JP3425253B2 - Method and apparatus for recovering reaction heat of hydrogen storage alloy - Google Patents

Method and apparatus for recovering reaction heat of hydrogen storage alloy

Info

Publication number
JP3425253B2
JP3425253B2 JP04760795A JP4760795A JP3425253B2 JP 3425253 B2 JP3425253 B2 JP 3425253B2 JP 04760795 A JP04760795 A JP 04760795A JP 4760795 A JP4760795 A JP 4760795A JP 3425253 B2 JP3425253 B2 JP 3425253B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
hydrogen
heat
holding container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04760795A
Other languages
Japanese (ja)
Other versions
JPH08247570A (en
Inventor
藤 太 一 齋
田 善 正 池
田 洋 飯
嶋 正 雄 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Sumitomo Mitsui Construction Co Ltd
Original Assignee
Nippon Steel Corp
Sumitomo Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Sumitomo Mitsui Construction Co Ltd filed Critical Nippon Steel Corp
Priority to JP04760795A priority Critical patent/JP3425253B2/en
Publication of JPH08247570A publication Critical patent/JPH08247570A/en
Application granted granted Critical
Publication of JP3425253B2 publication Critical patent/JP3425253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金を用いた
ヒートポンプ、水素貯蔵装置、水素精製装置、アクチュ
エーター、熱の貯蔵等に用いられる、反応熱を迅速に回
収しうる水素吸蔵合金の反応熱回収方法および反応熱回
収装置に関するものである。
FIELD OF THE INVENTION The present invention relates to a reaction of a hydrogen storage alloy which can be used for heat pump, hydrogen storage device, hydrogen purification device, actuator, heat storage etc. The present invention relates to a heat recovery method and a reaction heat recovery device.

【0002】[0002]

【従来の技術】近年、水素をある種の金属あるいは合金
に吸蔵させて金属水素化物という形でヒートポンプ、水
素貯蔵装置、水素精製装置、アクチュエーター、熱の貯
蔵等に利用する方法が提案されている。金属水素化物を
つくる合金のうち−20℃〜300℃において水素を吸
蔵放出できる合金として、LaNi、CaNi、M
Ni、FeTi等が代表的なものである。これらの
合金は、特に水素吸蔵合金と呼ばれる。水素吸蔵合金
は、水素の吸蔵放出を迅速に行わせるため、表面積を増
やす必要から通常粉末状で用いられる。
2. Description of the Related Art In recent years, a method has been proposed in which hydrogen is stored in a metal or alloy of a certain kind and used in the form of a metal hydride for a heat pump, a hydrogen storage device, a hydrogen purification device, an actuator, heat storage and the like. . Among alloys that form metal hydrides, LaNi 5 , CaNi 5 , and M are alloys that can store and release hydrogen at −20 ° C. to 300 ° C.
Typical examples are g 2 Ni and FeTi. These alloys are especially called hydrogen storage alloys. The hydrogen storage alloy is usually used in the form of powder because it is necessary to increase the surface area in order to rapidly store and release hydrogen.

【0003】水素吸蔵合金を用いたシステムで重要なポ
イントは、水素の吸蔵−放出速度を増大させることであ
り、このためには、水素の吸蔵においては合金充填層内
における反応熱を効率良く水素吸蔵合金充填層の外部へ
取り除き、また、水素を放出する際には外部から合金充
填層内へ反応熱に相当する熱を効率良く供給しなければ
ならない。
An important point in a system using a hydrogen storage alloy is to increase the rate of storage and release of hydrogen. For this purpose, in the storage of hydrogen, the heat of reaction in the alloy packed bed is efficiently converted into hydrogen. When removing hydrogen from the storage alloy packed bed and releasing hydrogen, heat corresponding to reaction heat must be efficiently supplied from the outside into the alloy packed bed.

【0004】水素吸蔵合金を保持する容器は、一般的に
は、図3に示すように、水素吸蔵合金反応容器41中に
容器内熱媒管44を設けその中に熱媒を流し、水素吸蔵
合金42の発熱、吸熱の反応熱を除去し、水素化反応、
脱水素化反応を促進し、水素をフィルター43を通して
迅速な吸蔵放出を行っている。また、図4に示すよう
に、水素吸蔵合金反応容器51の外側の容器外熱媒管5
4に熱媒を流し、水素吸蔵合金52の発熱、吸熱の反応
熱を除去し、水素化反応、脱水素化反応を促進し、水素
をフィルター53を通して迅速な吸蔵放出を行ってい
る。
As shown in FIG. 3, the container for holding the hydrogen storage alloy is generally provided with an in-container heat transfer medium pipe 44 in a hydrogen storage alloy reaction container 41 to allow the heat transfer medium to flow therethrough to store the hydrogen storage alloy. Exothermic and endothermic reaction heat of the alloy 42 is removed, hydrogenation reaction,
The dehydrogenation reaction is promoted, and hydrogen is quickly absorbed and released through the filter 43. In addition, as shown in FIG. 4, the external heat medium pipe 5 outside the hydrogen storage alloy reaction container 51
A heat medium is caused to flow in 4 to remove the heat of reaction of the hydrogen storage alloy 52 from heat generation and heat absorption, promote hydrogenation reaction and dehydrogenation reaction, and perform rapid storage and release of hydrogen through the filter 53.

【0005】水素吸蔵合金は、水素の吸蔵時に金属粉末
の体積が15〜30%程度膨脹するため、水素吸蔵放出
に伴い合金の膨脹収縮がおこる。また、合金の微粉化も
進行するため、固定充填の場合容器下部において微粉末
が厚密化しやすく、容器に非常に大きな応力がかかるこ
とが指摘されていた。以上のことより、水素吸蔵合金を
充填する容器に対して、水素吸蔵合金の熱伝導率改善、
微粉化防止、合金の膨脹収縮時の容器に対する応力の緩
和を目的に、これまで種々の開発がなされてきた。
In the hydrogen storage alloy, the volume of the metal powder expands by about 15 to 30% when hydrogen is absorbed, so that the expansion and contraction of the alloy occur as the hydrogen is absorbed and released. Further, it has been pointed out that the fine powder of the alloy is apt to thicken in the lower part of the container in the case of fixed filling because the alloy is further pulverized, and a very large stress is applied to the container. From the above, for the container filled with the hydrogen storage alloy, the thermal conductivity of the hydrogen storage alloy is improved,
Various developments have been made so far for the purpose of preventing pulverization and relaxing the stress on the container when the alloy expands and contracts.

【0006】合金充填層の熱伝導改善の方法として、本
発明と最も近い技術では水素吸蔵合金を流動化させるこ
とにより、容器内熱媒管との伝熱を促進する方法があ
る。水素吸蔵合金を流動化させる方法については、合金
粉末を外部より容器を貫通するシャフトを用いて直接撹
拌し、流動化させることにより伝熱を良好にする方法
(特開昭60−60400号公報)、MH充填層に水素
を吹き込み流動層化して伝熱を促進する方法(特開昭6
2−241801号公報、特開昭63−129264号
公報、特開昭63−131963号公報、特開昭63−
140200号公報、特開昭63−265801号公
報)、流動層と移動層を組み合わせ伝熱を促進する方法
(特開昭63−140261号公報)、移動層により伝
熱を促進する方法(特公平3−53969号公報、特公
平4−44601号公報)がある。また本発明者らによ
る外部から振動を与えることにより容器内部の水素吸蔵
合金粉末を振動流動させることで伝熱促進を行わせる方
法(特開平4−160001号公報)等がある。
As a method for improving the heat conduction of the alloy packed bed, the closest technique to the present invention is to fluidize the hydrogen storage alloy to promote heat transfer with the heat transfer medium pipe in the container. Regarding the method of fluidizing the hydrogen storage alloy, a method of improving heat transfer by directly agitating the alloy powder from the outside by using a shaft penetrating the container and fluidizing it (Japanese Patent Laid-Open No. 60-60400). , MH packed bed with hydrogen to form a fluidized bed to accelerate heat transfer
2-241801, JP-A-63-129264, JP-A-63-131963, JP-A-63-
140200, JP-A-63-265801), a method of promoting heat transfer by combining a fluidized bed and a moving bed (JP-A-63-140261), and a method of promoting heat transfer by a moving bed (Japanese Patent Publication No. 3-53969, Japanese Patent Publication No. 4-44601). Further, there is a method by the present inventors (Japanese Patent Application Laid-Open No. 4-160001) in which the hydrogen storage alloy powder in the container is vibrated and fluidized by externally applying vibration to accelerate heat transfer.

【0007】[0007]

【発明が解決しようとする課題】外部から振動を与え、
熱交換を著しく促進させる特開平4−160001号公
報の方法では、外部から水素吸蔵合金保持容器に振動を
与えることにより、水素吸蔵合金反応容器内部の水素吸
蔵合金が流動し、水素吸蔵合金反応容器内部の熱媒管と
激しく接触することで水素吸蔵合金の保有する熱量が熱
媒管中の媒体に迅速に移動し著しく伝熱が促進される。
しかし、水素吸蔵合金は、水素の吸蔵放出に伴い結晶格
子膨脹収縮を繰り返すため微粉化するという特性があ
り、この影響により水素吸蔵合金の流動が次第に妨げら
れ、伝熱の効果が減少するという問題があった。
[Problems to be Solved by the Invention]
In the method of Japanese Patent Application Laid-Open No. 4-160001 in which heat exchange is remarkably promoted, by vibrating the hydrogen storage alloy holding container from the outside, the hydrogen storage alloy inside the hydrogen storage alloy reaction container flows and the hydrogen storage alloy reaction container By violently contacting the internal heat transfer medium pipe, the amount of heat held by the hydrogen storage alloy is rapidly transferred to the medium in the heat transfer medium pipe, and heat transfer is significantly promoted.
However, the hydrogen storage alloy has a characteristic that it is finely pulverized due to repeated expansion and contraction of the crystal lattice as it absorbs and releases hydrogen, and this effect gradually hinders the flow of the hydrogen storage alloy and reduces the heat transfer effect. was there.

【0008】一方、振動を加えることなく、水素吸蔵合
金反応容器の上部にある上部保持容器から、水素吸蔵合
金を水素吸蔵合金反応容器の熱媒管と接触させながら降
下させることにより水素吸蔵合金と熱媒管との熱交換を
行いつつ、水素吸蔵合金反応容器の下部にある下部保持
容器に移動させ、水素を吸蔵放出させることは可能であ
る。しかし、水素吸蔵合金は、水素吸蔵時に体積が15
〜30%膨脹し、水素放出時に体積が15〜30%縮小
するという特性があり、流動性を確保するために熱媒管
間を離す等の空間部を設けるため、伝熱面積の利用率が
低く、相対的に熱出力が小さいという問題がある。ま
た、水素吸蔵合金の安息角は40〜85度であって、流
動性はダスト並に悪いという問題があった。
On the other hand, without applying vibration, the hydrogen-absorbing alloy reaction vessel is brought down from the upper holding vessel in the upper part while being brought into contact with the heat transfer medium tube of the hydrogen-absorbing alloy reaction vessel to form the hydrogen-absorbing alloy. While exchanging heat with the heat transfer medium tube, it is possible to move the hydrogen storage alloy reaction vessel to a lower holding vessel below the hydrogen storage alloy reaction vessel to store and release hydrogen. However, the hydrogen storage alloy has a volume of 15 when storing hydrogen.
It has a characteristic that it expands by -30% and the volume shrinks by 15-30% when hydrogen is released. Since the space for separating the heat transfer tubes is provided to secure the fluidity, the utilization rate of the heat transfer area is increased. There is a problem that the heat output is low and the heat output is relatively small. Further, the angle of repose of the hydrogen storage alloy is 40 to 85 degrees, and there is a problem that the fluidity is as bad as dust.

【0009】本発明は、水素吸蔵合金と熱媒管との熱交
換を促進し、熱回収効率の高い反応熱回収方法および反
応熱回収装置を提供することを目的とする。
It is an object of the present invention to provide a reaction heat recovery method and a reaction heat recovery apparatus which promote heat exchange between a hydrogen storage alloy and a heat transfer medium tube and have high heat recovery efficiency.

【0010】[0010]

【課題を解決するための手段】本発明は、下記の事項を
その要旨としている。 (1) 水素吸蔵合金に水素を吸蔵させる際の発熱反応
による熱を熱媒管により熱交換して回収する水素吸蔵合
金の反応熱回収方法において、水素吸蔵合金保持容器の
上部に設置した上部保持容器に貯留した水素吸蔵合金を
振動させながら水素吸蔵合金保持容器内に降下させ、該
水素吸蔵合金保持容器内で水素を吸蔵させるとともに、
振動を加えながら該水素吸蔵合金保持容器内に設けた熱
媒管と吸蔵時に発熱した水素吸蔵合金を接触させて熱交
換して反応熱を回収した後、水素を吸蔵した水素吸蔵合
金を水素吸蔵合金保持容器の下部に設置した下部保持容
器に降下させ、回収することを特徴とする、水素吸蔵合
金の反応熱回収方法。 (2) 水素吸蔵合金から水素を放出させる際の吸熱反
応による熱を熱媒管により熱交換して回収する水素吸蔵
合金の反応熱回収方法において、水素吸蔵合金保持容器
の上部に設置した上部保持容器に貯留した水素を吸蔵し
た水素吸蔵合金を振動させながら水素吸蔵合金保持容器
内に降下させ、該水素吸蔵合金保持容器内で水素を放出
させるとともに、放出時に冷却された水素吸蔵合金を振
動を加えながら該水素吸蔵合金保持容器内に設けた熱媒
管と接触させて熱交換して反応熱を回収した後、水素を
放出した水素吸蔵合金を水素吸蔵合金保持容器の下部に
設置した下部保持容器に降下させ、回収することを特徴
とする、水素吸蔵合金の反応熱回収方法。 (3) 水素吸蔵合金に水素を吸蔵放出させる際の反応
熱を熱媒管により熱交換して回収する水素吸蔵用または
水素放出用の水素吸蔵合金保持容器を有する反応熱回収
装置において、該水素吸蔵合金保持容器内に複数の熱媒
管を水平方向に、互いに平行に配置し、該水素吸蔵合金
保持容器の上部および下部に水素吸蔵合金を貯留する保
持容器を設置し、該水素吸蔵合金保持容器を振動させる
加振機を有することを特徴とする、水素吸蔵合金の反応
熱回収装置。 (4) 水素吸蔵合金に水素を吸蔵放出させる際の反応
熱を熱媒管により熱交換して回収する水素吸蔵用または
水素放出用の水素吸蔵合金保持容器を有する反応熱回収
装置において、該水素吸蔵合金保持容器内に複数の熱媒
管を水平方向に、互いに平行に配置し、熱媒管端部を水
平方向全周にわたって支持する板状の熱媒管支持部材を
該水素吸蔵合金保持容器内に有し、前記熱媒管支持部材
を振動させる加振機を有することを特徴とする、水素吸
蔵合金の反応熱回収装置。 (5) 水素吸蔵合金保持容器の下部が下向きに絞られ
た円錐形状を有し、該円錐形状の側面の傾斜が水平に対
して30度以上70度以下である前記(3)の水素吸蔵
合金の反応熱回収装置。 (6) 水素吸蔵合金保持容器内に設置した熱媒管支持
部材の下部が、下向きに絞られた円錐形状を有し、該円
錐形状の側面の傾斜が水平に対して30度以上70度以
下である前記(4)の水素吸蔵合金の反応熱回収装置。
The gist of the present invention is as follows. (1) In a reaction heat recovery method for a hydrogen storage alloy, in which heat generated by an exothermic reaction when hydrogen is stored in a hydrogen storage alloy is recovered by heat exchange with a heat transfer medium pipe, an upper holding installed on an upper portion of a hydrogen storage alloy holding container While oscillating the hydrogen storage alloy stored in the container, it is lowered into the hydrogen storage alloy holding container to store hydrogen in the hydrogen storage alloy holding container,
While vibrating, the heat medium pipe provided in the hydrogen storage alloy holding container is brought into contact with the hydrogen storage alloy that has generated heat during storage to exchange heat to recover reaction heat, and then the hydrogen storage alloy that has stored hydrogen is stored in the hydrogen storage alloy. A method for recovering heat of reaction of a hydrogen storage alloy, characterized by lowering and recovering in a lower holding container installed at a lower part of the alloy holding container. (2) In the reaction heat recovery method of a hydrogen storage alloy, in which the heat due to the endothermic reaction when releasing hydrogen from the hydrogen storage alloy is exchanged by a heat medium tube to be recovered, the upper holding installed on the upper part of the hydrogen storage alloy holding container While lowering the hydrogen storage alloy holding hydrogen stored in the container into the hydrogen storage alloy holding container while vibrating, hydrogen is released in the hydrogen storage alloy holding container, and at the same time, the hydrogen storage alloy cooled at the time of the vibration is vibrated. While adding the hydrogen storage alloy holding container, it is brought into contact with a heat transfer medium pipe to exchange heat and recover reaction heat, and then the hydrogen storage alloy from which hydrogen has been released is held at the bottom of the hydrogen storage alloy holding container. A method for recovering reaction heat of a hydrogen storage alloy, characterized by lowering it in a container and recovering it. (3) In a reaction heat recovery apparatus having a hydrogen storage alloy holding container for hydrogen storage or hydrogen release, which collects the heat of reaction when hydrogen is stored and released in a hydrogen storage alloy by exchanging heat with a heat medium pipe. In the storage alloy holding container, a plurality of heat transfer medium pipes are arranged horizontally and in parallel with each other, and a holding container for storing the hydrogen storage alloy is installed above and below the hydrogen storage alloy holding container. A reaction heat recovery device for a hydrogen storage alloy, comprising a vibration exciter for vibrating a container. (4) In a reaction heat recovery device having a hydrogen storage alloy holding container for hydrogen storage or hydrogen release, which collects the heat of reaction when hydrogen is stored and released in a hydrogen storage alloy by heat exchange with a heat medium pipe. The hydrogen storage alloy holding container is provided with a plate-shaped heat transfer medium pipe support member for horizontally arranging a plurality of heat transfer medium pipes in the storage alloy holding container in parallel to each other and supporting the end portions of the heat transfer medium pipes over the entire circumference in the horizontal direction. A reaction heat recovery device for a hydrogen storage alloy, characterized in that it has a vibrating device which is provided inside and vibrates the heat medium pipe supporting member. (5) The hydrogen storage alloy according to the above (3), wherein the lower portion of the hydrogen storage alloy holding container has a conical shape that is squeezed downward, and the inclination of the side surface of the conical shape is 30 degrees or more and 70 degrees or less with respect to the horizontal. Reaction heat recovery equipment. (6) The lower part of the heat medium pipe support member installed in the hydrogen storage alloy holding container has a conical shape that is squeezed downward, and the inclination of the side surface of the conical shape is 30 degrees or more and 70 degrees or less with respect to the horizontal. The reaction heat recovery device for hydrogen storage alloy according to (4) above.

【0011】以下に、本発明を詳細に説明する。本発明
においては、水素吸蔵合金保持容器1の上部に設置した
上部保持容器2に貯留した水素を吸蔵した水素吸蔵合金
42を振動させながらこの保持容器内に降下させ、水素
を放出させる。また、この水素の放出時に冷却された水
素吸蔵合金に振動を加えながらこの保持容器内に設けた
熱媒管9と接触させて熱交換して反応熱を回収する。そ
の後、水素を放出した水素吸蔵合金をこの保持容器の下
部に設置した下部保持容器に降下させて回収する。これ
により、水素吸蔵合金の水素の吸蔵放出に伴い結晶格子
膨脹収縮を繰り返す。このため、微粉化するという特性
による水素吸蔵合金の流動の悪化が起こらないため、水
素吸蔵合金と熱媒管間の伝熱促進効果が接続する。
The present invention will be described in detail below. In the present invention, the hydrogen storage alloy 42 that stores hydrogen stored in the upper holding container 2 installed above the hydrogen storage alloy holding container 1 is vibrated and lowered into the holding container 42 to release hydrogen. In addition, while vibrating the cooled hydrogen storage alloy at the time of releasing the hydrogen, the hydrogen storage alloy is brought into contact with the heat medium pipe 9 provided in the holding container to exchange heat and recover the reaction heat. After that, the hydrogen storage alloy from which hydrogen has been released is lowered into the lower holding container installed at the lower part of this holding container and collected. As a result, the crystal lattice expansion and contraction are repeated as the hydrogen is absorbed and released in the hydrogen absorbing alloy. For this reason, the flow of the hydrogen storage alloy is not deteriorated due to the characteristic of being pulverized, so that the effect of promoting heat transfer between the hydrogen storage alloy and the heat transfer medium pipe is connected.

【0012】また、水素吸蔵合金の自然落下による流動
性を確保するために熱媒管間を離す等の空間部を設ける
ため伝熱面積の利用率が低くなり、相対的に熱出力が小
さいという問題がある。これについては、水素吸蔵合金
の安息角が大きいことを利用して流動性を制限し振動に
より排出することで、伝熱面積の利用率の向上と振動に
よる伝熱促進により熱回収率の高い反応熱回収を行うこ
とができる。
In addition, since the space for separating the heat medium tubes is provided in order to secure the fluidity of the hydrogen storage alloy due to the natural fall, the utilization rate of the heat transfer area becomes low and the heat output is relatively small. There's a problem. Regarding this, by utilizing the large angle of repose of the hydrogen storage alloy to limit the fluidity and discharging by vibration, the reaction with high heat recovery rate by improving the utilization rate of heat transfer area and promoting heat transfer by vibration. Heat recovery can be performed.

【0013】本発明者らの測定によれば、水素吸蔵合金
の安息角は、合金の種類や水素吸蔵量により変化する。
その安息角は45〜85度と大きく、水素吸蔵合金を保
持する円錐部がこの角度よりも小さいと水素吸蔵合金は
降下しない。安息角よりも大きな場合であっても、水素
吸蔵合金の降下量は一定せず、詰まったり流れたりとい
うように水素吸蔵合金の流動が不安定であった。また、
内部の熱媒管の配置により水素吸蔵合金の流動は大きく
影響を受け、安定な反応熱回収が難しかった。
According to the measurement by the present inventors, the angle of repose of the hydrogen storage alloy changes depending on the type of alloy and the hydrogen storage amount.
The angle of repose is as large as 45 to 85 degrees, and if the cone portion holding the hydrogen storage alloy is smaller than this angle, the hydrogen storage alloy does not descend. Even when the angle of repose was larger than the angle of repose, the amount of fall of the hydrogen storage alloy was not constant, and the flow of the hydrogen storage alloy was unstable such as clogging or flowing. Also,
The flow of the hydrogen storage alloy was greatly affected by the arrangement of the heat transfer tubes inside, and stable reaction heat recovery was difficult.

【0014】本発明においては、水素吸蔵合金の安息角
が40〜85度と高いことを利用し、熱交換器の上部お
よび下部にある粉体移動部の角度をこれより高い角度で
設置しておく。さらに、これに振動をかけることで、熱
媒管間の間隔が狭い高伝熱面積の場合においても水素吸
蔵合金の移動が可能となり、十分に熱媒管の伝熱面積を
利用することができる。
In the present invention, the fact that the angle of repose of the hydrogen storage alloy is as high as 40 to 85 degrees is utilized, and the angles of the powder moving parts at the upper part and the lower part of the heat exchanger are set higher than this. deep. Further, by vibrating this, the hydrogen storage alloy can be moved even in the case of a high heat transfer area where the space between the heat transfer tubes is narrow, and the heat transfer area of the heat transfer tube can be fully utilized. .

【0015】円錐部の傾斜については、水素吸蔵合金の
種類によるが、70度よりも大きくなると水素吸蔵合金
の流動を阻止する効果が小さくなり、30度よりも小さ
くなると流動させるための振動が大きくなる傾向にあ
る。従って、通常の水素吸蔵合金にあっては30〜70
度の傾斜で行うのが望ましい。しかし、形状の丸いガス
アトマイズ法によって製造された水素吸蔵合金にあって
は、その優れた流動性により30度よりも小さい傾斜角
になることが予想される。また、急冷法によって製造さ
れた箔状等の水素吸蔵合金にあっては、70度よりも大
きな傾斜が必要になると予想されるので、特殊な水素吸
蔵合金にあっては30〜70度に限定されるものではな
い。
The inclination of the conical portion depends on the type of the hydrogen storage alloy, but if it is larger than 70 degrees, the effect of preventing the flow of the hydrogen storage alloy becomes small, and if it is smaller than 30 degrees, the vibration for flowing becomes large. Tends to become. Therefore, in a normal hydrogen storage alloy, it is 30 to 70.
It is desirable to perform it with a gradient of degrees. However, it is expected that the hydrogen storage alloy manufactured by the gas atomizing method having a round shape has an inclination angle smaller than 30 degrees due to its excellent fluidity. In addition, since it is expected that a gradient of more than 70 degrees will be required for a hydrogen storage alloy such as foil produced by the quenching method, it is limited to 30 to 70 degrees for a special hydrogen storage alloy. It is not something that will be done.

【0016】水素吸蔵合金保持容器と上部保持容器およ
び下部保持容器の位置関係は、基本的には縦に積み重ね
型であるが、粉体輸送装置のごとく振動装置の設置場所
により横に並べて配置し、水素吸蔵合金を水平方向に移
動することも可能である。
The positional relationship between the hydrogen storage alloy holding container, the upper holding container and the lower holding container is basically a vertically stacked type, but they are arranged side by side depending on the installation location of the vibration device such as a powder transport device. It is also possible to move the hydrogen storage alloy horizontally.

【0017】水素吸蔵保持容器内を降下する水素吸蔵合
金と熱交換を効率的に行うためには、熱媒管の配置を水
素吸蔵保持容器内に水平に互いに平行にかつ、垂直断面
方向で千鳥配置等にすることにより、熱媒管と水素吸蔵
合金との熱交換を向上させることができる。振動はバイ
ブレーター、ノッカー等を用いることができ、振動の駆
動力は一般的には電気力、ガス圧等を用いることができ
るが、水素吸蔵合金反応容器内部に振動装置を設置する
場合は、不活性ガスまたは同じ組成ガスを用いて振動装
置内部の重りを動かすことで振動を発生させるガス圧駆
動が望ましい。
In order to efficiently exchange heat with the hydrogen storage alloy descending in the hydrogen storage holding container, the heat medium tubes are arranged in the hydrogen storage holding container horizontally in parallel with each other and in a zigzag pattern in the vertical cross section. By arranging it, the heat exchange between the heat medium tube and the hydrogen storage alloy can be improved. A vibrator, a knocker, etc. can be used for the vibration, and an electric force, a gas pressure, etc. can be generally used as the driving force for the vibration, but when a vibration device is installed inside the hydrogen storage alloy reaction vessel, It is desirable to use gas pressure driving in which vibration is generated by moving a weight inside the vibration device using an active gas or the same composition gas.

【0018】振動力は重力加速度に逆らって粉体を動か
すために2G以上を目安にするが、水素吸蔵合金の粒度
分布により振動力は変化させる必要があり、粒度が小さ
い場合は2Gより大きくする必要がある。ガス圧駆動の
バイブレーターを用いた場合には、ガス流速を変化させ
ることにより振動装置内部の重りの動く速度を変化させ
ることができるため、振動加速度を変化させることがで
き、水素吸蔵合金の移動速度を制御することができる。
The vibration force is set to 2 G or more in order to move the powder against the gravitational acceleration, but it is necessary to change the vibration force depending on the particle size distribution of the hydrogen storage alloy. If the particle size is small, the vibration force should be larger than 2 G. There is a need. When a gas pressure driven vibrator is used, the moving speed of the weight inside the vibration device can be changed by changing the gas flow velocity, so the vibration acceleration can be changed and the moving speed of the hydrogen storage alloy can be changed. Can be controlled.

【0019】下部保持容器と上部保持容器をチューブラ
ーコンベアーで連結させ、水素吸蔵合金を下部保持容器
から上部保持容器へ移動させる。その後、上部保持容器
から水素吸蔵合金反応容器を介して下部保持容器へ移動
させることで、水素吸蔵合金を循環させることができ
る。水素吸蔵合金を下から上への持ち上げる装置とし
て、チューブラーコンベアーの他にバケットコンベアー
等を用いることができる。水素吸蔵合金反応容器と上部
保持容器および下部保持容器の間にはバタフライ弁等の
弁を入れてもよい。弁を入れることにより水素吸蔵合金
反応容器内部の点検等がしやすくなる。
The lower holding container and the upper holding container are connected by a tubular conveyor, and the hydrogen storage alloy is moved from the lower holding container to the upper holding container. Then, the hydrogen storage alloy can be circulated by moving it from the upper holding container to the lower holding container via the hydrogen storage alloy reaction container. As a device for lifting the hydrogen storage alloy from the bottom to the top, a bucket conveyor or the like can be used in addition to the tubular conveyor. A valve such as a butterfly valve may be inserted between the hydrogen storage alloy reaction container and the upper holding container and the lower holding container. By inserting a valve, it becomes easier to inspect the inside of the hydrogen storage alloy reaction vessel.

【0020】水素吸蔵に使用する合金に関してはほとん
どの種類の水素吸蔵合金を用いることができる。Ti系
水素吸蔵合金は粒度分布が一般的に大きい方に偏ってい
るので、本発明の方法および装置に用いる水素吸蔵合金
はTi系が望ましい。しかし、微粉化の著しい希土類系
水素吸蔵合金においても流動が十分に促進されるため高
出力を得ることが可能である。
With respect to the alloy used for hydrogen storage, almost any type of hydrogen storage alloy can be used. Since the Ti-based hydrogen storage alloy generally has a larger particle size distribution, the hydrogen storage alloy used in the method and apparatus of the present invention is preferably Ti-based. However, even in a rare earth-based hydrogen storage alloy that is significantly pulverized, the flow is sufficiently promoted, so that it is possible to obtain a high output.

【0021】[0021]

【実施例】以下、本発明を実施例によりさらに説明す
る。本発明の水素吸蔵放出装置において、水素吸蔵合金
反応容器全体を外部から振動させる装置を図1に示す。
また、水素吸蔵合金反応容器の内部を振動させる装置
を、図2に示す。
EXAMPLES The present invention will be further described below with reference to examples. FIG. 1 shows an apparatus for vibrating the entire hydrogen storage alloy reaction vessel from the outside in the hydrogen storage / release apparatus of the present invention.
An apparatus for vibrating the inside of the hydrogen storage alloy reaction container is shown in FIG.

【0022】図1の熱媒管部を外部から振動させる装置
では、図1の左側に示す水素放出工程用として外径50
0mm、長さ500mmの水素吸蔵合金保持容器1、外
径300mm、長さ500mmの上部保持容器2、下部
保持容器3を用いた。水素吸蔵合金保持容器1の内部に
は、図示しない水素吸蔵合金の反応熱を外部に取り出す
ための熱媒管導入導出管7が設置されている。水素は水
素導出管8から放出される。
In the apparatus for vibrating the heat transfer medium pipe portion shown in FIG. 1 from the outside, an outer diameter 50 for the hydrogen releasing step shown on the left side of FIG.
A hydrogen storage alloy holding container 1 having a length of 0 mm and a length of 500 mm, an upper holding container 2 and a lower holding container 3 having an outer diameter of 300 mm and a length of 500 mm were used. Inside the hydrogen storage alloy holding container 1, a heat medium pipe introduction / extraction pipe 7 for taking out reaction heat of the hydrogen storage alloy (not shown) to the outside is installed. Hydrogen is released from the hydrogen outlet pipe 8.

【0023】また、図1の右側に示す水素吸蔵工程用と
して外径500mm、長さ500mmの水素吸蔵合金保
持容器11、外径300mm、長さ500mmの上部保
持容器22、下部保持容器33を用いた。水素吸蔵合金
保持容器11の内部には、図示しない水素吸蔵合金の反
応熱を外部に取り出すための熱媒管導入導出管77が水
平で互いに平行になるように設置されている。水素は水
素導出管88から吸蔵される。
Further, for the hydrogen storage step shown on the right side of FIG. 1, a hydrogen storage alloy holding container 11 having an outer diameter of 500 mm and a length of 500 mm, an upper holding container 22 having an outer diameter of 300 mm and a length of 500 mm, and a lower holding container 33 are used. I was there. Inside the hydrogen storage alloy holding container 11, heat medium pipe introduction / delivery pipes 77 for taking out reaction heat of a hydrogen storage alloy (not shown) to the outside are installed so as to be horizontal and parallel to each other. Hydrogen is stored in the hydrogen outlet pipe 88.

【0024】振動は水素吸蔵合金保持容器1の側面に鉛
直方向に対して45度の向きに互い違いに設置されたバ
イブレーター4,5により行う。水素吸蔵合金反応容器
1,11はスプリング6により、上部保持容器、下部保
持容器、スプリングは図示しない架台20により支持さ
れる。水素吸蔵合金保持容器下部は下向きに絞られた円
錐形状を有しており、水素吸蔵合金の安息角に合わせて
選択する。実施例では45度とした。
The vibration is performed by the vibrators 4 and 5 which are alternately installed on the side surface of the hydrogen storage alloy holding container 1 in a direction of 45 degrees with respect to the vertical direction. The hydrogen storage alloy reaction vessels 1 and 11 are supported by a spring 6, and an upper holding vessel, a lower holding vessel, and a spring are supported by a mount 20 (not shown). The lower part of the hydrogen storage alloy holding container has a conical shape that is squeezed downward, and is selected according to the repose angle of the hydrogen storage alloy. In the embodiment, it is set to 45 degrees.

【0025】水素吸蔵合金はLaNiを34kg用
い、活性化操作を行った。活性化操作は以下の通りであ
る。水素吸蔵合金を上部保持容器2に充填し、熱媒管導
入導出管7に80℃程度の温水を流し、真空排気を行
う。これとともにバイブレーター4,5を駆動させて振
動を加え、水素吸蔵放出反応容器1の内部の熱媒管9に
接触させながら下部保持容器3に移動させる。次に、チ
ューブラーコンベアー21で上部保持容器22に移動さ
せた後、水素吸蔵合金反応容器11の内部の熱媒管導入
導出管77に25℃の冷却水を流し、圧力9kg/cm
2 の水素を導入する。さらに、バイブレーター4,5を
駆動させ2.2Gの振動を加えながら上部保持容器22
中の水素吸蔵合金を水素吸蔵合金反応容器11の内部の
熱媒管99に接触させ、下部保持容器33に向かって移
動させる。次に、チューブラーコンベアー21で上部保
持容器2に移動させた後、これを10回繰り返した。
As the hydrogen storage alloy, 34 kg of LaNi 5 was used and the activation operation was performed. The activation operation is as follows. The hydrogen storage alloy is filled in the upper holding container 2, hot water of about 80 ° C. is caused to flow through the heat medium pipe introduction / extraction pipe 7, and vacuum exhaust is performed. At the same time, the vibrators 4 and 5 are driven and vibrated, and the vibrators 4 and 5 are moved to the lower holding container 3 while being in contact with the heat transfer medium pipe 9 inside the hydrogen storage / release reaction container 1. Next, after moving to the upper holding container 22 by the tubular conveyor 21, cooling water at 25 ° C. is caused to flow through the heat medium pipe introducing / deriving pipe 77 inside the hydrogen storage alloy reaction container 11, and the pressure is 9 kg / cm 2.
Introduce 2 hydrogen. Furthermore, the vibrators 4 and 5 are driven and the upper holding container 22 is applied while applying a vibration of 2.2G.
The hydrogen storage alloy therein is brought into contact with the heat transfer medium tube 99 inside the hydrogen storage alloy reaction vessel 11 and moved toward the lower holding vessel 33. Next, after moving to the upper holding container 2 with the tubular conveyor 21, this was repeated 10 times.

【0026】活性化終了後、水素吸蔵合金から水素を放
出させる。その後、上部保持容器22に移動させ、水素
吸蔵合金反応容器11の内部の熱媒管導入導出管77に
25℃の冷却水を流し、圧力9kg/cm2 の水素を導
入する。さらに、バイブレーター4,5を駆動させ振動
を加えながら上部保持容器22中の水素吸蔵合金を水素
吸蔵合金反応容器11の内部の熱媒管99に接触させ、
下部保持容器33に向かって移動させた。この時の水素
吸蔵時の反応熱を熱媒管により外部に取り出し、熱移動
量を測定した。また、水素吸蔵合金としてTi0.62Zr
0.8 Mn0.8 CrCu0.2 を用いて同様に行った。
After completion of activation, hydrogen is released from the hydrogen storage alloy. After that, it is moved to the upper holding container 22, cooling water at 25 ° C. is caused to flow through the heat medium pipe introduction / extraction pipe 77 inside the hydrogen storage alloy reaction container 11, and hydrogen at a pressure of 9 kg / cm 2 is introduced. Further, while driving the vibrators 4 and 5 to apply vibration, the hydrogen storage alloy in the upper holding container 22 is brought into contact with the heat transfer medium tube 99 inside the hydrogen storage alloy reaction container 11,
It was moved toward the lower holding container 33. At this time, the reaction heat at the time of hydrogen storage was taken out to the outside by a heat medium tube, and the heat transfer amount was measured. Also, as a hydrogen storage alloy, Ti 0.62 Zr
The same procedure was performed using 0.8 Mn 0.8 CrCu 0.2 .

【0027】図2に示す内部で振動させる装置では、熱
媒管部を水平方向全周にわたって支持する熱媒管支持管
支持板100にガス駆動型バイブレーター14を設置
し、駆動用のガスは駆動用ガス導入導出管15で導入導
出される。水素吸蔵合金保持容器内部の熱媒管支持部材
の先端は下向きに絞られた円錐形状であり、該円錐形状
の側面の傾斜が水平に対して45度にしたものを用い
た。図1の装置と同様に、活性化操作を行った。水素吸
蔵合金にはLaNiを34kg用い、水素吸蔵合金か
ら水素を放出させた後、上部保持容器22に移動させ、
水素吸蔵合金反応容器11の内部の熱媒管導入導出管7
7に25℃の冷却水を流し、圧力9kg/cm2 の水素
を導入する。さらに、ガス駆動型バイブレーター14を
駆動させ振動を加えながら、上部保持容器22中の水素
吸蔵合金を水素吸蔵合金反応容器11の内部の熱媒管9
9に接触させ、下部保持容器33に向かって移動させ
た。この時の水素吸蔵時の反応熱を熱媒管により外部に
取り出し、熱移動量を測定した。また、水素吸蔵合金と
してTi0.62Zr0.8 Mn0.8 CrCu0.2 を用いて同
様に行った。
In the apparatus for vibrating inside shown in FIG. 2, the gas driving type vibrator 14 is installed on the heat medium pipe supporting tube support plate 100 which supports the heat medium pipe portion over the entire circumference in the horizontal direction, and the driving gas is driven. The gas is introduced and led out by the gas introduction and delivery pipe 15. The tip of the heat medium tube support member inside the hydrogen storage alloy holding container was a conical shape that was squeezed downward, and the side surface of the conical shape was inclined at 45 degrees with respect to the horizontal. The activation operation was performed in the same manner as in the device of FIG. 34 kg of LaNi 5 was used as the hydrogen storage alloy, and after releasing hydrogen from the hydrogen storage alloy, it was moved to the upper holding container 22,
Heat medium pipe introduction and extraction pipe 7 inside the hydrogen storage alloy reaction container 11
Cooling water at 25 ° C. is caused to flow into 7, and hydrogen having a pressure of 9 kg / cm 2 is introduced. Furthermore, while driving the gas-driven vibrator 14 to apply vibration, the hydrogen storage alloy in the upper holding container 22 is heated by the heat transfer pipe 9 inside the hydrogen storage alloy reaction container 11.
9 and was moved toward the lower holding container 33. At this time, the reaction heat at the time of hydrogen storage was taken out to the outside by a heat medium tube, and the heat transfer amount was measured. The same procedure was performed using Ti 0.62 Zr 0.8 Mn 0.8 CrCu 0.2 as the hydrogen storage alloy.

【0028】実施例および比較例の結果を、表1にまと
めて示す。比較例では、水素吸蔵合金の微粉化により流
動が妨げられたり伝熱面が有効に使用されていない。こ
れに対して、実施例では粒径が小さい場合においても伝
熱量の増大を示し、水素吸蔵合金に水素を吸蔵させる際
の反応熱の迅速な熱回収が行われていることを示してい
る。実施例には示していないが、水素吸蔵合金から水素
を放出させる場合においても、振動により伝熱面が有効
に使用され、反応の迅速である伝熱が促進され、水素吸
蔵合金に水素を放出させる際の反応熱の迅速は熱回収を
行うことができた。
The results of Examples and Comparative Examples are summarized in Table 1. In the comparative example, the flow is hindered by the pulverization of the hydrogen storage alloy and the heat transfer surface is not used effectively. On the other hand, in the examples, the amount of heat transfer increases even when the particle size is small, indicating that the heat of reaction when the hydrogen storage alloy stores hydrogen is rapidly recovered. Although not shown in the examples, even when hydrogen is released from the hydrogen storage alloy, the heat transfer surface is effectively used by the vibration, and the heat transfer, which is a rapid reaction, is promoted, and hydrogen is released to the hydrogen storage alloy. It was possible to recover the heat quickly in the reaction heat.

【0029】[0029]

【表1】 [Table 1]

【0030】以上のことより、本発明の水素吸蔵合金の
反応熱回収方法および反応熱回収装置を用いれば、伝熱
量の増大、反応の迅速化を行うことが可能であることが
わかる。
From the above, it can be seen that it is possible to increase the amount of heat transfer and accelerate the reaction by using the reaction heat recovery method and reaction heat recovery apparatus for a hydrogen storage alloy of the present invention.

【0031】[0031]

【発明の効果】本発明の水素吸蔵合金の反応熱回収方法
および反応熱回収装置を用いることで、伝熱面の利用率
の向上と振動による伝熱促進により、水素吸蔵合金と熱
媒管の間の伝熱量が高くなり迅速は熱回収を行うことが
できる。これにより、水素吸蔵合金を利用したシステム
としてヒートポンプ、水素吸蔵装置、素水精製装置、ア
クチュエーター、熱の貯蔵等の有効利用を図ることがで
きる。
EFFECTS OF THE INVENTION By using the reaction heat recovery method and apparatus for recovering hydrogen storage alloy of the present invention, the utilization factor of the heat transfer surface is improved and the heat transfer is promoted by vibration, so that the hydrogen storage alloy and the heat transfer pipe are The amount of heat transfer during that time becomes high, and heat can be recovered quickly. As a result, it is possible to effectively use a heat pump, a hydrogen storage device, a raw water purification device, an actuator, a heat storage, etc. as a system using the hydrogen storage alloy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の水素吸蔵合金反応容器全体を
外部から振動させる装置を示した説明図である。
FIG. 1 is an explanatory view showing an apparatus for externally vibrating a hydrogen storage alloy reaction container according to an embodiment of the present invention.

【図2】本発明の別の実施例の水素吸蔵合金反応容器の
内部を振動させる装置を示した説明図である。
FIG. 2 is an explanatory view showing an apparatus for vibrating the inside of a hydrogen storage alloy reaction container according to another embodiment of the present invention.

【図3】熱媒管を容器中に設けた水素吸蔵合金を保持す
る容器の断面図である。
FIG. 3 is a cross-sectional view of a container holding a hydrogen storage alloy in which a heat transfer medium pipe is provided in the container.

【図4】熱媒管を容器の外部に設けた水素吸蔵合金を保
持する容器の断面図である。
FIG. 4 is a cross-sectional view of a container holding a hydrogen storage alloy in which a heat transfer medium pipe is provided outside the container.

【符号の説明】[Explanation of symbols]

1,11,41,51 水素吸蔵合金保持容器 2,22 上部保持容器 3,33 下部保持容器 4,5 バイブレーター 6 スプリング 14 ガス駆動型バイブレーター 15 駆動用ガス導入導出管 7,77 熱媒管導入導出管 8,88 水素導出管 9,99 熱媒管 20 架台 21 チューブラーコンベアー 100 熱媒管支持部材 42 52 水素吸蔵合金 43,53 フィルター 44 容器内熱媒配管 54 容器外熱媒配管 1,11,41,51 Hydrogen storage alloy holding container 2,22 Upper holding container 3,33 Lower holding container 4,5 vibrator 6 spring 14 Gas-driven vibrator 15 Driving gas inlet / outlet pipe 7,77 Heat medium pipe introduction and extraction pipe 8,88 Hydrogen outlet pipe 9,99 Heat medium pipe 20 mounts 21 tubular conveyor 100 Heat medium tube support member 42 52 Hydrogen storage alloy 43,53 filter 44 Heat medium piping in container 54 Heat medium piping outside the container

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯 田 洋 富津市新富20−1 新日本製鐵株式会社 技術開発本部内 (72)発明者 中 嶋 正 雄 東京都千代田区岩本町3丁目10番1号 三井建設株式会社内 (56)参考文献 特開 平4−309762(JP,A) 特開 平2−120201(JP,A) 特開 昭63−140261(JP,A) 特公 平4−44601(JP,B2) (58)調査した分野(Int.Cl.7,DB名) F25B 17/12 B01J 19/00 C01B 3/00 F17C 11/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Iida 20-1 Shintomi, Futtsu City Nippon Steel Co., Ltd. Technical Development Division (72) Inventor Masao Nakajima 3-10-10 Iwamotocho, Chiyoda-ku, Tokyo No. 1 in Mitsui Construction Co., Ltd. (56) Reference JP-A-4-309762 (JP, A) JP-A-2-120201 (JP, A) JP-A-63-140261 (JP, A) JP-B 4- 44601 (JP, B2) (58) Fields surveyed (Int.Cl. 7 , DB name) F25B 17/12 B01J 19/00 C01B 3/00 F17C 11/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水素吸蔵合金に水素を吸蔵させる際の発熱
反応による熱を熱媒管により熱交換して回収する水素吸
蔵合金の反応熱回収方法において、水素吸蔵合金保持容
器の上部に設置した上部保持容器に貯留した水素吸蔵合
金を振動させながら水素吸蔵合金保持容器内に降下さ
せ、該水素吸蔵合金保持容器内で水素を吸蔵させるとと
もに、振動を加えながら該水素吸蔵合金保持容器内に設
けた熱媒管と吸蔵時に発熱した水素吸蔵合金を接触させ
て熱交換して反応熱を回収した後、水素を吸蔵した水素
吸蔵合金を水素吸蔵合金保持容器の下部に設置した下部
保持容器に降下させ、回収することを特徴とする、水素
吸蔵合金の反応熱回収方法。
1. A reaction heat recovery method for a hydrogen storage alloy, wherein heat generated by an exothermic reaction when hydrogen is stored in a hydrogen storage alloy is exchanged by a heat medium tube to recover the heat, and the reaction heat recovery method is installed at an upper portion of a hydrogen storage alloy holding container. While vibrating the hydrogen storage alloy stored in the upper holding container, the hydrogen storage alloy holding container is lowered into the hydrogen storage alloy holding container so that hydrogen is stored in the hydrogen storage alloy holding container. After contacting the heat transfer medium tube with the hydrogen storage alloy that generated heat during storage, heat exchange was performed to recover the reaction heat, and then the hydrogen storage alloy that stored hydrogen was dropped to the lower holding container installed at the bottom of the hydrogen storage alloy holding container. A method for recovering reaction heat of a hydrogen storage alloy, characterized by recovering and recovering the hydrogen storage alloy.
【請求項2】水素吸蔵合金から水素を放出させる際の吸
熱反応による熱を熱媒管により熱交換して回収する水素
吸蔵合金の反応熱回収方法において、水素吸蔵合金保持
容器の上部に設置した上部保持容器に貯留した水素を吸
蔵した水素吸蔵合金を振動させながら水素吸蔵合金保持
容器内に降下させ、該水素吸蔵合金保持容器内で水素を
放出させるとともに、放出時に冷却された水素吸蔵合金
を振動を加えながら該水素吸蔵合金保持容器内に設けた
熱媒管と接触させて熱交換して反応熱を回収した後、水
素を放出した水素吸蔵合金を水素吸蔵合金保持容器の下
部に設置した下部保持容器に降下させ、回収することを
特徴とする、水素吸蔵合金の反応熱回収方法。
2. A reaction heat recovery method for a hydrogen storage alloy, wherein heat generated by an endothermic reaction when releasing hydrogen from a hydrogen storage alloy is exchanged by a heat medium tube to recover the hydrogen, and the reaction heat recovery method is installed at an upper portion of a hydrogen storage alloy holding container. While lowering the hydrogen storage alloy holding hydrogen stored in the upper holding container into the hydrogen storage alloy holding container while vibrating the hydrogen storage alloy holding container, hydrogen is released in the hydrogen storage alloy holding container, and the hydrogen storage alloy cooled at the time of release is released. While vibrating, the heat storage tube provided in the hydrogen storage alloy holding container was brought into contact with the heat transfer medium to exchange heat to recover reaction heat, and then the hydrogen storage alloy that released hydrogen was placed at the bottom of the hydrogen storage alloy holding container. A method for recovering reaction heat of a hydrogen storage alloy, characterized by lowering it to a lower holding container and recovering it.
【請求項3】水素吸蔵合金に水素を吸蔵放出させる際の
反応熱を熱媒管により熱交換して回収する水素吸蔵用ま
たは水素放出用の水素吸蔵合金保持容器を有する反応熱
回収装置において、該水素吸蔵合金保持容器内に複数の
熱媒管を水平方向に、互いに平行に配置し、該水素吸蔵
合金保持容器の上部および下部に水素吸蔵合金を貯留す
る保持容器を設置し、該水素吸蔵合金保持容器を振動さ
せる加振機を有することを特徴とする、水素吸蔵合金の
反応熱回収装置。
3. A reaction heat recovery device having a hydrogen storage alloy holding container for hydrogen storage or hydrogen release, which recovers the heat of reaction when hydrogen is stored and released in a hydrogen storage alloy by exchanging heat with a heat transfer medium pipe. In the hydrogen storage alloy holding container, a plurality of heat transfer medium pipes are arranged in parallel with each other in a horizontal direction, and a holding container for storing the hydrogen storage alloy is installed above and below the hydrogen storage alloy holding container. A reaction heat recovery device for hydrogen storage alloy, comprising a vibrating device for vibrating the alloy holding container.
【請求項4】水素吸蔵合金に水素を吸蔵放出させる際の
反応熱を熱媒管により熱交換して回収する水素吸蔵用ま
たは水素放出用の水素吸蔵合金保持容器を有する反応熱
回収装置において、該水素吸蔵合金保持容器内に複数の
熱媒管を水平方向に、互いに平行に配置し、熱媒管端部
を水平方向全周にわたって支持する板状の熱媒管支持部
材を該水素吸蔵合金保持容器内に有し、前記熱媒管支持
部材を振動させる加振機を有することを特徴とする、水
素吸蔵合金の反応熱回収装置。
4. A reaction heat recovery apparatus having a hydrogen storage alloy holding container for hydrogen storage or hydrogen release for recovering the heat of reaction when hydrogen is stored and released in a hydrogen storage alloy by heat exchange with a heat transfer medium pipe. In the hydrogen storage alloy holding container, a plurality of heat transfer medium tubes are horizontally arranged in parallel with each other, and a plate-shaped heat transfer medium tube support member for supporting the end portions of the heat transfer medium tubes in the horizontal direction is provided as the hydrogen storage alloy. A reaction heat recovery device for a hydrogen storage alloy, characterized in that it has a vibration exciter which is provided in a holding container and vibrates the heat medium pipe supporting member.
【請求項5】水素吸蔵合金保持容器の下部が下向きに絞
られた円錐形状を有し、該円錐形状の側面の傾斜が水平
に対して30度以上70度以下であることを特徴とする
請求項3記載の水素吸蔵合金の反応熱回収装置。
5. The hydrogen storage alloy holding container has a lower portion having a conical shape that is squeezed downward, and the inclination of the side surface of the conical shape is 30 degrees or more and 70 degrees or less with respect to the horizontal. Item 3. A reaction heat recovery device for hydrogen storage alloy according to Item 3.
【請求項6】水素吸蔵合金保持容器内に設置した熱媒管
支持部材の下部が、下向きに絞られた円錐形状を有し、
該円錐形状の側面の傾斜が水平に対して30度以上70
度以下であることを特徴とする請求項4記載の水素吸蔵
合金の反応熱回収装置。
6. A lower part of the heat medium pipe supporting member installed in the hydrogen storage alloy holding container has a conical shape that is squeezed downward.
The inclination of the side surface of the conical shape is 30 degrees or more with respect to the horizontal 70
The reaction heat recovery device for hydrogen storage alloy according to claim 4, wherein the reaction heat recovery device is less than 100 degrees.
JP04760795A 1995-03-07 1995-03-07 Method and apparatus for recovering reaction heat of hydrogen storage alloy Expired - Fee Related JP3425253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04760795A JP3425253B2 (en) 1995-03-07 1995-03-07 Method and apparatus for recovering reaction heat of hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04760795A JP3425253B2 (en) 1995-03-07 1995-03-07 Method and apparatus for recovering reaction heat of hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JPH08247570A JPH08247570A (en) 1996-09-27
JP3425253B2 true JP3425253B2 (en) 2003-07-14

Family

ID=12779931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04760795A Expired - Fee Related JP3425253B2 (en) 1995-03-07 1995-03-07 Method and apparatus for recovering reaction heat of hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP3425253B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803573B2 (en) * 2005-03-16 2011-10-26 株式会社日本製鋼所 Heat transfer device

Also Published As

Publication number Publication date
JPH08247570A (en) 1996-09-27

Similar Documents

Publication Publication Date Title
US8985319B2 (en) Hydrogen storage tank having metal hydrides
US20150010467A1 (en) Continuous fixed-bed catalytic reactor and catalytic reaction method using same
EP0114869A1 (en) Hydrogen sorbent flowaid composition and containment thereof
JP3425253B2 (en) Method and apparatus for recovering reaction heat of hydrogen storage alloy
JPH01252501A (en) Hydrogen occlusion alloy reactor
JPS58217401A (en) Method of separating hydrogen from gas mixture
JP3839846B2 (en) Vertical catalytic reactor
JPS62241801A (en) Occlusion and release of hydrogen and apparatus therefor
JP4098043B2 (en) Method for producing hydrogen storage alloy storage container
JPH09250835A (en) Hydrogen occlusive metallic alloy reaction heat recovery device
JP2952407B2 (en) Fluidized bed reactor for hydrogen storage alloy
JPH07269795A (en) Hydrogen storage alloy holding container
JPH0650498A (en) Hydrogen storing and emitting device
JPH10267454A (en) Travel layer reaction heat recovery device of hydrogen occlusion alloy
JPS591950B2 (en) Structure of heat exchanger using hydrogen storage metal
JPH10194701A (en) Absorption and release of hydrogen and vessel for storing hydrogen
JPH07252577A (en) Hydrogen occluding material
JPH07149501A (en) Vessel holding hydrogen-occluding alloy
JP3104779B2 (en) Hydrogen storage device using hydrogen storage alloy
JPH07289853A (en) Device for separating and concentrating hydrogen isotope
JPH06249400A (en) Hydrogen storage alloy holding container
JPH01294501A (en) Hydrogen gas purifier and method for purification
JPS60122036A (en) Reactor packed with catalyst
JPH04331701A (en) Activation promotion for hydrogen-occlusive alloy
JPS62132099A (en) Container for hydrogen absorbing alloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030325

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees