JPS6135349A - Inspecting method of ultrasonic diagnosing device - Google Patents

Inspecting method of ultrasonic diagnosing device

Info

Publication number
JPS6135349A
JPS6135349A JP15666184A JP15666184A JPS6135349A JP S6135349 A JPS6135349 A JP S6135349A JP 15666184 A JP15666184 A JP 15666184A JP 15666184 A JP15666184 A JP 15666184A JP S6135349 A JPS6135349 A JP S6135349A
Authority
JP
Japan
Prior art keywords
propagation time
ultrasonic wave
ultrasonic
decay
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15666184A
Other languages
Japanese (ja)
Inventor
Kishio Arita
紀史雄 有田
Susumu Mitani
進 三谷
Hideo Sakai
酒井 英雄
Akira Hirooka
明 広岡
Yuji Kawamura
裕士 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15666184A priority Critical patent/JPS6135349A/en
Publication of JPS6135349A publication Critical patent/JPS6135349A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0238Wood

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To inspect the deterioration state of a wood pole with high precision by attenuating an ultrasonic wave to a constant value when transmitting and re- ceiving the ultrasonic wave to and from the wood pole and measuring the propagation time of the ultrasonic wave. CONSTITUTION:The ultrasonic wave signal is transmitted from a transmission terminal 2a to a reception terminal 2b in a sectional direction of the wood pole 1. At this time, if there is a deteriorating part H, the ultrasonic wave signal passes through paths R1, R2, and R3, etc. Further, the ultrasonic wave signal is attenuated to the constant value and transmitted and its propagation time is measured and compared with the normal propagation time. At this time, a standard piece is used to calculate the frequency attenuation and propagation time of the ultrasonic wave previously, and a threshold value is so determined the propagation time is long. Then, the ultrasonic wave increases in propagation time above the threshold value regardless of the paths R1, R2, and R3 if there is the deteriorating part H. Therefore, the deterioration of the wood pole is inspected precisely because the ultrasonic wave signal is attenuated to the constant value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、木柱の腐朽検査を行うだめの超音波装置が正
常かつ精度良く機能しているか否かを検査する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for inspecting whether an ultrasonic device for inspecting decay of wooden poles is functioning normally and with high precision.

〔従来技術〕[Prior art]

従来、木柱の内部腐朽を簡易に測定し1画像化する超音
波装置(特願昭、5g−7/ヲ?j号)が提供されてい
る。この装置の測定原理を以下説明する。第S図におい
て、1は木柱の断面、Hは腐朽部分、2aは送信探触子
、2bは受信探触子、3は超音波送受信部である。ここ
で、まず健全部において直径間の超音波の伝播時間を測
定し基準伝播時間とする。下端が地中に埋め込まれた水
柱の場合、第6図のような腐朽形態が一般的であること
から、健全部での伝播時間は、地面から/m程度上で測
定できる。なお、この図において4は木柱、Eは地中で
ある。次に探触子の一方を位置Poに他方をPoに当接
して伝播時間を測定するが、PoとP o’を結ぶ直線
上には腐朽部があるために超音波は直進できず、腐朽部
をう回するため基準伝播時間に比較し長くなる。したが
って、伝播時間から、探触子間の直線上に腐朽があるか
否かを判断できる。また、伝播時間は腐朽程度が激しい
ほど長くなる。
BACKGROUND ART Conventionally, an ultrasonic device (Japanese Patent Application No. 5g-7/wo?j) has been provided that easily measures the internal decay of a wooden pole and creates a single image. The measurement principle of this device will be explained below. In Fig. S, 1 is a cross section of a wooden pole, H is a decayed part, 2a is a transmitting probe, 2b is a receiving probe, and 3 is an ultrasonic transmitting/receiving section. Here, first, the propagation time of the ultrasonic wave between diameters is measured in the healthy part and used as the reference propagation time. In the case of a water column whose lower end is buried underground, the decay form shown in Figure 6 is common, so the propagation time in a healthy part can be measured at about /m above the ground. In this figure, 4 is a wooden pillar and E is underground. Next, one of the probes is placed in position Po and the other is placed in contact with Po to measure the propagation time, but since there is a decayed part on the straight line connecting Po and Po', the ultrasonic waves cannot travel straight; The propagation time is longer than the standard propagation time because it bypasses the section. Therefore, it can be determined from the propagation time whether there is decay on the straight line between the probes. Furthermore, the more severe the degree of decay, the longer the propagation time.

第7図は、直径に占める腐朽部の長さの割合(腐朽長さ
比図と呼ぶ)を横軸とし、基準伝播時間に対する割合(
伝播時間比(財)と呼ぶ)を縦軸とし両者の関係を示し
たものである。この図から、伝播時間比をもとめること
によって腐朽程度を知ることができる。さらにp 1−
p 1’、 p 2−p 2’。
In Figure 7, the horizontal axis is the ratio of the length of the decayed part to the diameter (referred to as the decay length ratio diagram), and the ratio to the standard propagation time (
The vertical axis shows the relationship between the two, with the propagation time ratio (goods) as the vertical axis. From this figure, the degree of decay can be determined by determining the propagation time ratio. Furthermore p 1−
p1', p2-p2'.

・・・P7−P7′と伝播時間を測定するが、これから
...P7-P7' and propagation time will be measured from now on.

P3  P3’e P4  P4’+ P5  P5’
間では伝播時間比が709%となり、腐朽がないことも
明らかとなる。以上の結果から木柱断面にわたる腐朽状
況を明らかにすることができる。
P3 P3'e P4 P4'+ P5 P5'
The propagation time ratio was 709% between the two, making it clear that there was no decay. From the above results, it is possible to clarify the state of decay across the cross section of the wooden pillars.

なお、上記の測定は点対称的に行なっているので、探触
子間のどの位置に腐朽があるかがわからない、したがっ
て第5図示すように探触子間の中心角をソθ°として伝
播時間を測定する。この時超音波は第8図中の矢印で示
すような弧を描いて伝播する。このような伝播をするの
は、木柱が年輪構造を有したり、心材と辺材という密度
の異なる部分があるためである。測定は、Po  p4
1P4  Po’+ Po  P4+ P4−Po  
とグ回測定する。
Note that since the above measurements are performed point-symmetrically, it is not known where the decay is between the probes. Therefore, as shown in Figure 5, the central angle between the probes is set to θ°, and the propagation is Measure time. At this time, the ultrasonic waves propagate in an arc as shown by the arrow in FIG. This type of propagation occurs because wooden poles have an annual ring structure and have heartwood and sapwood that have different densities. The measurement is Po p4
1P4 Po'+ Po P4+ P4-Po
and measure times.

ここで伝播経路途中に腐朽がなければ、前述の基準伝播
時間のソθ%程度であり+ P4  Po間の様に腐朽
があれば伝播時間が長くなるので、概略どの位置にある
かを知ることができる。
If there is no decay along the propagation route, it is about θ% of the standard propagation time mentioned above, and if there is decay like between +P4 and Po, the propagation time will be longer, so it is important to know approximately where it is. I can do it.

以上測定原理について説明したが、上記の測定によって
内部腐朽形状の画偉化およびこれにともなって、腐朽部
の面積を算出が可能であり、これにより腐朽程度の定量
化もできる。
The measurement principle has been explained above, and the above measurement makes it possible to visualize the shape of internal decay and, along with this, calculate the area of the decayed part, thereby making it possible to quantify the degree of decay.

以上のべた原理によって、木柱の腐朽診断を行なう装置
を構成した場合、その装置が診断器として使用できるか
否かを判断するには、例えば第2図に示すような内部腐
朽を有する木柱基準片を作製し、正しい結果を出力する
か否かを確認すれば良い。なお、第9図において、汀は
腐朽面積が明確にもとめられるようにした擬似腐朽部(
人工的にあけた空洞)であり、また干割れは自然と生ず
るものである。第9回置は腐朽面積率(断面積に占める
腐朽部の割合)が70%、(B)は20%、(C1は3
0%のものである。
When a device for diagnosing the decay of wooden poles is configured based on the above-mentioned principles, in order to determine whether the device can be used as a diagnostic tool, it is necessary to All you have to do is create a reference piece and check whether it outputs correct results. In Figure 9, the shore is a pseudo-decayed area (
(artificially created cavities), and dry cracks occur naturally. The decay area ratio (ratio of decayed parts to the cross-sectional area) in the 9th position is 70%, (B) is 20%, (C1 is 3
0%.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の装置の検査方法においては、木材の特性として、
第2図に示す干割れが生じ、しかも基準片のような小片
では比表面積が大であるために、乾燥が生じ干割れが進
行するばかりでなく、微小な亀裂が数多く生ずるように
なる。この様な特性に加えて、木柱は自然物であるため
に全く同じものをそろえることができない。このため木
製の試料では、基準片としての安定性に著るしく欠ける
欠点がある。しかして、木柱の腐朽診断器が多数ある場
合には、精度確認を行なうにふされしい方法がなかった
In the above device inspection method, the characteristics of wood are:
The drying cracks shown in FIG. 2 occur, and since the specific surface area of a small piece such as the reference piece is large, not only does drying occur and the drying cracks progress, but a large number of minute cracks also occur. In addition to these characteristics, since wooden pillars are natural products, no two pillars can be made exactly the same. For this reason, wooden samples have the drawback of being significantly lacking in stability as reference pieces. However, when there are a large number of wooden pole decay diagnostic devices, there is no suitable method for checking their accuracy.

本発明は上記の事情に鑑みてなされたもので。The present invention has been made in view of the above circumstances.

超音波診断装置の精度確認を簡便に、再現性良く検査す
ることのできる方法を提供することを目的としている。
The purpose of the present invention is to provide a method that can easily and reproducibly check the accuracy of an ultrasonic diagnostic device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、装置の精度確認をする場合に、超音波信号を
一定値減衰させた時の超音波伝播時間を規定することに
よって、精度確認をすることを特徴としている。
The present invention is characterized in that when checking the accuracy of the apparatus, the accuracy is checked by defining the ultrasonic propagation time when the ultrasonic signal is attenuated by a certain value.

〔実施例〕〔Example〕

第1図は本発明の実施例を示す図であり、5は両端面同
士が平行なアクリルなどのプラスチック製棒、6は探触
子2bからの信号を減衰させる減衰器である。
FIG. 1 is a diagram showing an embodiment of the present invention, where 5 is a rod made of plastic such as acrylic whose end surfaces are parallel to each other, and 6 is an attenuator for attenuating the signal from the probe 2b.

装置の検査を行うには、超音波信号に一定の減衰を減衰
器6であたえ、規定の伝播時間になるか否かで、装置の
精度検査を行なう。
To test the device, a certain amount of attenuation is applied to the ultrasonic signal using an attenuator 6, and the accuracy of the device is tested by checking whether or not a specified propagation time has been reached.

上記の方法で何故精度検査を行なえるのかについて説明
する。第一図を用い、腐朽部がある場合の超音波伝播の
推定経路について説明する。ます木柱内でも超音波が直
進性を有すれば、径路R1が最短コースとなる。また超
音波伝播速度は、周方向エリ直径方向の方が早いという
性質を考慮するとやや内側に曲がった径路R2のような
コースが最短となる。また経路としてなめらかなコース
が自然であるので、この場合には経路R3が考えられる
。以上様々な経路が考えられるが、ここで用いられてい
る超音波の周波数は、比較的低周波(j0KHz〜)で
あるので、直進性は強くなくなめらかに伝播するので、
上記R1〜R3のコースのいずれかに近いと考えられる
。ここで腐朽部があることによる伝播時間の延長は、R
3のコースをとったとしても、径路が円周の半分の長さ
になる76倍がせいぜいであり、第5図に示したような
変化はない。したがって、腐朽部の存在による伝播時間
の延長は、単に経路が長くなったためだけではない。す
なわち、これは木柱の超音波減衰能が大であることに起
因している。第3図は、いくつかの超音波装置から選ん
だコ機W1お工びW2について、第1図の方法で長さ2
0画のアクリルの伝播時間を測定した結果を示したもの
であり、横軸VC減衰器による減衰量、縦軸に伝播時間
を示す、第3図から明らかなように、伝播経路長さは、
変らなくても、減衰が生ずると伝播時間は極めて長くな
ることがわかる。木柱においても同様で、径路が長くな
る他に−それによる減衰量の増大が伝播時間の延長に大
きく影響する。なお、第3図において機差が生ずるのは
、伝播時間測定における信号検知のためのしきい値の大
きさによると考えられる。すなわち、第り図は、伝播時
間の測定原理を示したものであり、送信波は減衰しなが
ら伝播し、受信波となる。伝播時間は送信開始時Sから
ある一定のしきい値に達する信号を受けるまでの時間で
表わされる。ここで、しきい値を第7図のLlに設定し
た場合、減衰が大きくても小さくても伝播時間に差はな
いが、L2に設定した場合、減衰が犬になると伝播時間
は長くなる。
The reason why the accuracy test can be performed using the above method will be explained. The estimated path of ultrasonic propagation when there is a decayed part will be explained using Figure 1. If the ultrasonic waves travel in a straight line even inside a wooden pillar, the path R1 will be the shortest course. Further, considering the property that the ultrasonic propagation speed is faster in the circumferential direction and in the diametrical direction, a course such as the path R2 that curves slightly inward becomes the shortest. Moreover, since a smooth course is natural as a route, route R3 is considered in this case. Various routes are possible, but since the frequency of the ultrasonic waves used here is relatively low (j0KHz~), it does not propagate strongly in a straight line and propagates smoothly.
It is considered that this course is close to any of the courses R1 to R3 above. Here, the extension of propagation time due to the presence of rotten parts is R
Even if course 3 were taken, the length of the path would be at most 76 times the length of half the circumference, and there would be no change as shown in Figure 5. Therefore, the extension of propagation time due to the presence of decayed parts is not simply due to a longer path. That is, this is due to the large ultrasonic attenuation ability of the wooden pillar. Figure 3 shows the length 2 of the machine W1 and W2 selected from several ultrasonic devices using the method shown in Figure 1.
This shows the results of measuring the propagation time of 0-stroke acrylic. The horizontal axis shows the attenuation amount by the VC attenuator, and the vertical axis shows the propagation time. As is clear from Fig. 3, the propagation path length is
It can be seen that even if there is no change, the propagation time becomes extremely long when attenuation occurs. The same is true for wooden poles; in addition to the longer path, the resulting increase in attenuation greatly affects the length of propagation time. Note that the reason why the machine difference occurs in FIG. 3 is considered to be due to the size of the threshold value for signal detection in propagation time measurement. That is, Figure 1 shows the principle of measuring propagation time, in which a transmitted wave propagates while attenuating and becomes a received wave. The propagation time is expressed as the time from the start of transmission S until a signal reaching a certain threshold is received. Here, if the threshold value is set to Ll in FIG. 7, there is no difference in the propagation time whether the attenuation is large or small, but if it is set to L2, the propagation time becomes longer as the attenuation increases.

腐朽診断は、伝播時間を測定することによって行なわれ
るが、上記のごとき状況から、装置によって伝播時間の
違いが生ずるため、精度確認は。
Decay diagnosis is performed by measuring the propagation time, but due to the above situation, the propagation time varies depending on the device, so accuracy cannot be confirmed.

第1図に示す方法により、ある一定の減衰をさせた時の
伝播時間を規定してやれば、第3図に示す機差は生じな
い、ここで述べた診断器の精度は。
If the propagation time at a certain level of attenuation is defined by the method shown in Fig. 1, the machine difference shown in Fig. 3 will not occur, and the accuracy of the diagnostic instrument described here will be determined.

減衰のある物体においても決まった伝播時間となるよう
にすれば確保できるので、第2図に示すような不安定な
基準片を使用せずに済む。
Since it is possible to ensure a fixed propagation time even in objects with attenuation, there is no need to use an unstable reference piece as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、木柱腐朽診断装
置の精度確認などの検査を行なう場合に、基準片として
安定性の悪い木材を使わずに、アクリル等のプラスチッ
クを利用できるので、多くの装置の検査が簡便に、しか
も再現性良く行なわれる利点がある。
As explained above, according to the present invention, when performing an inspection such as checking the accuracy of a wooden pole decay diagnosis device, plastic such as acrylic can be used as a reference piece instead of using unstable wood. This method has the advantage that many devices can be tested easily and with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す図であって、超音波診
断装置の検査方法を示す説明図、第3図は内部腐朽があ
る木柱の超音波の推定伝播経路を示す図、第3図は超音
波の減衰率と伝播時間の関係を示すグラフ、第9図は超
音波の伝播時間の測定原理を示す図、第5図は超音波診
断装置で木柱腐朽診断を行う方法を示す説明図、第6図
は木柱の腐朽形態を示す説明図、第7図は腐朽長さ比と
伝播時間比の関係を示すグラフ、第3図は木柱腐朽診断
を行う方法を示す説明図、第9図囚〜(C)はいずれも
木製基準片の例を示す図である。 1・・・・・・木柱断面、2a・・・・・・超音波送信
子、2b・・・・・・超音波受信子、3・・・・・・超
音波送受信部。 第1図 第2図 2〇 一\、 〉、 メパ) R2ゴ I ’−R3
FIG. 1 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing an inspection method of an ultrasonic diagnostic device, and FIG. 3 is a diagram showing an estimated propagation path of ultrasound waves of a wooden pole with internal decay. Figure 3 is a graph showing the relationship between ultrasonic attenuation rate and propagation time, Figure 9 is a graph showing the measurement principle of ultrasonic propagation time, and Figure 5 is a method for diagnosing wood pole decay using an ultrasonic diagnostic device. Figure 6 is an explanatory diagram showing the decay form of wooden poles, Figure 7 is a graph showing the relationship between decay length ratio and propagation time ratio, and Figure 3 shows a method for diagnosing wooden pole decay. The explanatory drawings and FIGS. 9(C) to 9(C) all show examples of wooden reference pieces. 1... Wood pillar cross section, 2a... Ultrasonic transmitter, 2b... Ultrasonic receiver, 3... Ultrasonic transmitter/receiver. Figure 1 Figure 2 2〇1\, 〉, Mepa) R2 Go I'-R3

Claims (1)

【特許請求の範囲】[Claims] 超音波を利用して木柱の腐朽検査を行う超音波診断装置
の精度確認をする場合に、超音波信号を一定値減衰させ
た時の超音波伝播時間を規定することによって、精度確
認をすることを特徴とする超音波診断装置の検査方法。
When checking the accuracy of an ultrasonic diagnostic device that uses ultrasonic waves to inspect wood poles for decay, the accuracy can be checked by specifying the ultrasonic propagation time when the ultrasonic signal is attenuated by a certain value. An inspection method for an ultrasonic diagnostic device characterized by the following.
JP15666184A 1984-07-27 1984-07-27 Inspecting method of ultrasonic diagnosing device Pending JPS6135349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15666184A JPS6135349A (en) 1984-07-27 1984-07-27 Inspecting method of ultrasonic diagnosing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15666184A JPS6135349A (en) 1984-07-27 1984-07-27 Inspecting method of ultrasonic diagnosing device

Publications (1)

Publication Number Publication Date
JPS6135349A true JPS6135349A (en) 1986-02-19

Family

ID=15632533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15666184A Pending JPS6135349A (en) 1984-07-27 1984-07-27 Inspecting method of ultrasonic diagnosing device

Country Status (1)

Country Link
JP (1) JPS6135349A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079358B2 (en) * 2019-04-25 2021-08-03 Saudi Arabian Oil Company Remotely assessing real-time wooden pole integrity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128787A (en) * 1978-03-29 1979-10-05 Sumitomo Metal Ind Device for measuring performance of ultrasonic flaw detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128787A (en) * 1978-03-29 1979-10-05 Sumitomo Metal Ind Device for measuring performance of ultrasonic flaw detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079358B2 (en) * 2019-04-25 2021-08-03 Saudi Arabian Oil Company Remotely assessing real-time wooden pole integrity

Similar Documents

Publication Publication Date Title
KR890000607B1 (en) Ultrasone method and device for detecting and measuring defects in metal media
AU597636B2 (en) Measurement of residual stresses in material
US3908439A (en) Flat bottom reference reflectors for ultrasonic inspection
CN108872386B (en) Correction method for concrete strength ultrasonic angle measurement method detection
US20220170888A1 (en) Evaluation Method for Reflected Wave
Lin et al. Crack-depth estimation in concrete elements using ultrasonic shear-horizontal waves
US4759221A (en) Apparatus for the determination of surface cracks
JPS6135349A (en) Inspecting method of ultrasonic diagnosing device
JPS6321135B2 (en)
GB1413755A (en) Ultrasonic non-destructive testing of tubes and rods
CN210514191U (en) Ultrasonic guided wave detection calibration reference test block
JPH07333201A (en) Ultrasonic flaw detection of piping
JP2003149214A (en) Nondestructive inspecting method and its apparatus using ultrasonic sensor
RU2301420C2 (en) Mode of definition of coefficient of longitudinal ultrasound vibrations' fading in material
JP2001305112A (en) Ultrasonic flaw detection method
JPS6013257A (en) Ultrasonic diagnosis
JP2001041939A (en) Method for detecting defect of piping
JP3542173B2 (en) Ultrasonic flaw detection method
RU2295123C1 (en) Method for diagnostics of technical condition of metallic engineering structures and communications of a building
JPH0431350B2 (en)
RU2679480C1 (en) Method of acoustic control of bars with waveguide method
JPH0194205A (en) Measurement of propagation distance of ultrasonic wave
Hussin et al. Comparison Study of Ultrasonic and Surface Wave Methods for Crack Depth Detection in Concrete Panels
JP2006038608A (en) Ultrasonic inspection device and method
RU2272282C1 (en) Method for ultrasound control of state of wooden products