JPH09142801A - Vessel with hydrogen-occluded alloy molding housed therein and method of housing the same - Google Patents

Vessel with hydrogen-occluded alloy molding housed therein and method of housing the same

Info

Publication number
JPH09142801A
JPH09142801A JP7307307A JP30730795A JPH09142801A JP H09142801 A JPH09142801 A JP H09142801A JP 7307307 A JP7307307 A JP 7307307A JP 30730795 A JP30730795 A JP 30730795A JP H09142801 A JPH09142801 A JP H09142801A
Authority
JP
Japan
Prior art keywords
hydrogen
container
molded body
hydrogen gas
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7307307A
Other languages
Japanese (ja)
Inventor
Koichi Nishimura
康一 西村
Shin Fujitani
伸 藤谷
Ikuro Yonezu
育郎 米津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7307307A priority Critical patent/JPH09142801A/en
Publication of JPH09142801A publication Critical patent/JPH09142801A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent hydrogen gas flow into the subject molding from lowering by securing the flow channel of hydrogen gas to the molding housed in a vessel, to absorb the stress of the volume expansion of hydrogen-occluded alloy, and to raise the packing rate of the alloy in the vessel. SOLUTION: Plural hydrogen-occluded alloy moldings are put into a vessel, and hydrogen gas-permeable sheets 3 are sandwiched between these moldings 1. Each of the sheets 3 is placed in between the moldings 1 adjacent to each other from one end of the vessel 2 to the other end and thus made to communicate with both the inlet/outlet 21 for hydrogen gas. The sheet 3 is made of a porous material having buffering effect, thus enabling the stress developed by the volume expansion of the hydrogen-occluded alloy to be absorbed onto the sheets 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金成形
体の容器への収容に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to accommodating a hydrogen storage alloy compact in a container.

【0002】[0002]

【従来の技術】近年、水素がヒートポンプ、燃料電池等
のエネルギー源として利用されており、この水素を貯
蔵、輸送する方法として、水素を吸蔵及び放出する水素
吸蔵合金の利用が図られている。水素吸蔵合金の利用方
法として、水素吸蔵合金鋳塊を粉砕した粉末を容器に充
填し、該容器に水素を充填して貯蔵、輸送等を行ない、
又、該容器から水素を放出させて、前記ヒートポンプ、
燃料電池等に供給することが知られている。容器の単位
容積当りの水素吸蔵/放出量を増大させるために、水素
吸蔵合金の容器への高密度の充填が望まれる。そこで、
水素吸蔵合金鋳塊を粉砕して得られる粉末を、単に容器
に詰め込むのではなく、予め粉末を結着剤と混合して圧
縮成形して成形体を作製し、該成形体を容器に収容する
方法も採用されている。
2. Description of the Related Art In recent years, hydrogen has been used as an energy source for heat pumps, fuel cells and the like. As a method of storing and transporting this hydrogen, a hydrogen storage alloy that stores and releases hydrogen has been used. As a method of using the hydrogen storage alloy, a powder obtained by crushing a hydrogen storage alloy ingot is filled in a container, and hydrogen is stored in the container for storage and transportation,
Further, by releasing hydrogen from the container, the heat pump,
It is known to supply to fuel cells and the like. In order to increase the amount of hydrogen storage / release per unit volume of the container, high density packing of hydrogen storage alloy into the container is desired. Therefore,
The powder obtained by crushing the hydrogen-absorbing alloy ingot is not simply packed in a container, but the powder is mixed with a binder in advance and compression molded to prepare a molded body, and the molded body is housed in a container. The method has also been adopted.

【0003】[0003]

【発明が解決しようとする課題】水素吸蔵合金は、水素
の吸蔵によって体積が膨張する。従って、成形体を容器
に収容する際に、成形体の外径と容器の内径をほぼ同一
とすると、膨張によって水素ガスの流路が塞がってしま
う。そこで、図8に示す如く、成形体(c)の外径を容器
(2)の内径よりも小さくし、成形体と容器との間に水素
ガスが充分に流通できる程度の隙間(4)を確保する必要
があった。
The hydrogen storage alloy expands in volume due to storage of hydrogen. Therefore, when the molded body is housed in the container, if the outer diameter of the molded body and the inner diameter of the container are made substantially the same, the flow path of hydrogen gas is blocked by the expansion. Therefore, as shown in FIG. 8, the outer diameter of the molded body (c) is set to the container.
It was necessary to make it smaller than the inner diameter of (2) and to secure a gap (4) between the molded body and the container such that hydrogen gas could sufficiently flow.

【0004】しかしながら、成形体の体積を小さくする
と、容器内に占める水素吸蔵合金の充填量が低下し、水
素吸蔵/放出量が低下する。又、成形体の体積を小さく
した場合、外周面に近い水素吸蔵合金は、水素ガスと接
触するが、成形体の中心に近い水素吸蔵合金には充分に
水素ガスが流通しないため、水素吸蔵合金の全体的な利
用を図ることができない。
However, if the volume of the compact is reduced, the filling amount of the hydrogen storage alloy in the container is reduced, and the hydrogen storage / release amount is reduced. Further, when the volume of the compact is reduced, the hydrogen storage alloy near the outer peripheral surface comes into contact with hydrogen gas, but the hydrogen storage alloy near the center of the compact does not have sufficient hydrogen gas flow. Cannot be used as a whole.

【0005】本発明は、容器に収容された成形体の水素
ガスの流路を確保することにより、成形体への水素ガス
の流量の低下を防止し、又、水素吸蔵合金の体積膨張に
よる応力を吸収することを目的とする。更に、容器への
水素吸蔵合金の充填率を高めることを目的とする。
The present invention prevents a decrease in the flow rate of hydrogen gas to the molded body by ensuring the flow path of hydrogen gas of the molded body housed in the container, and also stresses due to the volume expansion of the hydrogen storage alloy. The purpose is to absorb. Furthermore, it is intended to increase the filling rate of the hydrogen storage alloy in the container.

【0006】[0006]

【課題を解決する為の手段】上記課題を解決するため
に、本発明に於いては、複数の水素吸蔵合金成形体を容
器に入れ、成形体(1)と成形体(1)との間に水素ガス透
過性のシート(3)を挟むようにしたものであり、該シー
ト(3)は、隣接する成形体(1)と成形体(1)との間に容
器(2)の一方の端部から他方の端部に亘って配備し、シ
ート(3)が水素ガス出入口(21)に連通するようにしたも
のである。成形体(1)と成形体(1)との間に配備した水
素透過性のシート(3)は、水素ガスの流路となる。従っ
て、成形体(1)が水素を吸蔵して体積膨張しても、該シ
ート(3)を通じて水素ガスは流通し、水素ガス流量の低
下は抑えられる。又、水素ガス透過性のシート(3)を緩
衝作用を有する多孔質材料で構成すると、水素吸蔵合金
の体積膨張によって発生する応力をシート(3)により吸
収することができる。
In order to solve the above problems, in the present invention, a plurality of hydrogen storage alloy molded bodies are placed in a container, and the space between the molded body (1) and the molded body (1) is increased. A sheet (3) permeable to hydrogen gas is sandwiched between the sheet (3) and the sheet (3) is provided between one of the adjacent molded articles (1) and (1). The sheet (3) is arranged from one end to the other so that the sheet (3) communicates with the hydrogen gas inlet / outlet (21). The hydrogen-permeable sheet (3) provided between the molded body (1) and the molded body (1) serves as a flow path for hydrogen gas. Therefore, even if the molded body (1) occludes hydrogen and expands in volume, hydrogen gas circulates through the sheet (3) and the decrease in hydrogen gas flow rate is suppressed. If the hydrogen gas permeable sheet (3) is made of a porous material having a buffering effect, the sheet (3) can absorb the stress generated by the volume expansion of the hydrogen storage alloy.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。本発明に於いては、使用する容器(2)の材
質、形状、大きさは、特に限定されず、従来と同様のも
のを使用することができる。成形体(1)も、公知の製造
方法によって作製することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. In the present invention, the material, shape, and size of the container (2) to be used are not particularly limited, and the same one as the conventional one can be used. The molded body (1) can also be manufactured by a known manufacturing method.

【0008】水素ガス透過性のシート(3)として、多孔
性の材料から構成されるシート、例えば、瀘紙、ガラス
繊維瀘紙、ウレタン多孔体、スポンジ等を使用すること
ができる。尚、該シート(3)を緩衝作用を有する材料で
形成すると、水素吸蔵合金成形体(1)が水素を吸蔵した
際に発生する応力を緩衝、吸収することができるため特
に望ましい。
As the hydrogen gas permeable sheet (3), it is possible to use a sheet made of a porous material, for example, a paper filter, a glass fiber filter paper, a urethane porous body, a sponge or the like. It is particularly preferable to form the sheet (3) with a material having a buffering action, since the stress generated when the hydrogen storage alloy molded body (1) stores hydrogen can be buffered and absorbed.

【0009】成形体(1)(1)間にシート(3)を挟む具体
例として、円柱状の成形体を縦方向に2分割して半円柱
状の成形体(1)(1)を作製し、分割された平面(12)(12)
を削り落とし、図1乃至図3に示す如く削られた面間に
シート(3)を挟んで組み立て、円柱状にして、容器(2)
に収容することができる。ここで、分割された平面を夫
々削るのは、シート(3)を挟んで組み立てた際に、成形
体(1)(1)が円柱状になるようにするためである。例え
ば、分割された平面を両方とも削る必要はなく、片方の
平面だけを削ることもできる。又、最初から半円柱状の
成形体(1)を作製してもよい。図4は、シート(3)の厚
さをx、容器(2)の内径をaとしたとき、容器内径に対
するシート(3)の厚さの比(x/a)と水素吸蔵合金の容
器内充填率との関係を示すグラフである。図4では、容
器内径に対するシート(3)の厚さの比(x/a)を横軸、
容器内充填率を縦軸に示している。尚、「容器内充填
率」は、容器(2)を内容積V、水素吸蔵合金の重量を
m、水素吸蔵合金の密度をαとしたとき、m/αVで示
される。又、シート(3)の厚さがゼロのときの容器内充
填率は、成形体(1)の水素吸蔵合金充填率に一致し、こ
れは、成形体(1)の体積をV'、水素吸蔵合金重量を
m'、水素吸蔵合金の密度をα'としたとき、m'/α'
V'で示される。図4より、シート(3)を厚くするにつ
れて、容器(2)に充填できる水素吸蔵合金の量が減少
し、吸蔵できる水素の量が減少する。従って、シート
(3)の厚さは、所望の容器内充填率を維持できる程度に
調整することが望ましい。
As a specific example of sandwiching the sheet (3) between the molded bodies (1) and (1), a columnar molded body is divided into two in the vertical direction to produce a semi-cylindrical molded body (1) (1). And divided planes (12) (12)
The sheet (3) is scraped off, and the sheet (3) is sandwiched between the cut surfaces as shown in FIGS.
Can be accommodated. Here, the divided planes are respectively cut so that the molded bodies (1) and (1) have a columnar shape when assembled by sandwiching the sheet (3). For example, it is not necessary to grind both of the divided planes, and it is possible to grind only one plane. Alternatively, a semicylindrical shaped body (1) may be manufactured from the beginning. FIG. 4 shows the ratio (x / a) of the thickness of the sheet (3) to the inner diameter of the container and the inside of the container of hydrogen storage alloy, where x is the thickness of the sheet (3) and a is the inner diameter of the container (2). It is a graph which shows the relationship with a filling rate. In FIG. 4, the horizontal axis represents the ratio (x / a) of the thickness of the sheet (3) to the inner diameter of the container,
The filling rate in the container is shown on the vertical axis. The "filling ratio in the container" is represented by m / αV, where V is the container (2), m is the weight of the hydrogen storage alloy, and α is the density of the hydrogen storage alloy. Further, the filling rate in the container when the thickness of the sheet (3) is zero corresponds to the filling rate of the hydrogen-absorbing alloy of the molded body (1), which means that the volume of the molded body (1) is V ′, hydrogen. When the weight of the storage alloy is m'and the density of the hydrogen storage alloy is α ', m' / α '
It is indicated by V '. From FIG. 4, as the sheet (3) is made thicker, the amount of hydrogen storage alloy that can be filled in the container (2) decreases and the amount of hydrogen that can be stored decreases. Therefore, the sheet
It is desirable to adjust the thickness of (3) so that the desired filling rate in the container can be maintained.

【0010】或いは又、図5に示す如く、容器(2)の軸
方向の長さに比べて短い円柱状の成形体(10)を夫々半円
柱状に分割し、分割された面を夫々削って、シート(3)
を挟み、容器(2)に収容することもできる。更に、合金
膨張に伴う容器への応力緩和を重要視する場合、図6に
示す如く、図1及び図2に示した成形体の外径を容器
(2)の内径よりも少し小さくして、成形体(1)の周囲を
シート(30)で包むこともできる。
Alternatively, as shown in FIG. 5, the cylindrical molded body (10), which is shorter than the axial length of the container (2), is divided into semi-cylindrical shapes, and the divided surfaces are each ground. Sheet (3)
It can also be housed in the container (2) by sandwiching it. Further, when stress relaxation of the container due to alloy expansion is considered important, as shown in FIG. 6, the outer diameter of the molded body shown in FIGS.
The sheet (30) may be wrapped around the periphery of the molded body (1) by making it slightly smaller than the inner diameter of (2).

【0011】尚、図では、容器(2)の断面形状を円形と
しているが、必要に応じて矩形等にすることもできる。
この場合、容器(2)の断面形状に合わせて、成形体(1)
を矩形等にすればよい。
Although the container (2) has a circular sectional shape in the drawing, it may have a rectangular shape or the like if necessary.
In this case, according to the cross-sectional shape of the container (2), the molded body (1)
May be rectangular or the like.

【0012】[0012]

【実施例】本発明の効果を調べるために、先ず、以下の
方法によって水素吸蔵合金の成形体を作製した。成形体の作製 合 金 希土類−Ni系 結着剤 PTFE(4フッ化エチレン) 混合比 合金:PTFE=9:1(重量比) 合金と結着剤を混合し、1500kg/cm2で成型後、37
0℃で2時間焼成して、円柱状の成形体を作製する。
EXAMPLES In order to investigate the effects of the present invention, first, a hydrogen storage alloy compact was prepared by the following method. Molded body preparation alloy Rare earth-Ni binder Binder PTFE (tetrafluoroethylene) mixing ratio Alloy: PTFE = 9: 1 (weight ratio) After alloy and binder are mixed and molded at 1500 kg / cm 2 , 37
It is fired at 0 ° C. for 2 hours to produce a cylindrical molded body.

【0013】上記方法により作製した水素吸蔵合金の成
形体を用いて、本発明の供試成形体(a)と、比較のため
に従来の成形体を2種類(供試成形体(b)(c))作製した。供試成形体(a)の作製(本発明例) 上記条件により、直径22mm、高さ10mmの円柱状成形
体を多数個作製した。この成形体を夫々直径を通る平面
で2つに縦割りして半円柱状の成形体を作製し、半円柱
状の成形体間に1mmのガラス繊維瀘紙のシート(3)を挟
めるように、夫々の成形体の分割された平面を0.5mm
ずつ削った。これら成形体の削られた平面間にガラス繊
維瀘紙のシート(3)を挟んで、供試成形体(a)を作製し
た。尚、本実施例では、1つの容器に対して1枚のシー
ト(3)を使用している(図5参照)。供試成形体(b)(c)の作製(比較例) 上記成形体の作製条件により、直径22mm、高さ10mm
の円柱状成形体を多数個作製し、供試成形体(b)とし
た。又、同様の作製条件にて供試成形体(b)よりも小径
の成形体(直径19mm、高さ12mm)を多数個作製し、供
試成形体(c)とした。
Using the hydrogen storage alloy molded body produced by the above method, two types of conventional molded body (test molded body (b) ( c)) Prepared. Preparation of test compact (a) (Example of the present invention) A large number of cylindrical compacts having a diameter of 22 mm and a height of 10 mm were produced under the above conditions. This molded body is vertically divided into two parts each in a plane passing through a diameter to form a semi-cylindrical molded body, and a 1 mm glass fiber paper sheet (3) is sandwiched between the semi-cylindrical molded bodies. , The divided plane of each molded body is 0.5 mm
I scraped each one. A glass fiberboard sheet (3) was sandwiched between the cut planes of these molded bodies to prepare a test molded body (a). In this embodiment, one sheet (3) is used for one container (see FIG. 5). Manufacture of test compacts (b) and (c) (comparative example) Depending on the conditions for producing the above-mentioned compact, a diameter of 22 mm and a height of 10 mm
A large number of columnar molded bodies of (1) were prepared and used as a test molded body (b). Further, under the same manufacturing conditions, a large number of molded products (diameter 19 mm, height 12 mm) having a smaller diameter than the test molded product (b) were manufactured to obtain a test molded product (c).

【0014】供試成形体(a)(b)(c)を、ステンレス鋼製
の容器(2)に積層して収容する。該容器(2)は、外径2
5.4mm、内径22.1mm、内部の長さ150mmの円筒状
であり、一方の端部に水素ガスの出入口(21)が突設形成
されている。供試成形体(a)(b)(c)は、容器(2)内に夫
々14段ずつ縦に積まれた。図5は、本発明の供試成形
体(a)を容器に収容した場合の縦断面図であって、図で
は、成形体を5段積んだものを示している。図5の横断
面図は、図1の横断面図である図2と同様である。又、
図7は、供試成形体(b)を収容した容器(2)の断面図で
あって、成形体(b)は、外径が容器(2)の内径とほぼ同
一であるため、水素ガスは容器(2)と成形体(b)との間
を殆んど流通することができない。更に、図8は、供試
成形体(c)を収容した容器(2)の断面図である。成形体
(c)は、外径が容器(2)の内径よりも小さく作製されて
いるため、容器(2)と成形体(c)との間には、隙間(4)
が形成されている。
The test compacts (a), (b) and (c) are stacked and housed in a stainless steel container (2). The container (2) has an outer diameter of 2
It has a cylindrical shape of 5.4 mm, an inner diameter of 22.1 mm and an inner length of 150 mm, and a hydrogen gas inlet / outlet port (21) is projectingly formed at one end thereof. The test compacts (a), (b) and (c) were vertically stacked in the container (2) in 14-tiers, respectively. FIG. 5 is a vertical cross-sectional view of the test molded body (a) of the present invention housed in a container, in which the molded body is stacked in five stages. The cross-sectional view of FIG. 5 is similar to FIG. 2, which is the cross-sectional view of FIG. or,
FIG. 7 is a cross-sectional view of the container (2) containing the sample molded body (b). The molded body (b) has an outer diameter substantially equal to the inner diameter of the container (2). Almost cannot flow between the container (2) and the molded body (b). Further, FIG. 8 is a cross-sectional view of the container (2) accommodating the test molded body (c). Molded body
Since the outer diameter of (c) is smaller than the inner diameter of the container (2), a gap (4) is formed between the container (2) and the molded body (c).
Are formed.

【0015】比較実験 供試成形体(a)(b)(c)を収容した容器(2)に、夫々容器
内との圧力差が1.5atmとなるように調圧した水素ガス
を注入し、成形体の水素吸収量と、水素流量及び容器内
圧との関係を測定した。測定結果を表1に示す。
Comparative Experiments A container (2) containing the test compacts (a), (b) and (c) was charged with hydrogen gas whose pressure difference between the containers was 1.5 atm. The relationship between the hydrogen absorption amount of the molded body, the hydrogen flow rate and the container internal pressure was measured. Table 1 shows the measurement results.

【0016】[0016]

【表1】 [Table 1]

【0017】水素吸収量を横軸、水素流量を縦軸とし
て、表1の測定結果をプロットすると、図9に示すグラ
フが得られた。尚、図9中の乃至は、表1中の乃
至に対応している。図9より、従来の供試成形体(b)
は、水素吸収量の増加に反比例して水素流量が低下して
いることが判る。これは、水素吸収量の増加に伴って、
水素吸蔵合金が膨張して成形体の体積が増大し、水素ガ
スの流路が狭まるためである。又、供試成形体(c)につ
いては、水素吸収量が少ない段階では、容器(2)と成形
体(c)との間に形成された隙間(4)によって、水素ガス
の流路が確保されているため、水素流量は、本発明の供
試成形体(a)よりも高い状態を維持している。しかしな
がら、水素吸収量が増大(特に水素吸収量1.0wt%以
上)して、成形体(c)の体積膨張が進むと、隙間(4)が成
形体(c)によって塞がり、水素ガスの流路が狭まって、
水素流量が低下することが判る。それに対して本発明の
供試成形体(a)は、水素吸収量の増大に伴う水素流量の
低下が少なく、水素吸収量が成形体重量の約1.2wt%
となるまで、水素ガスの流路が安定して確保されている
ことが判る。又、通常、水素吸蔵合金は、燃料電池等で
は、水素吸収量が1.35〜1.4wt%となるまで、水素
ガスを吸収させて使用する。本発明の供試成形体(a)
は、特に水素吸収量が約1.0wt%を越えても、安定し
て水素を吸収することができるため、従来の成形体(b)
(c)よりも優れている。又、供試成形体(a)は、成形体が
2分割されているため、水素ガスとの接触面積が従来の
円柱状の成形体に比べて大きく、水素吸蔵合金と水素ガ
スとの反応速度は、供試成形体(b)(c)よりも速いと考え
られる。
When the measurement results of Table 1 were plotted with the hydrogen absorption amount as the horizontal axis and the hydrogen flow rate as the vertical axis, the graph shown in FIG. 9 was obtained. In addition, through in FIG. 9 correspond to through in Table 1. From Fig. 9, the conventional test compact (b)
Indicates that the hydrogen flow rate decreases in inverse proportion to the increase in the hydrogen absorption amount. This is due to the increase in hydrogen absorption,
This is because the hydrogen storage alloy expands, the volume of the compact increases, and the hydrogen gas flow channel narrows. Regarding the sample molded body (c), when the hydrogen absorption amount is small, the flow path of hydrogen gas is secured by the gap (4) formed between the container (2) and the molded body (c). Therefore, the flow rate of hydrogen is maintained higher than that of the test compact (a) of the present invention. However, when the hydrogen absorption amount increases (particularly, the hydrogen absorption amount is 1.0 wt% or more) and the volume expansion of the molded body (c) proceeds, the gap (4) is closed by the molded body (c), and the flow of hydrogen gas is increased. The road narrows,
It can be seen that the hydrogen flow rate decreases. On the other hand, in the case of the molded article (a) of the present invention, the hydrogen flow rate did not decrease with the increase of the hydrogen absorption amount, and the hydrogen absorption amount was about 1.2 wt% of the weight of the molded product.
It is understood that the flow path of hydrogen gas is stably secured until Further, usually, in a fuel cell or the like, the hydrogen storage alloy is used by absorbing hydrogen gas until the hydrogen absorption amount becomes 1.35 to 1.4 wt%. Test molded article of the present invention (a)
Can stably absorb hydrogen even when the amount of absorbed hydrogen exceeds about 1.0 wt%.
Better than (c). Also, the test compact (a) has a larger contact area with hydrogen gas than the conventional cylindrical compact because the compact is divided into two, and the reaction rate between the hydrogen storage alloy and hydrogen gas is high. Is considered to be faster than the test compacts (b) and (c).

【0018】次に、水素吸収量を横軸、容器内圧を縦軸
として、表1の測定結果をプロットすると、図10に示
すグラフが得られた。尚、図10中の乃至は、表1
中の乃至に対応している。図10より、従来の供試
成形体(b)は、水素吸収量にほぼ比例して容器内圧が増
大していることが判る。これは、水素吸蔵合金が水素を
吸蔵して体積膨張する際に発生する応力が、直接容器
(2)に加わっているためと考えられる。又、従来の供試
成形体(c)は、容器(2)と成形体(c)との間に隙間(4)が
あるため、水素吸収量が約1.0wt%に至るまでは、水
素吸蔵による成形体(c)の体積膨張分は、隙間(4)に広
がり、容器(2)には殆んど加わらない。しかしながら、
更に水素の吸蔵が進んで、その吸収量が約1.0wt%を
越えると、成形体(c)と容器(2)が接触し、それ以降
は、供試成形体(b)と同様に、水素吸収量の増大にほぼ
比例して、容器(2)に内圧が加わっていることが判る。
本発明の供試成形体(a)は、供試成形体(b)に比べて、内
圧の増加量が極めて小さく、又、水素吸収量が約1.3w
t%を越えると、供試成形体(c)よりも容器(2)に加わる
内圧は小さくなる。初期の段階で、容器(2)に加わる内
圧が大きくなるのは、成形体と容器(2)が最初から接触
しているためであって、その後、内圧が殆ど増加しない
のは、成形体間に挟まれたシート(3)が、水素吸蔵合金
の体積膨張による応力を緩衝、吸収しているためであ
る。又、上述の通り、通常、水素吸蔵合金への水素吸収
量が1.35〜1.4wt%となるまで、水素を吸蔵させて
使用する。本発明の供試成形体(a)は、水素吸収量が増
大しても、殆ど容器(2)に加わる内圧が変化しないた
め、従来の成形体(b)(c)に比べて特に優れている。
Next, plotting the measurement results in Table 1 using the hydrogen absorption amount as the horizontal axis and the container internal pressure as the vertical axis, the graph shown in FIG. 10 was obtained. 10 to Table 1
Corresponds to the inside. From FIG. 10, it can be seen that in the conventional molded body (b), the internal pressure of the container increases almost in proportion to the amount of absorbed hydrogen. This is because the stress generated when the hydrogen storage alloy stores hydrogen and expands in volume is directly
It is thought that it is because of joining (2). In addition, since the conventional molded body (c) has a gap (4) between the container (2) and the molded body (c), the hydrogen absorption is about 1.0 wt% or less. The volume expansion of the molded body (c) due to occlusion spreads in the gap (4) and is hardly added to the container (2). However,
When the absorption of hydrogen further progresses and the absorbed amount exceeds about 1.0 wt%, the molded body (c) and the container (2) come into contact with each other, and thereafter, like the sample molded body (b), It can be seen that the internal pressure is applied to the container (2) almost in proportion to the increase in the hydrogen absorption amount.
Compared with the sample molded body (b), the sample molded body (a) of the present invention showed an extremely small increase in internal pressure and a hydrogen absorption amount of about 1.3 w.
When it exceeds t%, the internal pressure applied to the container (2) becomes smaller than that of the test molded body (c). At the initial stage, the internal pressure applied to the container (2) increases because the molded body and the container (2) are in contact with each other from the beginning, and the internal pressure hardly increases thereafter between the molded bodies. This is because the sheet (3) sandwiched between the layers absorbs and absorbs the stress due to the volume expansion of the hydrogen storage alloy. Further, as described above, the hydrogen storage alloy is usually used by absorbing hydrogen until the amount of absorbed hydrogen in the hydrogen storage alloy reaches 1.35 to 1.4 wt%. The test molded article (a) of the present invention is particularly superior to the conventional molded articles (b) and (c) because the internal pressure applied to the container (2) hardly changes even when the hydrogen absorption amount increases. There is.

【0019】[0019]

【発明の効果】本発明の水素吸蔵合金の成形体を収容し
た容器によれば、水素吸蔵合金が水素を吸蔵して成形体
(1)が体積膨張しても、水素透過性シート(3)が水素ガ
スの流路を確保するため、水素流量の低下を抑えること
ができる。又、水素透過性シート(3)を緩衝作用を有す
る材料にて形成すると、成形体が体積膨張しても、水素
ガスの流路が確保され、又、成形体の体積膨張に伴う応
力を緩衝、吸収できるため、容器に加わる内圧を減少さ
せることができる。又、成形体の体積膨張によって容器
に加えられる内圧が減少するから、水素吸蔵合金の充填
率を高くすることができる。
EFFECTS OF THE INVENTION According to the container containing the molded article of the hydrogen storage alloy of the present invention, the hydrogen storage alloy absorbs hydrogen and the molded body
Even if the volume of (1) expands, the hydrogen permeable sheet (3) secures the flow path of hydrogen gas, and therefore the decrease in hydrogen flow rate can be suppressed. Further, when the hydrogen permeable sheet (3) is formed of a material having a buffering action, a hydrogen gas flow path is secured even if the molded body expands in volume, and the stress due to the volumetric expansion of the molded body is buffered. Since it can be absorbed, the internal pressure applied to the container can be reduced. Moreover, since the internal pressure applied to the container is reduced due to the volume expansion of the molded body, the filling rate of the hydrogen storage alloy can be increased.

【0020】上記実施例の説明は、本発明を説明するた
めのものであって、特許請求の範囲に記載の発明を限定
し、或は範囲を減縮する様に解すべきではない。又、本
発明の各部構成は上記実施例に限らず、特許請求の範囲
に記載の技術的範囲内で種々の変形が可能であることは
勿論である。
The above description of the embodiments is for explaining the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope. Further, the configuration of each part of the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made within the technical scope described in the claims.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水素吸蔵合金の成形体を収容した容器
の一部断面図である。
FIG. 1 is a partial cross-sectional view of a container accommodating a molded article of the hydrogen storage alloy of the present invention.

【図2】図1の線X−Xに沿う矢視断面図である。FIG. 2 is a sectional view taken along the line XX of FIG.

【図3】成形体とシートとの組み立てを示す斜視図であ
る。
FIG. 3 is a perspective view showing an assembly of a molded body and a sheet.

【図4】シート厚さの比(x/a)と容器内充填率との関
係を示すグラフである。
FIG. 4 is a graph showing the relationship between the sheet thickness ratio (x / a) and the filling rate in the container.

【図5】本発明の他の実施例を示す断面図である。FIG. 5 is a sectional view showing another embodiment of the present invention.

【図6】本発明の更に異なる実施例を示す断面図であ
る。
FIG. 6 is a sectional view showing still another embodiment of the present invention.

【図7】供試成形体(b)を収容した容器の断面図であ
る。
FIG. 7 is a cross-sectional view of a container accommodating a molded article under test (b).

【図8】供試成形体(c)を収容した容器の断面図であ
る。
FIG. 8 is a cross-sectional view of a container accommodating a test molded body (c).

【図9】水素吸収量と水素流量との関係を示すグラフで
ある。
FIG. 9 is a graph showing a relationship between a hydrogen absorption amount and a hydrogen flow rate.

【図10】水素吸収量と容器内圧との関係を示すグラフ
である。
FIG. 10 is a graph showing the relationship between hydrogen absorption amount and container internal pressure.

【符号の説明】[Explanation of symbols]

(1) 成形体 (2) 容器 (3) シート (1) Molded body (2) Container (3) Sheet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水素ガス出入口(21)を具え、複数の水素
吸蔵合金成形体(1)を収容した容器(2)であって、隣接
する成形体(1)と成形体(1)との間に一方の端部から他
方の端部に亘って水素ガス透過性のシート(3)を配備
し、該シート(3)を水素ガス出入口(21)に連通させてい
ることを特徴とする水素吸蔵合金成形体を収容した容
器。
1. A container (2) having a hydrogen gas inlet / outlet (21) for accommodating a plurality of hydrogen storage alloy molded bodies (1), comprising a molded body (1) and a molded body (1) which are adjacent to each other. A hydrogen gas permeable sheet (3) is provided between the one end portion and the other end portion, and the sheet (3) is communicated with the hydrogen gas inlet / outlet port (21). A container containing a storage alloy molded body.
【請求項2】 水素ガス透過性のシート(3)は、緩衝作
用を有する多孔質材料で構成されることを特徴とする請
求項1に記載の容器。
2. The container according to claim 1, wherein the hydrogen gas permeable sheet (3) is composed of a porous material having a buffering action.
【請求項3】 複数の水素吸蔵合金成形体(1)を容器
(2)に収容する方法であって、成形体(1)と成形体(1)
との間に水素ガス透過性のシート(3)を挟み、該シート
(3)を成形体と共に容器(2)に収容することを特徴とす
る水素吸蔵合金成形体の容器への収容方法。
3. A container containing a plurality of hydrogen storage alloy compacts (1).
A method of accommodating in (2), comprising a molded body (1) and a molded body (1)
A hydrogen gas permeable sheet (3) is sandwiched between
A method for accommodating a hydrogen storage alloy molded body in a container, characterized in that (3) is housed in a container (2) together with the molded body.
JP7307307A 1995-11-27 1995-11-27 Vessel with hydrogen-occluded alloy molding housed therein and method of housing the same Pending JPH09142801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7307307A JPH09142801A (en) 1995-11-27 1995-11-27 Vessel with hydrogen-occluded alloy molding housed therein and method of housing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7307307A JPH09142801A (en) 1995-11-27 1995-11-27 Vessel with hydrogen-occluded alloy molding housed therein and method of housing the same

Publications (1)

Publication Number Publication Date
JPH09142801A true JPH09142801A (en) 1997-06-03

Family

ID=17967581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7307307A Pending JPH09142801A (en) 1995-11-27 1995-11-27 Vessel with hydrogen-occluded alloy molding housed therein and method of housing the same

Country Status (1)

Country Link
JP (1) JPH09142801A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248795A (en) * 2000-03-07 2001-09-14 Toyota Autom Loom Works Ltd Hydrogen absorbing alloy tank
US6530233B1 (en) 1999-09-01 2003-03-11 Toyota Jidosha Kabushiki Kaisha Hydrogen storage device and hydrogen storage system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6530233B1 (en) 1999-09-01 2003-03-11 Toyota Jidosha Kabushiki Kaisha Hydrogen storage device and hydrogen storage system
JP2001248795A (en) * 2000-03-07 2001-09-14 Toyota Autom Loom Works Ltd Hydrogen absorbing alloy tank
US6997242B2 (en) 2000-03-07 2006-02-14 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Reservoir with hydrogen storage material
JP4574783B2 (en) * 2000-03-07 2010-11-04 株式会社豊田自動織機 Hydrogen storage alloy tank

Similar Documents

Publication Publication Date Title
US5324172A (en) High-capacity getter pump
CA1095878A (en) Storage of gas
EP2691723B1 (en) Chemical heat storage reactor and chemical heat storage system
US4495900A (en) Methane storage for methane-powered vehicles
US4396114A (en) Flexible means for storing and recovering hydrogen
US4600525A (en) Hydrogen sorbent flow aid composition and containment thereof
JPH0444603B2 (en)
US4133426A (en) Hydride container
GB2148478A (en) Hydrogen storage
KR101604512B1 (en) Hydrogen storage alloy and hydrogen storage unit using same
JP2017538905A (en) Metal hydride hydrogen storage tank with multiple stacked tiers
US4272259A (en) Gas gettering system
CA2128416C (en) High capacity getter pump
JPH0527563B2 (en)
JPH09142801A (en) Vessel with hydrogen-occluded alloy molding housed therein and method of housing the same
Ron et al. Thermal conductivity of PMH compacts, measurements and evaluation
JPS6052360B2 (en) hydrogen storage device
CN108332049B (en) Hydrogen storage tank and fuel cell system and motor vehicle with the system
JP3432981B2 (en) Container containing hydrogen-absorbing alloy molded article and method for containing the same
JP4098043B2 (en) Method for producing hydrogen storage alloy storage container
JP2001263594A (en) Hydrogen storing vessel
JPS59146901A (en) Metallic hydride reaction vessel and its manufacture
JP4128479B2 (en) High pressure hydrogen storage tank
JP2000296325A (en) Reactor for production of alkanolamine and method for packing catalyst
JP2001180901A (en) Hydrogen occlusion alloy molding

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030826