JPH07269795A - Hydrogen storage alloy holding container - Google Patents

Hydrogen storage alloy holding container

Info

Publication number
JPH07269795A
JPH07269795A JP6063578A JP6357894A JPH07269795A JP H07269795 A JPH07269795 A JP H07269795A JP 6063578 A JP6063578 A JP 6063578A JP 6357894 A JP6357894 A JP 6357894A JP H07269795 A JPH07269795 A JP H07269795A
Authority
JP
Japan
Prior art keywords
container
hydrogen storage
storage alloy
heat
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6063578A
Other languages
Japanese (ja)
Inventor
Taichi Saito
藤 太 一 齋
Hiroshi Iida
田 洋 飯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6063578A priority Critical patent/JPH07269795A/en
Publication of JPH07269795A publication Critical patent/JPH07269795A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PURPOSE:To improve heat efficiency in a holding container, and release stress in the container at the time of thermal expansion and contraction of hydrogen storage alloy by arranging a plurality of divided containers in which a heat medium pipe is arranged, in a hydrogen storage alloy holding container used in a heat pump, a hydrogen storage device, and the like. CONSTITUTION:In a hydrogen storage alloy holding container 1 in which a heat medium leading inlet 8, a heat medium leading outlet 9, and a hydrogen leading-in/leading-out valve 7 are provided, a plurality of divided containers 2 are arranged inside. A heat medium pipe 3 is provided in its meandering shape in each divided container 2, and heat medium pipes 3 in respective divided container 2 are connected to each other in series by a heat medium pipe connecting pipe 5. In each divided container 2, many fins 10 are provided integratedly in the heat medium pipe 3 at intervals of about 1mm vertically so as to facilitate discharging of stored hydrogen, and hydrogen storage alloy (MH) is filled among these fins 10. A filter of about 5mum having heat resistance is provided on the upper part of each divided container 2 so as to prevent splash of the MH.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金を用いた
ヒートポンプ、水素貯蔵装置、水素精製装置、アクチュ
エーター等に用いられる、水素を安全に吸蔵−放出しう
る水素吸蔵合金保持容器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy holding container capable of safely storing and releasing hydrogen, which is used for heat pumps, hydrogen storage devices, hydrogen purification devices, actuators and the like using hydrogen storage alloys. is there.

【0002】[0002]

【従来の技術】近年、水素をある種の金属あるいは合金
に吸蔵させて金属水素化物という形で貯蔵、輸送した
り、水素の分離、精製に利用したり、ヒートポンプ、熱
の貯蔵等に利用する方法が提案されている。金属水素化
物をつくる合金のうち−20℃〜300℃において水素
を吸蔵放出できる合金として、LaNi、CaN
、MgNi、FeTi等が代表的なものである。
水素吸蔵合金と呼ばれるこれらの合金は、水素の吸蔵放
出を迅速に行わせるために表面積を増やすため通常、粉
末状で用いられる。
2. Description of the Related Art In recent years, hydrogen has been occluded in certain metals or alloys for storage and transportation in the form of metal hydrides, hydrogen separation and purification, heat pumps, heat storage, etc. A method has been proposed. Among alloys that form metal hydrides, alloys that can store and release hydrogen at −20 ° C. to 300 ° C. include LaNi 5 and CaN.
Typical examples are i 5 , Mg 2 Ni and FeTi.
These alloys, called hydrogen storage alloys, are usually used in powder form in order to increase the surface area in order to accelerate the storage and release of hydrogen.

【0003】水素吸蔵合金を用いたシステムで重要なポ
イントは、水素の吸蔵−放出速度を増大させることであ
り、水素の吸蔵−放出速度を増大させるためには、水素
の吸蔵においては合金充填層内における反応熱を効率良
く水素吸蔵合金充填容器の外部へ取り除き、又、水素を
放出する際には外部から合金充填層内へ反応熱に相当す
る熱を効率良く供給しなければならない。
An important point in a system using a hydrogen storage alloy is to increase the hydrogen storage-release rate. In order to increase the hydrogen storage-release rate, an alloy packed bed is used for storing hydrogen. It is necessary to efficiently remove the heat of reaction inside the container to the outside of the hydrogen storage alloy filling container, and to release the hydrogen, to efficiently supply the heat corresponding to the reaction heat from the outside into the alloy packed bed.

【0004】このため水素吸蔵合金を保持する容器は、
図6に示すように水素吸蔵合金保持容器1中に容器内熱
媒管13を設け、その中に熱媒を流し、水素吸蔵合金6
の発熱、吸熱の熱を除去し、水素化反応、脱水素化反応
を促進させ、迅速な吸蔵放出を行っている。フィルター
11は、水素吸蔵合金が粉末であるため、水素吸蔵合金
が飛散しないように設けられており、通常2ミクロン程
度の細孔を有する焼結金属で構成されている。又、図7
に示すように、水素吸蔵合金保持容器1の外側の容器外
熱媒管4に熱媒を流し、水素吸蔵合金6の発熱、吸熱の
熱を除去し、水素化反応、脱水素化反応を促進させ、水
素をフィルター11を通して迅速な吸蔵放出を行ってい
る。
Therefore, the container holding the hydrogen storage alloy is
As shown in FIG. 6, an in-container heat transfer medium pipe 13 is provided in the hydrogen storage alloy holding container 1 and the heat transfer medium is flown therein to allow the hydrogen storage alloy 6 to flow.
The exothermic and endothermic heat of is removed, the hydrogenation reaction and dehydrogenation reaction are promoted, and the quick storage and release are performed. Since the hydrogen storage alloy is powder, the filter 11 is provided so that the hydrogen storage alloy does not scatter, and is usually made of a sintered metal having pores of about 2 microns. Also, FIG.
As shown in, the heat transfer medium 4 is placed outside the hydrogen storage alloy holding container 1 to flow a heat medium to remove the heat generated by the hydrogen storage alloy 6 and the heat absorbed by the hydrogen storage alloy, thereby promoting the hydrogenation reaction and dehydrogenation reaction. Then, hydrogen is rapidly absorbed and released through the filter 11.

【0005】水素吸蔵合金は、水素の吸蔵時に金属粉末
の体積が15〜30%程度膨脹するため、水素吸蔵放出
に伴い合金の膨脹収縮がおこるとともに、合金の微粉化
も進行するため、容器下部において微粉末が厚密化しや
すく、容器に非常に大きい応力がかかることが指摘され
ていた。以上のことより、水素吸蔵合金を充填する容器
に対して、水素吸蔵合金の熱伝導率の改善、微粉化の防
止、合金の膨脹収縮時の容器に対する応力の緩和を図る
ために、これまで種々の開発がなされてきた。
In the hydrogen storage alloy, the volume of the metal powder expands by about 15 to 30% when hydrogen is absorbed, so that the expansion and contraction of the alloy occurs as the hydrogen is absorbed and released, and the fine powder of the alloy also progresses. It was pointed out that the fine powder is likely to be thickened and a very large stress is applied to the container. From the above, in order to improve the thermal conductivity of the hydrogen storage alloy, prevent pulverization, and alleviate the stress on the container during expansion and contraction of the hydrogen storage alloy, it has been variously used so far. Has been developed.

【0006】合金充填層の熱伝導の改善の方法として、
下記の方法が挙げられる。 (1)容器内に多数のフィン付き熱媒管を縦横に配置し
て、合金粉末との接触面積を増大させるという容器構造
を改善する方法、(2)Al等の高熱伝導性の発泡金属
の空隙に水素吸蔵合金粉末を充填し、加圧、焼成してペ
レット化する方法(特開昭55−126199号公
報)、水素吸蔵合金粉末にCu、Al等の金属粉末を添
加、混合し、圧縮体あるいは焼結体とする方法(特開昭
55−90401号公報)、また同様に、水素吸蔵合金
粉末にCu、Ni、Al等の金属粉末を添加、混合し、
活性化処理をして水素を合金中に吸蔵させた状態でC
O、SO等で合金表面を不活性化(被毒作用)し、そ
の後プレス成形、焼結する方法(特開昭56−1098
02号公報)、容器である伝熱体と水素吸蔵合金粉末と
を一体に加圧成形した方法(特開昭62−196500
号公報)等、粉末の圧縮成形体による合金粉末充填層の
熱伝導率の改善による方法、
As a method for improving the heat conduction of the alloy packed bed,
The following methods can be mentioned. (1) A method of improving the container structure in which a large number of heat transfer tubes with fins are arranged vertically and horizontally in the container to increase the contact area with the alloy powder, (2) of a foam metal with high thermal conductivity such as Al. A method of filling the voids with hydrogen-absorbing alloy powder, pressurizing and firing to pelletize it (JP-A-55-126199), adding metal powder such as Cu and Al to the hydrogen-absorbing alloy powder, mixing and compressing. Body or sintered body (Japanese Patent Laid-Open No. 55-90401), and similarly, metal powders such as Cu, Ni, and Al are added to and mixed with the hydrogen storage alloy powder,
C in a state where hydrogen is absorbed in the alloy by activation treatment
A method in which the alloy surface is inactivated (poisoning effect) with O, SO 2, etc., and then press-molded and sintered (JP-A-56-1098).
No. 02), a method of integrally press-molding a heat transfer body, which is a container, and a hydrogen storage alloy powder (JP-A-62-196500).
Japanese Laid-Open Patent Publication No. 2000-242242, etc., a method of improving the thermal conductivity of an alloy powder packed bed by a powder compression molding,

【0007】(3)合金粉末を外部より容器を貫通する
シャフトを用いて撹拌し、流動化させることにより伝熱
を良好にする方法(特開昭60−60400号公報)、
本発明者らによって行われた、外部から振動を与えるこ
とにより容器内部の水素吸蔵合金粉末を振動流動させ、
容器内部の熱媒管表面と水素吸蔵合金粉末との熱交換を
著しく促進させる方法(特開平4−160001号公
報)等がある。
(3) A method for improving heat transfer by stirring and fluidizing the alloy powder from the outside using a shaft that penetrates the container (JP-A-60-60400).
The hydrogen storage alloy powder inside the container was vibrated and fluidized by applying vibration from the outside, which was performed by the present inventors.
There is a method (Japanese Unexamined Patent Publication No. 4-160001) in which heat exchange between the surface of the heat medium tube inside the container and the hydrogen storage alloy powder is significantly promoted.

【0008】合金の微粉化防止を行う方法としては、前
記(2)の方法による成形体にする方法、合金に第三成
分を加えて微粉化しにくい合金を作る方法や急冷による
アモルファス水素吸蔵合金を作る方法等の冶金学的な改
善が提案されている。
As a method for preventing pulverization of an alloy, a method of forming a compact by the method (2), a method of adding a third component to the alloy to form an alloy which is difficult to pulverize, or an amorphous hydrogen storage alloy by quenching is used. Metallurgical improvements such as the method of making have been proposed.

【0009】合金の膨脹収縮時の容器に対する応力を緩
和する方法としては、水素ガスを透過し水素吸蔵合金は
透過しない弾性を有する多孔体を容器中に設置する方法
(特開昭57−94198号公報)や、前記(3)の合
金を流動化させる方法等が提案されている。
As a method for relieving the stress on the container when the alloy expands and contracts, a porous material having elasticity that allows hydrogen gas to pass through but does not allow a hydrogen storage alloy to pass through is installed in the container (JP-A-57-94198). Gazette), a method of fluidizing the alloy of the above (3), and the like have been proposed.

【0010】また、熱効率の向上、メンテナンス向上の
方法としては、保温性、通気性、弾性を有する保温材の
使用を行う方法(特公昭57−57401号公報)、熱
交換器と圧力容器の分離(特公昭57−23796号公
報、特公昭58−26994号公報)、仕切板で仕切ら
れた小部屋に多孔体を設置したもの(実開昭58−78
36号公報)が提案されている。フィンチューブを配し
内部を棚で分けた1つの大きな本体容器内部に設置し、
容器壁との隔離を行った例がある(特公平5−6119
号公報)。大型化した場合は、内部容器50が直方体で
あるため、本体容器内の空間使用率が小さくなる。さら
に大量のMHを一つの内部容器で支持するために、内部
容器の強度が必要となり、顕熱が上昇するのは避けられ
ない。
As a method for improving thermal efficiency and maintenance, a method of using a heat insulating material having heat retaining property, air permeability and elasticity (Japanese Patent Publication No. 57-57401), separation of a heat exchanger and a pressure vessel. (Japanese Patent Publication No. 57-23796 and Japanese Patent Publication No. 58-26994), one in which a porous body is installed in a small room partitioned by a partition plate (Actual No. Sho 58-78).
No. 36) is proposed. Install the fin tubes inside one large main body container divided by a shelf,
There is an example of isolation from the container wall (Japanese Patent Publication No. 5-6119).
Issue). When the size is increased, since the inner container 50 is a rectangular parallelepiped, the space usage rate in the main body container is reduced. Further, since a large amount of MH is supported by one inner container, the strength of the inner container is required, and sensible heat is inevitably increased.

【0011】[0011]

【発明が解決しようとする課題】MHの反応熱を用いて
高効率の熱輸送を行うためには、MHへの熱移動の迅速
化と共に、熱交換時の熱ロスを小さくする必要があり、
容器の伝熱特性、容器顕熱の大きさが重要な要素にな
る。また、MHを含めた容器の性能を評価する基準とし
てCOP(出力熱量/入力熱量)、熱出力(KW/kg
−MH)がある。これらの値を大きくするためには、容
器としては容器顕熱が小さく、伝熱性能に優れているこ
とが求められる。
In order to carry out highly efficient heat transfer using the heat of reaction of MH, it is necessary to speed up the heat transfer to MH and reduce the heat loss during heat exchange.
The heat transfer characteristics of the container and the magnitude of sensible heat of the container are important factors. In addition, as a standard for evaluating the performance of the container including MH, COP (heat output / heat input), heat output (KW / kg)
-MH). In order to increase these values, the container is required to have small sensible heat and excellent heat transfer performance.

【0012】MHは、水素の吸蔵時に金属粉末の体積が
15〜20%程度膨脹する。これに伴い、合金の微粉化
も進行するため、容器下部においてMHが圧密化しやす
く、容器に大きい応力がかかることが知られている。製
鉄所等の排熱を有効に回収利用するためには、排熱量の
大きさが莫大であるため、大規模な容器を用いて大量の
熱を回収する方が経済性が高い。この場合、容器下部に
は大きな応力が加わることが予想される。
In MH, the volume of metal powder expands by about 15 to 20% when hydrogen is absorbed. It is known that the pulverization of the alloy also progresses along with this, so that the MH is easily consolidated in the lower portion of the container and a large stress is applied to the container. In order to effectively recover and utilize the exhaust heat of a steel mill or the like, the amount of the exhaust heat is enormous, so it is more economical to recover a large amount of heat using a large-scale container. In this case, it is expected that large stress will be applied to the lower part of the container.

【0013】容器のCOPを高くするためには、MH重
量/MH容器重量の比の大きいシェルアンドチューブ型
のシェル側にMHを充填し、熱媒を流すためのフィンチ
ューブを配置した前記(1)の方法による高伝熱面積の
容器が用いられることが多い。この方式で大型化する場
合には、MHの膨脹圧により容器壁に引っ張り応力が作
用する。このため、安全性の観点から一般的に、MH層
の高さは50cm以下に抑えられている。
In order to increase the COP of the container, the shell side of the shell-and-tube type having a large ratio of MH weight / MH container weight is filled with MH, and a fin tube for flowing a heat medium is arranged. In many cases, a container having a high heat transfer area according to the method (1) is used. When the size is increased by this method, tensile stress acts on the container wall due to the expansion pressure of MH. Therefore, from the viewpoint of safety, the height of the MH layer is generally suppressed to 50 cm or less.

【0014】Al等の高熱伝導性の発泡金属の空隙に水
素吸蔵合金粉末を充填し、加圧、焼結してペレット化す
る方法等の粉末の圧縮成形体による合金粉末充填層の熱
伝導率の改善による前記(2)の方法では、ペレット化
する際のバインダーが必要であり、この量が20から3
0%くらいであるため発生する反応熱の一部がバインダ
ーの顕熱に取られるので、熱効率が低くなるという問題
がある。前記(3)の方法の内、合金粉末を外部より容
器を貫通するシャフトを用いて撹拌し、流動化させるこ
とにより伝熱を良好にする方法では、容器外部から容器
内部に向かってシャフトを貫通させるため、シャフトと
容器のすり合わせ部分ではどうしても水素の漏れが起こ
るという問題があった。
Thermal conductivity of an alloy powder packed layer formed by compression molding of a powder, such as a method of filling a hydrogen-absorbing alloy powder into voids of a foam metal having high thermal conductivity such as Al, pressurizing, sintering and pelletizing. In the above method (2) by improving the above, a binder for pelletizing is required, and this amount is 20 to 3
Since it is about 0%, a part of the reaction heat generated is taken by the sensible heat of the binder, so that there is a problem that the thermal efficiency becomes low. In the method of (3), the alloy powder is agitated from the outside using a shaft that penetrates the container to fluidize the alloy powder, thereby improving heat transfer. For this reason, there is a problem that hydrogen leaks inevitably at the portion where the shaft and the container are fitted together.

【0015】また、本発明者らによって行われた外部か
ら振動を与え、熱交換を著しく促進させる特開平4−1
60001号公報の方法では、外部から振動を与えるこ
とにより、保持容器内部の水素吸蔵合金が流動し、保持
容器内部の熱媒管と激しく接触することで水素吸蔵合金
の保有する熱量が熱媒管中の媒体に迅速に移動し、著し
く伝熱が促進される。一方で水素吸蔵合金保持容器の内
部構造により、水素吸蔵合金の流動が妨げられ、伝熱の
効果が減少する等、容器内部構造に制限があった。
Further, the present invention provides vibration from the outside to remarkably promote heat exchange.
In the method disclosed in Japanese Patent No. 60001, the hydrogen storage alloy inside the holding container flows by applying vibration from the outside, and violent contact with the heat transfer medium pipe inside the holding container causes the amount of heat held by the hydrogen storage alloy to change. It moves quickly to the medium inside, significantly promoting heat transfer. On the other hand, due to the internal structure of the hydrogen storage alloy holding container, the flow of the hydrogen storage alloy is obstructed, and the heat transfer effect is reduced.

【0016】また、熱効率の向上、メンテナンス向上を
図るために、特公平5−6119号公報では、図5に示
すように熱交換器と圧力容器の分離や、MH充填層を仕
切板等で小部屋に仕切った構造の容器が提案されている
が、大型化により内部容器12に多大な重量がかかるた
め容器自体にかなりの強度が必要となり、重量の増大に
よる顕熱上昇を招くという問題が生じる。
In order to improve thermal efficiency and maintenance, Japanese Patent Publication No. 5-6119 discloses that the heat exchanger and the pressure vessel are separated and the MH packing layer is divided by a partition plate or the like as shown in FIG. Although a container having a structure partitioned into rooms has been proposed, the internal container 12 requires a large amount of weight due to its large size, so that the container itself needs to have a considerable strength, which causes a problem that sensible heat increases due to the increase in weight. .

【0017】本発明は、熱伝導率の向上、大型化時の合
金の膨脹収縮時の容器に対する応力の緩和、MH層の熱
伝導率改善を兼ね備えた内部構造の水素吸蔵合金保持容
器を提供することを目的とする。
The present invention provides a hydrogen storage alloy holding container having an internal structure which has improved thermal conductivity, relaxation of stress on the container when the alloy expands and contracts when the size is increased, and improved thermal conductivity of the MH layer. The purpose is to

【0018】[0018]

【課題を解決するための手段】本発明は、これらの課題
を解決するため、水素吸蔵合金保持容器内部に複数の特
殊構造の分割容器を配置することにより保持容器内部の
熱効率の向上、MH合金の膨脹収縮時の容器に対する応
力の緩和、MH層の熱伝導率改善を行うことを特徴とす
るものである。
In order to solve these problems, the present invention improves the thermal efficiency inside the holding container by arranging a plurality of split containers having a special structure inside the hydrogen storage alloy holding container. It is characterized by alleviating the stress on the container at the time of expansion and contraction and improving the thermal conductivity of the MH layer.

【0019】本発明の要旨とするところは下記の通りで
ある。容器内に水素を吸蔵または放出する水素吸蔵合金
を有し、水素を吸蔵・放出する際に発生する反応熱を回
収する熱媒管を有する水素吸蔵合金保持容器において、
水素ガスを保持し外殻を形成する容器と、該内部をその
長手方向に平行に上下に分割して得られる複数の箱型の
分割容器と、各分割容器の内部に配設された熱媒管とか
らなり、各分割容器の外側で熱媒管を熱媒管接続管によ
って直列に接続したことを特徴とする。特に、箱型の分
割容器の内部底面を、波の山と山の間に間隔を設けた波
型形状とし、かつ両端の山から間隔を隔てて該容器側面
に向かう部分を曲面としたことを特徴とする。また、箱
型の分割容器内に配設された熱媒管の外表面に複数のフ
ィンを設けたことを特徴とする。
The gist of the present invention is as follows. In a hydrogen storage alloy holding container having a hydrogen storage alloy that stores or releases hydrogen in the container, and a heat transfer medium tube that recovers reaction heat generated when storing and releasing hydrogen,
A container that holds hydrogen gas and forms an outer shell, a plurality of box-shaped divisional containers obtained by vertically dividing the interior parallel to the longitudinal direction, and a heat medium disposed inside each divisional container. It is characterized in that it is composed of a pipe, and the heat medium pipes are connected in series by a heat medium pipe connecting pipe outside each divided container. In particular, the inner bottom surface of the box-shaped divided container has a corrugated shape with a gap provided between the crests of the wave, and the portion facing the side surface of the container at a distance from the crests of both ends is curved. Characterize. Further, a plurality of fins are provided on the outer surface of the heat transfer medium pipe arranged in the box-shaped divided container.

【0020】以下に、本発明を詳細に説明する。図1
は、本発明において示される水素吸蔵合金保持容器1の
側断面図、図2は、水素吸蔵合金保持容器1の縦断面
図、図3は、水素吸蔵合金内の分割容器1の斜視図を示
し、図4は、分割容器2の内部詳細図である。
The present invention will be described in detail below. Figure 1
1 is a side sectional view of the hydrogen storage alloy holding container 1 shown in the present invention, FIG. 2 is a vertical sectional view of the hydrogen storage alloy holding container 1, and FIG. 3 is a perspective view of a split container 1 in the hydrogen storage alloy. FIG. 4 is an internal detailed view of the divided container 2.

【0021】水素吸蔵合金保持容器1は水素導入導出弁
を有する密閉容器であり、内部に箱型の分割容器2を配
置している。また、水素吸蔵保持容器には水素吸蔵合金
の水素吸蔵・放出の際の反応熱を回収する熱媒の熱媒導
入口8、熱媒導出口9を有している。熱媒管3は、分割
容器2の内部で往復しており、熱媒管の開口部4は、熱
媒管接続管5により分割容器2の間を結んでいる。熱媒
管は水素吸蔵放出の際の反応熱の回収を容易にするた
め、熱媒管の外側に、図4に示すように、管軸方向に対
して垂直方向にフィン31を配置し、水素吸蔵合金の伝
熱面積を大きくする。フィンと熱媒管との伝熱について
は、熱媒管と一体型のものは優れているが、フィンを熱
媒管にかしめるタイプのものでもよい。フィン間隔は、
0.1mm〜2mmが望ましい。フィンの間隔が狭いほ
ど伝熱特性には優れるが、フィンの熱容量も増加するた
め、目的に応じてフィンの間隔を選定する。
The hydrogen storage alloy holding container 1 is a closed container having a hydrogen introduction / extraction valve, and a box-shaped divided container 2 is arranged inside. Further, the hydrogen storage holding container has a heat medium introduction port 8 and a heat medium outlet port 9 of a heat medium for recovering reaction heat at the time of hydrogen storage / release of the hydrogen storage alloy. The heat medium pipe 3 reciprocates inside the divided container 2, and the opening 4 of the heat medium pipe connects the divided containers 2 by the heat medium pipe connecting pipe 5. In order to facilitate the recovery of the reaction heat at the time of absorbing and desorbing hydrogen in the heat transfer medium pipe, fins 31 are arranged outside the heat transfer medium pipe in a direction perpendicular to the pipe axis direction as shown in FIG. Increase the heat transfer area of the storage alloy. Regarding heat transfer between the fins and the heat transfer medium pipe, the one integrated with the heat transfer medium pipe is excellent, but a type in which the fins are caulked to the heat transfer medium pipe may be used. The fin spacing is
0.1 mm-2 mm is desirable. The narrower the fin spacing, the better the heat transfer characteristics, but the heat capacity of the fin also increases, so the fin spacing is selected according to the purpose.

【0022】図2において、分割容器2を複数用いるこ
とにより、水素吸蔵合金保持容器1の大型化においても
個々の容器に過大な重量がかからない。このため、容器
の強度が小さくていいので、肉厚も薄くMHを支えてい
る容器の顕熱が小さくなるとともに、メンテナンス等の
取扱いが簡単になる。分割容器が1つの場合では、図5
に示すように、大型化により内部容器12に多大な重量
がかかるので容器自体にかなりの強度が必要となり、重
量の増大による顕熱上昇を招くという問題が生じる。
In FIG. 2, by using a plurality of divided containers 2, even when the hydrogen storage alloy holding container 1 is enlarged, the individual containers are not overloaded. For this reason, since the strength of the container can be small, the sensible heat of the container supporting the MH is small and the handling such as maintenance is easy. In the case of one dividing container, FIG.
As shown in (1), since the inner container 12 becomes large in weight due to its large size, the container itself needs to have a considerable strength, which causes a problem that sensible heat increases due to the increase in weight.

【0023】図4に示すように分割容器内部に高伝熱面
積のフィン10付き熱媒管3が設置されているので、伝
熱特性が向上し、熱出力は向上する。また、分割容器底
面を、波の山と山の間に間隔を設けた波型形状とし、か
つ両端の山から間隔を隔てて該容器側面に向かう部分を
曲面としたことにより、MHの膨脹力が上部に逃げ、分
割保持容器に対する膨脹力の影響が少なくなる。通常の
直角の接続面では、MHの膨脹力が底面と側面の付け根
にかかり、変形および付け根の剥離を招くという問題が
生じる。また、分割容器底面を、波の山と山の間に間隔
を設けた波型形状とすることにより、分割容器中心部で
のMHの圧密化を軽減することができる。波の間隔、高
さは、分割容器の幅、深さによるが、分割容器の幅50
0mm、高さ100mmの場合、波の間隔は100m
m、高さ20mm程度である。MHの充填密度を大きく
する場合は、高さはより高くなり30〜40mm程度に
なる。
As shown in FIG. 4, since the heat transfer medium pipe 3 with fins 10 having a high heat transfer area is installed inside the divided container, the heat transfer characteristics are improved and the heat output is improved. Further, the bottom surface of the divided container has a corrugated shape with a space between the crests of the waves, and the part facing the side surface of the container with a space from the crests at both ends is a curved surface. Escapes to the upper part, and the influence of the expansion force on the divided holding container is reduced. With a normal connecting surface of a right angle, the expansion force of the MH is applied to the roots of the bottom surface and the side surfaces, which causes deformation and separation of the roots. Further, by making the bottom surface of the divided container into a corrugated shape with a gap between the crests of the waves, it is possible to reduce the consolidation of MH in the central portion of the divided container. The wave interval and height depend on the width and depth of the split container, but the width of the split container is 50
When the height is 0 mm and the height is 100 mm, the wave interval is 100 m
m, height is about 20 mm. When the packing density of MH is increased, the height becomes higher and becomes about 30 to 40 mm.

【0024】[0024]

【実施例】以下、本発明を実施例に基づいてさらに説明
する。図1および図2において、水素吸蔵合金保持容器
1内には、分割容器2が複数設置され、水素吸蔵合金保
持容器1を貫通して、熱媒導入口8、熱媒導出口9、水
素導入導出弁7が設けてある。図3において、熱媒管3
は、分割容器2の内部で往復しており、熱媒管の開口部
4は、熱媒管接続管5により分割容器2の間を結んでい
る。分割容器2においては、水素の吸蔵放出を容易にす
るため、熱媒管に垂直に間隔1mmで積層したフィン
を、熱媒管が貫いているハイフィン構造になっている。
これらフィンの間隔には水素吸蔵合金6を充填してあ
る。分割容器2の上部には、MHの飛散を防止するた
め、耐熱性で5μmのフィルター11が設置されてい
る。
EXAMPLES The present invention will be further described below based on examples. In FIG. 1 and FIG. 2, a plurality of split containers 2 are installed in the hydrogen storage alloy holding container 1 and penetrate the hydrogen storage alloy holding container 1 to form a heat medium inlet 8, a heat medium outlet 9, and a hydrogen inlet. A discharge valve 7 is provided. In FIG. 3, the heat medium pipe 3
Reciprocates inside the divided container 2, and the opening 4 of the heat medium pipe connects the divided containers 2 by the heat medium pipe connecting pipe 5. In order to facilitate the occlusion and release of hydrogen, the divided container 2 has a high fin structure in which the fins stacked vertically at a distance of 1 mm on the heat medium pipe penetrate through the heat medium pipe.
The space between these fins is filled with a hydrogen storage alloy 6. In order to prevent the scattering of MH, a heat-resistant filter 11 having a thickness of 5 μm is installed on the upper portion of the divided container 2.

【0025】水素吸蔵時には、水素導入導出口7から水
素が導入され、分割容器2内の水素吸蔵合金6に吸蔵さ
れる。その際の反応熱は、フィン10、熱媒管3を通し
て熱媒管中の熱媒によって除去される。熱媒は、水素吸
蔵合金保持容器1の外部から熱媒導入口8から導入さ
れ、複数の分割容器2中を通過し、熱媒導出口9により
外部に排出される。分割容器2間は、熱媒管接続管5を
介して順次熱媒が流れる。水素放出時にも、熱媒は同様
の経路を通り、水素導入導出口7から水素が放出される
とともに、分割容器2内の水素吸蔵合金6から水素が放
出され、その際の冷熱は、フィン10、熱媒管3を通し
て熱媒管中の熱媒によって外部に取り出される。これら
の発熱反応時の温熱、吸熱反応時の冷熱は、暖房、冷房
等に利用される。熱媒は、水、油等の安定で、かつ安全
な液体が用いられる。
At the time of hydrogen storage, hydrogen is introduced from the hydrogen inlet / outlet port 7 and stored in the hydrogen storage alloy 6 in the split container 2. Reaction heat at that time is removed by the heat medium in the heat medium pipe through the fin 10 and the heat medium pipe 3. The heat medium is introduced from the outside of the hydrogen storage alloy holding container 1 through the heat medium introducing port 8, passes through the plurality of divided containers 2, and is discharged to the outside by the heat medium introducing port 9. A heat medium sequentially flows between the divided containers 2 via a heat medium pipe connecting pipe 5. At the time of hydrogen release, the heat medium also passes through the same path, hydrogen is released from the hydrogen introduction / extraction port 7, and hydrogen is released from the hydrogen storage alloy 6 in the split container 2, and the cold heat at that time is the fin 10 The heat medium in the heat medium tube is taken out through the heat medium tube 3 to the outside. The warm heat during the exothermic reaction and the cold heat during the endothermic reaction are used for heating and cooling. As the heat medium, a stable and safe liquid such as water or oil is used.

【0026】水素吸蔵合金保持容器1の内部に複数の分
割容器2を設けたことにより、反応熱が水素吸蔵合金保
持容器1に伝わらないことに加えて、水素吸蔵合金1の
内部が複数の容器に分かれているため保持するMH重量
は比較的小さく、MHを保持する分割容器の顕熱も小さ
くて済むという長所がある。
By providing a plurality of divided containers 2 inside the hydrogen storage alloy holding container 1, the reaction heat is not transferred to the hydrogen storage alloy holding container 1 and the inside of the hydrogen storage alloy 1 is a plurality of containers. Since it is divided into two parts, the weight of the MH to be held is relatively small, and the sensible heat of the divided container holding the MH is also small.

【0027】また、取扱いの点においても、複数の分割
容器に分かれているため、組立時に重い容器を設置する
必要がない。また、分割容器内部には高伝熱面積の熱媒
管が設置されており、高い熱出力が期待できる。水素化
時のMHの膨脹による分割容器が受ける応力について
は、分割容器の底面および側面を図4に示した形状にす
ることにより応力を上部に分散させることが可能とな
り、MH膨脹圧による分割容器の変形はなくなる。本発
明の水素吸蔵合金保持容器を利用することにより、CO
Pおよび熱出力が向上する。
Also in terms of handling, since it is divided into a plurality of divided containers, it is not necessary to install a heavy container during assembly. In addition, a heat transfer tube with a high heat transfer area is installed inside the divided container, and high heat output can be expected. Regarding the stress received by the split container due to the expansion of MH during hydrogenation, it is possible to disperse the stress to the upper part by forming the bottom and side surfaces of the split container into the shape shown in FIG. 4, and the split container due to the MH expansion pressure. The deformation of is gone. By using the hydrogen storage alloy holding container of the present invention, CO
P and heat output are improved.

【0028】分割容器2の底面および側面は、テフロン
製の容器を用いた。材料は熱伝導率の低い材料が望まし
い。フィルターとしては、ポリエステル、耐熱ナイロ
ン、ガラス繊維等からなる網状、フェルト状のバグフィ
ルター等を用いることができる。
For the bottom surface and the side surface of the divided container 2, a container made of Teflon was used. It is desirable that the material has low thermal conductivity. As the filter, a mesh-like or felt-like bag filter made of polyester, heat-resistant nylon, glass fiber or the like can be used.

【0029】[0029]

【発明の効果】分割容器を複数用いることにより、大型
化においても個々の容器に過大な重量がかからないた
め、容器の強度が小さくていいので、肉厚も薄くMHを
支えている容器の顕熱が小さくなり、COPが増大する
とともに、メンテナンス等の取扱いが簡単になる。また
部分分割容器の底面および側面を工夫した高伝熱面積の
熱媒管を内部に設置することにより、熱出力の向上が図
れる。これらのことから、水素吸蔵合金貯蔵装置、水素
精製装置、アクチュエーター等の水素吸蔵合金を用いる
システムの効率向上を図ることができる。
EFFECTS OF THE INVENTION By using a plurality of divided containers, each container does not have an excessive weight even when it is upsized, so that the strength of the container does not have to be small. Therefore, the wall thickness is thin and the sensible heat of the container supporting the MH is small. Becomes smaller, COP increases, and handling such as maintenance becomes easy. Further, the heat output can be improved by installing a heat transfer medium pipe having a high heat transfer area inside by devising the bottom surface and the side surface of the partial division container. From these facts, it is possible to improve the efficiency of a system using a hydrogen storage alloy, such as a hydrogen storage alloy storage device, a hydrogen purification device, and an actuator.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の水素吸蔵合金保持容器の側
面図である。
FIG. 1 is a side view of a hydrogen storage alloy holding container according to an embodiment of the present invention.

【図2】本発明の一実施例の水素吸蔵合金保持容器の断
面図である。
FIG. 2 is a sectional view of a hydrogen storage alloy holding container according to an embodiment of the present invention.

【図3】本発明の一実施例の分割容器に関する説明図で
ある。
FIG. 3 is an explanatory diagram of a divided container according to an embodiment of the present invention.

【図4】本発明の一実施例の分割容器の断面図である。FIG. 4 is a sectional view of a divided container according to an embodiment of the present invention.

【図5】従来の水素吸蔵合金保持容器を示した図であ
る。
FIG. 5 is a view showing a conventional hydrogen storage alloy holding container.

【図6】従来の熱媒管を容器中に設けた水素吸蔵合金を
保持する容器の断面図である。
FIG. 6 is a cross-sectional view of a container for holding a hydrogen storage alloy in which a conventional heat transfer medium pipe is provided in the container.

【図7】従来の熱媒管を容器の外部に設けた水素吸蔵合
金を保持する容器の断面図である。
FIG. 7 is a cross-sectional view of a container for holding a hydrogen storage alloy in which a conventional heat medium pipe is provided outside the container.

【符号の説明】[Explanation of symbols]

1 水素吸蔵合金保持容器 2 分割容器 3 熱媒管 4 熱媒取り出し口 5 熱媒管接続管 6 水素吸蔵合金 7 水素導入導出弁 8 熱媒導入口 9 熱媒導出口 10 フィン 11 フィルター 12 内部容器 13 容器内熱媒管 14 容器外熱媒管 15 熱媒導入口 1 Hydrogen Storage Alloy Holding Container 2 Split Container 3 Heat Transfer Pipe 4 Heat Transfer Port 5 Heat Transfer Pipe Connection Pipe 6 Hydrogen Storage Alloy 7 Hydrogen Storage Outlet Valve 8 Heat Transfer Port 9 Heat Transfer Port 10 Fin 11 Filter 12 Internal Container 13 Heat medium pipe inside container 14 Heat medium pipe outside container 15 Heat medium inlet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】容器内に水素を吸蔵または放出する水素吸
蔵合金を有し、水素吸蔵合金が水素を吸蔵・放出する際
に発生する反応熱を回収する熱媒管を有する水素吸蔵合
金保持容器において、水素ガスを保持し外殻を形成する
容器と、該容器の内部をその長手方向に平行に上下に分
割して得られる複数の箱型の分割容器と、各分割容器の
内部に配設された熱媒管とからなり、各々の分割容器が
分割容器の熱媒取り出し口と熱媒導入口とを熱媒管接続
管によって直列に接続したことを特徴とする水素吸蔵合
金保持容器。
1. A hydrogen storage alloy holding container having a hydrogen storage alloy for storing or releasing hydrogen in the container, and a heat transfer medium pipe for recovering reaction heat generated when the hydrogen storage alloy stores and releases hydrogen. In, a container that holds hydrogen gas and forms an outer shell, a plurality of box-shaped divided containers obtained by vertically dividing the inside of the container in parallel with the longitudinal direction, and disposed inside each divided container A hydrogen storage alloy holding container, characterized in that each of the divided containers has a heating medium take-out port and a heating medium introduction port of the divided container connected in series by a heating medium pipe connecting pipe.
【請求項2】箱型の分割容器の内部底面を、波の山と山
の間に間隔を設けた波型形状とし、かつ両端の山から間
隔を隔てて該容器側面に向かう部分を曲面としたことを
特徴とする請求項1に記載の水素吸蔵合金保持容器。
2. The inner bottom surface of the box-shaped divided container has a corrugated shape with a space between the crests of the wave, and a portion facing the side surface of the container with a space from the crests of both ends. The hydrogen storage alloy holding container according to claim 1, wherein
【請求項3】箱型の分割容器内に配設された熱媒管の外
表面に複数のフィンを設けたことを特徴とする請求項1
または2に記載の水素吸蔵合金保持容器。
3. A plurality of fins are provided on the outer surface of a heat transfer medium pipe arranged in a box-shaped divided container.
Alternatively, the hydrogen storage alloy holding container according to item 2.
JP6063578A 1994-03-31 1994-03-31 Hydrogen storage alloy holding container Withdrawn JPH07269795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6063578A JPH07269795A (en) 1994-03-31 1994-03-31 Hydrogen storage alloy holding container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6063578A JPH07269795A (en) 1994-03-31 1994-03-31 Hydrogen storage alloy holding container

Publications (1)

Publication Number Publication Date
JPH07269795A true JPH07269795A (en) 1995-10-20

Family

ID=13233290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6063578A Withdrawn JPH07269795A (en) 1994-03-31 1994-03-31 Hydrogen storage alloy holding container

Country Status (1)

Country Link
JP (1) JPH07269795A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1404578A1 (en) * 2001-07-10 2004-04-07 Energy Conversion Devices, Inc. Atomically engineered hydrogen storage alloys having extended storage capacity at high pressures and high pressure hydrogen storage units containing variable amounts thereof
KR102144518B1 (en) * 2019-02-22 2020-08-13 부산대학교 산학협력단 Cryogenic storage system for storing liquefied hydrogen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1404578A1 (en) * 2001-07-10 2004-04-07 Energy Conversion Devices, Inc. Atomically engineered hydrogen storage alloys having extended storage capacity at high pressures and high pressure hydrogen storage units containing variable amounts thereof
EP1404578A4 (en) * 2001-07-10 2005-08-03 Energy Conversion Devices Inc Atomically engineered hydrogen storage alloys having extended storage capacity at high pressures and high pressure hydrogen storage units containing variable amounts thereof
KR102144518B1 (en) * 2019-02-22 2020-08-13 부산대학교 산학협력단 Cryogenic storage system for storing liquefied hydrogen

Similar Documents

Publication Publication Date Title
US4928496A (en) Hydrogen heat pump
US7431756B2 (en) Modular metal hydride hydrogen storage system
US4270360A (en) Device for storage of hydrogen
US20120201719A1 (en) Tank for storing and withdrawing hydrogen and/or heat
US20060081483A1 (en) Hydrogen storage container and mixture therein
US20030209149A1 (en) Honeycomb hydrogen storage structure
US20060266219A1 (en) Metal hydride hydrogen storage system
US6708546B2 (en) Honeycomb hydrogen storage structure with restrictive neck
US4600525A (en) Hydrogen sorbent flow aid composition and containment thereof
JPH0527563B2 (en)
US5122338A (en) Hydrogen heat pump alloy combination
JPH07269795A (en) Hydrogen storage alloy holding container
JPS62288495A (en) Heat exchanger
JPS62241801A (en) Occlusion and release of hydrogen and apparatus therefor
JPS5925956B2 (en) metal hydride container
JP3032998B2 (en) Hydrogen storage alloy holding container
JPH07149501A (en) Vessel holding hydrogen-occluding alloy
JPH0253362B2 (en)
JP3425253B2 (en) Method and apparatus for recovering reaction heat of hydrogen storage alloy
JPH07252577A (en) Hydrogen occluding material
JPS6126719Y2 (en)
JPH07280492A (en) Heat exchanger using hydrogen absorbing alloy
JPH0650498A (en) Hydrogen storing and emitting device
KR940011075B1 (en) Heat pump
KR20230128775A (en) Hydrogen storage system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605