵時の放熱を利用した水素
吸蔵合金を利用した熱利用システムに用いる水素吸蔵合
金を封入する容器であって、 前記水素吸蔵合金を封入する容器は、前記容器の外方へ
向かう外筒を備えた水素を充填する開口穴が設けられ、 この外筒の内径に一致する内筒を備える蓋によって閉塞
されるもので、 前記外筒および前記内筒は熱容量が大きい材料により形
成され、 前記開口穴内に前記蓋が圧入されて、 前記外筒と前記内筒との重なり代が溶接によって接合さ
れたことを特徴とする水素吸蔵合金を利用した熱利用シ
ステムの容器。
1. A container for enclosing a hydrogen storage alloy for use in a heat utilization system utilizing a hydrogen storage alloy utilizing heat absorption when releasing hydrogen of the hydrogen storage alloy or heat release during hydrogen storage of the hydrogen storage alloy. The container for enclosing the hydrogen storage alloy is provided with an opening hole for filling hydrogen with an outer cylinder directed outward of the container, and is closed with a lid having an inner cylinder corresponding to the inner diameter of the outer cylinder. Wherein the outer cylinder and the inner cylinder are formed of a material having a large heat capacity, the lid is press-fitted into the opening hole, and the overlap of the outer cylinder and the inner cylinder is joined by welding. A container of a heat utilization system using a hydrogen storage alloy, which is a feature.
【請求項2】水素吸蔵合金の水素の放出時の吸熱、ある
いは水素吸蔵合金の水素の吸蔵時の放熱を利用した水素
吸蔵合金を利用した熱利用システムに用いる容器への水
素充填方法であって、 水素吸蔵合金を封入する容器は、蓋によって閉塞される
水素を充填する開口穴が設けられ、 前記容器内に内蔵される前記水素吸蔵合金を水素吸蔵合
金温度以下に冷却して水素を前記水素吸蔵合金に吸蔵さ
せて前記容器内を大気圧と等しくした状態で、前記開口
穴が溶接によって前記蓋と接合されることを特徴とする
水素吸蔵合金を利用した熱利用システムの容器への水素
充填方法。
2. A method for filling hydrogen into a container used in a heat utilization system utilizing a hydrogen storage alloy utilizing heat absorption when releasing hydrogen of the hydrogen storage alloy or heat release during hydrogen storage of the hydrogen storage alloy. The container for enclosing the hydrogen storage alloy is provided with an opening hole for filling hydrogen closed by a lid, and cooling the hydrogen storage alloy contained in the container to a temperature equal to or lower than the hydrogen storage alloy temperature to convert the hydrogen into hydrogen. Hydrogen filling the container of the heat utilization system using a hydrogen storage alloy, wherein the opening is joined to the lid by welding in a state where the inside of the container is made equal to the atmospheric pressure by storing the container with the storage alloy. Method.
JP01415398A 1998-01-27 1998-01-27 Heat utilization system container using hydrogen storage alloy and method of filling hydrogen into the container Expired - Fee Related JP3734949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01415398A JP3734949B2 (en) 1998-01-27 1998-01-27 Heat utilization system container using hydrogen storage alloy and method of filling hydrogen into the container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01415398A JP3734949B2 (en) 1998-01-27 1998-01-27 Heat utilization system container using hydrogen storage alloy and method of filling hydrogen into the container

Publications (2)

Publication Number Publication Date
JPH11211268A true JPH11211268A (en) 1999-08-06
JP3734949B2 JP3734949B2 (en) 2006-01-11

Family

ID=11853215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01415398A Expired - Fee Related JP3734949B2 (en) 1998-01-27 1998-01-27 Heat utilization system container using hydrogen storage alloy and method of filling hydrogen into the container

Country Status (1)

Country Link
JP (1) JP3734949B2 (en)

Also Published As

Publication number Publication date
JP3734949B2 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
JP3734949B2 (en) Heat utilization system container using hydrogen storage alloy and method of filling hydrogen into the container
JP3355116B2 (en) Heat utilization system using hydrogen storage alloy
JP3850558B2 (en) Heat utilization system using hydrogen storage alloy
JP3926038B2 (en) Heat utilization system using hydrogen storage alloy
JP3694577B2 (en) Heat utilization system using hydrogen storage alloy
JP3594435B2 (en) Hydrogen storage type cooling device
JPH11118286A (en) Heat utilizing system utilizing hydrogen absorbing alloy
JPH11294888A (en) Heat harnessing system utilizing alloy for storing hydrogen
JP3813340B2 (en) Heat utilization system using hydrogen storage alloy
JP3734950B2 (en) Heat utilization system using hydrogen storage alloy
JP3694575B2 (en) Heat utilization system using hydrogen storage alloy
JP2000111194A (en) Heat utilization system using hydrogen storage alloy
JP3872913B2 (en) Heat utilization system using hydrogen storage alloy
JP3594436B2 (en) Hydrogen storage type cooling device
JP3694571B2 (en) Cooling system using hydrogen storage alloy
JPH11118285A (en) Heat utilizing system utilizing hydrogen absorbing alloy
JP3734960B2 (en) Heat utilization system using hydrogen storage alloy
JPH11142014A (en) Heat-harnessed system utilizing alloy for hydrogen storage
JP3534559B2 (en) Hydrogen storage type cooling device
JP2000039225A (en) Heat utilizing system utilizing hydrogen storage alloys
JP3534560B2 (en) Hydrogen storage type cooling device
JPH11190565A (en) Heat utilizing system using hydrogen occlusion alloy
JP3850587B2 (en) Heat utilization system using hydrogen storage alloy
JP2000320923A (en) Heat utilization system utilizing hydrogen occluding alloy
JP2000320921A (en) Heat utilization system utilizing hydrogen occlusion alloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees