JPS60202358A - Ultrasonic diagnosis - Google Patents

Ultrasonic diagnosis

Info

Publication number
JPS60202358A
JPS60202358A JP59059042A JP5904284A JPS60202358A JP S60202358 A JPS60202358 A JP S60202358A JP 59059042 A JP59059042 A JP 59059042A JP 5904284 A JP5904284 A JP 5904284A JP S60202358 A JPS60202358 A JP S60202358A
Authority
JP
Japan
Prior art keywords
flaw
point
propagation time
ultrasonic
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59059042A
Other languages
Japanese (ja)
Other versions
JPH0444952B2 (en
Inventor
Kishio Arita
紀史雄 有田
Susumu Mitani
進 三谷
Hideo Sakai
酒井 英雄
Yoshitaka Koide
小出 美孝
Yoshiro Tomikawa
義朗 富川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59059042A priority Critical patent/JPS60202358A/en
Publication of JPS60202358A publication Critical patent/JPS60202358A/en
Publication of JPH0444952B2 publication Critical patent/JPH0444952B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0618Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To make it possible to detect the shape and position of a flaw even if said flaw is present at the central part of an object to be examined, by calculating the modulation point of a graph based on a measured ultrasonic wave propagation time value by ultrasonic probes at plural positions of the outer periphery of a tomographic surface. CONSTITUTION:The ultrasonic wave from the probe provided to the fixed point P1 of the outer periphery of the cross-sectional area A of a wooden utility pole having a flaw H at the central part thereof is received by the other probes at plural points P2, P3 going away from the point P1 along the outer periphery to measure an ultrasonic wave propagation time. If the modulation point of a graph based on said propagation time and the distance between the fixed point and the measuring point is calculated, the position F1 of the flaw H is determined and, if the fixed point is altered and similar operation is repeated, the shape of the flaw H is determined. By this method, the shape and position of the flaw can be detected by using an ultrasonic wave even if said flaw is present at the central part of an object to be examined.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、超畠波によって被測定物内部の欠陥部の形
状J3よび位置を診断する超音波計fJJiカ法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an ultrasonic meter fJJi method for diagnosing the shape J3 and position of a defective part inside an object to be measured using ultrasonic waves.

〔従来技術〕[Prior art]

木材やプラスデックなど超8波のar&哀のされめて大
きい材料の内部の欠陥の位置および形状を比較的簡易に
実現り′るための超音波診断方法とじ−(は、[特駈1
(1(イ57−’I15255弓」に示される方法があ
った。
An ultrasonic diagnostic method for relatively easily determining the location and shape of internal defects in large materials such as wood and plastic deck, which are susceptible to ultra-8-wave AR and large materials.
(There was a method shown in 1 (I57-'I15255 Bow).

例えば、この方法を木製電社の腐朽部(欠陥部)を検出
する場合を例にとり説明づる。通常電I]どじて使用さ
れる松何などは、第1図に小力ように、年輪にそった腐
朽部1−1が生ずる。ここで、探触子を位置1〕1およ
びPl−に接して超音波伝播時間を測定すれば、健全部
での直径間の伝播時間(例えば、地面から1m以上で測
定りるど得られる)にほぼ等しくる。一方、Psおよび
Ps′に探触′子を接して伝播時間を測定するど、両探
触子を結ぶ線上に腐朽部があることから、超音波の伝播
が腐朽部をう回する経路となるので、伝播時間は健全部
に比して長くなり、これによって腐朽部の存在を検知す
ることができる。
For example, this method will be explained using the case of detecting a rotten part (defective part) of a wooden electric company. [Normal electricity I] Pine trees that are used for a long time have decayed parts 1-1 along the annual rings, as shown in Figure 1. Here, if the ultrasonic propagation time is measured with the probe in contact with position 1] 1 and Pl-, the propagation time between the diameters in the healthy area (for example, the measurement time can be obtained at a distance of 1 m or more from the ground) is approximately equal to On the other hand, when measuring the propagation time by touching the probe to Ps and Ps', there is a decayed part on the line connecting both probes, so the propagation of the ultrasonic wave goes around the decayed part. Therefore, the propagation time is longer than that of a healthy part, and the existence of a decayed part can be detected thereby.

ところが、米松等にa3りる腐朽形態は杉と異なり、第
2図示りにうに中心部が腐朽し、しかし地面からim以
上の箇所においても腐朽しく−いる場合が多い。したが
って、従来の方法では、健全部Cの超音波伝播時間を測
定することができず、誤り1、ってl11MJTJ部が
ある箇所の伝播時間を健全部の値とJることがあった。
However, the type of decay seen in Japanese pines is different from that in cedar; as shown in Figure 2, the center of the pine is rotten, but in many cases there is decay even in areas that are more than 100m above the ground. Therefore, with the conventional method, it was not possible to measure the ultrasonic propagation time in the healthy part C, and error 1 occurred where the propagation time at a location where the 111MJTJ part was located was determined to be the value of the healthy part.

さらに、第2図にボす水柱の場合は、P+およびP+−
間、PsおよびPs間での超13波伝播時間が(Jば等
しくなるので、R全部での超音波伝播時間を誤まって測
定することど重なると、全くの健全部であるど誤判前り
る欠点があった。
Furthermore, in the case of the water column shown in Figure 2, P+ and P+-
Since the ultrasonic wave propagation times between , Ps, and Ps are equal (J), if the ultrasonic propagation time at all R is incorrectly measured, it may lead to a misjudgment even if it is a completely healthy part. There were some drawbacks.

〔発明の目的〕[Purpose of the invention]

この発明は、以上の事情に鑑みでなされたもので、被測
定物の中心部に欠陥部がある場合にも、超音波を用いて
欠陥部の形状および位置を共に検出することのできる超
音波診断方法を提供することを目的とする。
This invention was made in view of the above circumstances, and even if there is a defect in the center of the object to be measured, it is possible to detect both the shape and position of the defect using ultrasonic waves. The purpose is to provide a diagnostic method.

〔発明の構成〕[Structure of the invention]

゛この発明は、被測定物内に、その外周の一点から他の
一点に超音波を放射し、そのときの送受信間の超音波伝
播1.1間に基づいて被測定物内の欠陥部を検出覆る超
音波診断方法において、−りの探触子の位置を固定し、
他方の探触子を前記探触子から外周に沿って遠避けなが
ら複数の位置で超音波伝播時間を測定し、探触子間距離
と超音波伝播時間との関係を示すグラフにおりる変曲点
をもとめることによって欠陥部位置および形状を検出り
−ることを特徴としている。
゛This invention radiates ultrasonic waves from one point to another point on the outer periphery of the object to be measured, and detects defects in the object based on the ultrasonic propagation between transmission and reception. In the ultrasonic diagnostic method that covers detection, the position of the probe is fixed,
The ultrasonic propagation time is measured at multiple positions while the other probe is kept away from the probe along the outer circumference, and the changes in the graph showing the relationship between the distance between the probes and the ultrasonic propagation time are calculated. It is characterized by detecting the position and shape of the defect by finding the curved point.

〔実施例〕〔Example〕

第3図は、この発明による方法を適用した診断装置の外
観図であり、この図において1は超音波送受信al11
2a、2bは各々通常のランジュバン型振動子を用いた
送信探触子および受信探触子、3は送受信部、2a、2
bは各々通常のランジュバン型振動子を用いた送信接触
子および受信探触子、3は送信探触子2aから放射され
た超音波が受信探触子2bによって受信されるまでの間
の超音波伝播時間が表示されるディジタル表示器、4は
前後の測定の伝播時間比が表示されるディジタル表示器
、5G、1被測定物内の欠陥部の形状および位置が表示
される画像表示器、6はミニコンピユータ、7は電源装
冒である。なJ3、ディジタル表;J(:÷H3,/l
a;よび両像表示器5には液晶表示器が用いられている
FIG. 3 is an external view of a diagnostic device to which the method according to the present invention is applied;
2a and 2b are a transmitting probe and a receiving probe each using a normal Langevin type vibrator; 3 is a transmitting/receiving section; 2a, 2
b is a transmitting contact and a receiving probe each using a normal Langevin type transducer, and 3 is an ultrasonic wave emitted from the transmitting probe 2a until it is received by the receiving probe 2b. A digital display that displays the propagation time; 4 a digital display that displays the propagation time ratio of previous and subsequent measurements; 5G; 1 an image display that displays the shape and position of the defective part in the object to be measured; 6; is a minicomputer, and 7 is a power supply equipment. J3, digital table; J(:÷H3,/l
a; and both image displays 5 are liquid crystal displays.

次に、この超j′Ji波診r(71装置rlによる診W
1方法を、木製電柱の腐朽部(欠陥部)を検出する場合
を例にとり説明りる。
Next, this super j'Ji wave diagnosis r (diagnosis W using the 71 device rl)
One method will be explained using an example of detecting a rotten part (defective part) of a wooden utility pole.

第11図は、中心部に腐朽部がdうる木製電柱であり、
外周を′1Gに笠分割する位置をそれぞれP+。
Figure 11 shows a wooden telephone pole with a rotten part in the center.
P+ is the position where the outer circumference is divided into '1G.

1)2.・・・・・・P+sとJ−る。まず、送信探触
子2aを位置1〕1に、受信探触子2bを位置P2に当
接し伝播11,1間を測定”l’8c+次に、送信接触
子2aを前記位置とし、受信接触子2bのみを位@1〕
3として再び伝播時間を測定−リ−る。以上の様に送信
探触子2aは位置を固定したまま受信探触子2bのみを
位置P4.Ps、P6および1〕7へと変えながら(ム
播時間を測定する。この時、両探触子間の直線路11f
ltLと伝416時間丁どの13!」係を示すど第5図
のようになる。第5図中のブロン1−におい(、しの小
さいんからそれぞれ受信探触子位置はP++P2,1つ
3.P4.Ps、P6.P7およびPsに対応りる。こ
れにより、P5から1〕6に移ると1ムJtliu5間
(よ急に1(りなることかわかる。これは、P1とP6
を結ぶ超音波の伝番経路の途中に腐朽部ト1があるから
である。したかっ(、第1図に示すように腐朽部に接す
る点は、近似的にP5とP6の中間点Q1とP!を結ぶ
線の中点F1どしで6ゎ’jan’(J。]、 十記ど四様に、1〕3を送信探触子2aとし【、受信探
触子211をP4.Ps・・・・・・ど位置を変えなが
ら伝播時1i’illを測定する。すると、り15図ど
同様に変曲点を見い出りことができるので、H’S朽部
に接−りる近似点F2をもどめられる。以下同様に、P
s、P7、P9、pH,P+3,1つISを起点とし測
定を行なうと、Fl、F2・・・・・・、1:8が11
1られるので、これらをn線で結ぶと第6図の結果が4
tlられる。
1)2. ...P+s and J-ru. First, the transmitting probe 2a is placed in position 1〕1 and the receiving probe 2b is brought into contact with position P2 to measure the distance between the propagations 11 and 1. Place only child 2b @1]
3, measure the propagation time again. As described above, the transmitting probe 2a remains fixed in position and only the receiving probe 2b is moved to position P4. Ps, P6 and 1]7 (measure the propagation time. At this time, the straight path 11f between both probes
ltL and Den 416 Hours 13! ” is shown in Figure 5. In Fig. 5, the receiving probe positions correspond to P++, P2, 3, P4, Ps, P6, P7, and Ps. As a result, P5 to 1] When moving to 6, 1 m Jtliu5 (you can see that it suddenly becomes 1). This is P1 and P6
This is because there is a decayed part 1 in the middle of the ultrasonic transmission path that connects the two. (As shown in Figure 1, the point that touches the decayed part is approximately 6ゎ'jan' (J.) at the midpoint F1 of the line connecting midpoints Q1 and P! of P5 and P6. , Similarly, 1) Set 3 as the transmitting probe 2a, and measure 1i'ill during propagation while changing the position of the receiving probe 211. Since the inflection point can be found in the same way as in Figure 15, the approximate point F2 that touches the H'S rotten part can be found.
s, P7, P9, pH, P+3, when measuring from one IS, Fl, F2..., 1:8 becomes 11
1, so if you connect them with an n line, the result in Figure 6 becomes 4.
Tl will be done.

第4図と第6図の比較かられかる様に、本発明によれば
比較的簡便な方法で、本社中心部にあるlf’il朽部
の位置および形状を検出できる。
As can be seen from the comparison between FIG. 4 and FIG. 6, according to the present invention, the position and shape of the rotten part of the building located in the center of the headquarters can be detected by a relatively simple method.

送信探触子の位置は必ず8ケ所必要ということではなく
、米松など中心部腐朽の場合には、はぼ内払に腐朽りる
ことがわかっているので、前記の近似点1:の数を減ら
してその間を曲線近叙することによって測定時間の短縮
ができる。
It is not always necessary to have 8 transmitting probe positions, and it is known that in the case of a Japanese pine tree that rots in the center, it rots within the center, so the number of approximation points 1. The measurement time can be shortened by reducing the number and approximating a curve between them.

〔発明の効果〕〔Effect of the invention〕

以上12明したように、本発明による方法は、超U波探
触子間距Filと伝播時間の関係における変曲点を見い
出すことによって、超音波伝播経路が欠陥部に1&する
位置を検出しているので、欠陥部の位置、形状を共に検
出することができ、またこの結果、画jΦ化を11なう
ことができる。したがって、欠陥部発見後の補修、爪台
え等の処置を的確に行ない1【16利点がある。また、
この発明によ゛れば、比較的11(周波の超音波を用い
ることができるので、診断装置を簡単かつ安価に構成し
得る利点が得られる。以上の結果、この発明による方法
は、木製電柱、樹木、家の社等の欠陥部の検出、鋳物の
゛“ず″の検出等において極めて有効である。
As explained above, the method according to the present invention detects the position where the ultrasonic propagation path reaches the defective part by finding the inflection point in the relationship between the ultra-U wave probe distance Fil and the propagation time. As a result, the position and shape of the defective portion can be detected together, and as a result, the image jΦ can be reduced to 11 times. Therefore, there are 1 [16 advantages] in that repairs, nail rests, etc. can be carried out accurately after defects are discovered. Also,
According to the present invention, since it is possible to use ultrasonic waves with a frequency of 11 (comparatively), it is possible to obtain an advantage that the diagnostic device can be configured easily and inexpensively.As a result of the above, the method according to the present invention It is extremely effective in detecting defects in trees, houses, etc., and detecting defects in castings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は杉材など外周部に欠陥が牛づ゛る被測定物の断
面図、第2図は米松など中心部に欠陥が生ずる被測定物
の断面図、第3図はこの発明による方法を適用した診断
装置の構成を示す斜視図、第4図は第3図に示す装置に
より木製電柱の腐朽部を診1IIi’jJる方法の説明
図、第5図は探触子間距隙と伝播時間の関係を示すグラ
フ、第6図は第4図に示づ木社腐朽部を第3図に示す装
置により画像化した状態を示す図である。 1・・・・・・超音波送受信部、2a・・・・・・送信
探触子、2b・・・・・・受信探触子、33,4・・・
・・・ディジタル表示器、5・・・・・・画像表示器、
6・・・・・・ミニ]ンピコータ。 第1図 b 第2図 5
Figure 1 is a cross-sectional view of a workpiece such as cedar wood that has defects on its outer periphery, Figure 2 is a cross-section of a workpiece that has defects in the center such as Japanese pine, and Figure 3 is a method according to the present invention. Fig. 4 is an explanatory diagram of a method for diagnosing the rotten part of a wooden telephone pole using the apparatus shown in Fig. 3, and Fig. 5 shows the distance between the probes and the propagation. FIG. 6, a graph showing the relationship over time, is a diagram showing the state in which the decayed part of the wood shrine shown in FIG. 4 is imaged by the apparatus shown in FIG. 3. 1...Ultrasonic transmitting/receiving section, 2a...Transmitting probe, 2b...Receiving probe, 33, 4...
...Digital display, 5...Image display,
6...Mini]umpikota. Figure 1 b Figure 2 5

Claims (1)

【特許請求の範囲】[Claims] 被測定物内に測定断面を設定し、この測定断面の外周上
の一点から、前記測定断面の内方へ向け(lft1波を
敢則し、この成用され/j超八へを前記測定断面の外周
上の他の一点において受信し、この送受11:間の超音
波伝播時間に基づいて前記被測定物内の欠陥部を検出す
る超音波診断方法におい(、〕°ノの探触子の位置を固
定し、他りの探触子を前記探触子から外周に沿って遠避
けながら複数の位置で超8波伝播時間を測定し、探触子
間距離ど超音波伝播時間どの関係を示すグラフにおける
疫曲点をもとめることによって前記欠陥部位置おJ、び
形状を検出することを特徴とする超音波診断り法。
A measurement cross section is set in the object to be measured, and from a point on the outer periphery of this measurement cross section, point inward of the measurement cross section (with the lft1 wave as a rule, and the measured cross section In the ultrasonic diagnostic method of detecting a defective part in the object to be measured based on the ultrasonic propagation time between the transmitter and the receiver at another point on the outer circumference of the probe, By fixing the position and measuring the ultrasonic wave propagation time at multiple positions while avoiding other probes along the outer circumference, we determined the relationship between the distance between the probes and the ultrasonic propagation time. An ultrasonic diagnostic method characterized by detecting the position and shape of the defect by finding an epidemiological point in the graph shown.
JP59059042A 1984-03-27 1984-03-27 Ultrasonic diagnosis Granted JPS60202358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59059042A JPS60202358A (en) 1984-03-27 1984-03-27 Ultrasonic diagnosis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59059042A JPS60202358A (en) 1984-03-27 1984-03-27 Ultrasonic diagnosis

Publications (2)

Publication Number Publication Date
JPS60202358A true JPS60202358A (en) 1985-10-12
JPH0444952B2 JPH0444952B2 (en) 1992-07-23

Family

ID=13101849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59059042A Granted JPS60202358A (en) 1984-03-27 1984-03-27 Ultrasonic diagnosis

Country Status (1)

Country Link
JP (1) JPS60202358A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928511A (en) * 2012-10-24 2013-02-13 西安交通大学 RAPID (reconstruction algorithm for probabilistic inspection of damage) chromatography-based nondestructive identification method of mechanical structure damages
CN104990993A (en) * 2015-04-17 2015-10-21 北京理工大学 Ultrasound slowness difference tomography algorithm for weak scattering mediums
CN105717199A (en) * 2016-01-26 2016-06-29 陆雷俊 Ultrasonic transverse and longitudinal section element-separating detection method for stainless steel and nickel-based steel weld joint

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8921434B2 (en) 2010-03-29 2014-12-30 Kosuke Uchiyama Polylactic acid composition, foam molded article thereof and method of producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595950A (en) * 1982-07-02 1984-01-12 Nippon Telegr & Teleph Corp <Ntt> Ultrasonic diagnostic method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595950A (en) * 1982-07-02 1984-01-12 Nippon Telegr & Teleph Corp <Ntt> Ultrasonic diagnostic method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928511A (en) * 2012-10-24 2013-02-13 西安交通大学 RAPID (reconstruction algorithm for probabilistic inspection of damage) chromatography-based nondestructive identification method of mechanical structure damages
CN104990993A (en) * 2015-04-17 2015-10-21 北京理工大学 Ultrasound slowness difference tomography algorithm for weak scattering mediums
CN105717199A (en) * 2016-01-26 2016-06-29 陆雷俊 Ultrasonic transverse and longitudinal section element-separating detection method for stainless steel and nickel-based steel weld joint
CN105717199B (en) * 2016-01-26 2018-11-16 陆雷俊 A kind of stainless steel, Ni-based steel the welding line ultrasonic first detection method in face point in length and breadth

Also Published As

Publication number Publication date
JPH0444952B2 (en) 1992-07-23

Similar Documents

Publication Publication Date Title
US5113697A (en) Process and apparatus for detecting discontinuities on long workpieces
KR860001348A (en) Ultrasonic Scanning Methods and Devices
JPS60202358A (en) Ultrasonic diagnosis
JPS6013257A (en) Ultrasonic diagnosis
JPH01158348A (en) Ultrasonic flaw detection apparatus
JPH05187856A (en) Method for measuring thickness of resin laminated body
JPS6229023B2 (en)
JPS595950A (en) Ultrasonic diagnostic method
JPS60165546A (en) Ultrasonic diagnosis device
JPS61138160A (en) Ultrasonic flaw detector
JP3542173B2 (en) Ultrasonic flaw detection method
JPH04286952A (en) Method for detecting defect of glass porcelain portion
JPH0431350B2 (en)
JPS61164154A (en) Detection of corrosion of steel structure
JP2939011B2 (en) Whetstone inspection method and device
RU2032171C1 (en) Ultrasonic test method for cylindrical parts
JPS5926898B2 (en) Ultrasonic transducer
SU1205008A1 (en) Ultrasonic method of inspecting content of liquid in impregnated materials
RAZYGRAEV Detection of subsurface flaws with a model ITs-61 or model ITs-70 head-wave probe
JPS6135349A (en) Inspecting method of ultrasonic diagnosing device
JPS6150064A (en) Diagnosis of defect in square pilar
RAKHIMOV et al. Theoretical premises of defect measurement close to the side surface of a part
KAPPES et al. Nondestructive inspection of the pressure vessel in Stuttgart. ALOK part. Phase 1: ALOK combined with conventional probes
JPS61200469A (en) Ultrasonic diagnostic method
JPS5686351A (en) Ultrasonic flaw detector