JPH0431350B2 - - Google Patents

Info

Publication number
JPH0431350B2
JPH0431350B2 JP60129190A JP12919085A JPH0431350B2 JP H0431350 B2 JPH0431350 B2 JP H0431350B2 JP 60129190 A JP60129190 A JP 60129190A JP 12919085 A JP12919085 A JP 12919085A JP H0431350 B2 JPH0431350 B2 JP H0431350B2
Authority
JP
Japan
Prior art keywords
probe
phase difference
flaw detection
standing wave
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60129190A
Other languages
Japanese (ja)
Other versions
JPS61286750A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60129190A priority Critical patent/JPS61286750A/en
Publication of JPS61286750A publication Critical patent/JPS61286750A/en
Publication of JPH0431350B2 publication Critical patent/JPH0431350B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は木質系材料同複合材料等探傷対象物の
内部欠陥を、探傷対象物の内部に送信した超音波
がその内部で自然に干渉してできた波(以下、本
発明で定在波という。)を用いて探傷する分野に
利用される。
[Detailed Description of the Invention] (Industrial Application Field) The present invention detects internal defects in a flaw detection target such as a wood-based material or a composite material by naturally interfering with ultrasonic waves transmitted inside the flaw detection target. It is used in the field of flaw detection using waves created by standing waves (hereinafter referred to as standing waves in the present invention).

(従来の技術) 本発明が適用できる木材工業界においては従
来、丸太材内部の欠陥を長年の経験から得られて
いた勘に基づく目視検査により推定していた。ご
く最近、金属材料等の非破壊検査に利用していた
超音波探傷方法が木材の内部欠陥の探傷に試みら
れている。この方法では、木材の一方の端から他
方の端に超音波を透過させる透過法か、或いは一
方の端から発信した超音波が内部欠陥により反射
して戻る波を測定する反射法があるが、これらに
は次のような問題点があり、材料の内部欠陥の探
傷に利用することはまだ難しい現況である。
(Prior Art) In the woodworking industry to which the present invention is applicable, defects inside logs have conventionally been estimated by visual inspection based on intuition gained from many years of experience. Very recently, ultrasonic flaw detection methods, which have been used for non-destructive testing of metal materials, have been attempted to detect internal defects in wood. This method uses a transmission method in which ultrasonic waves are transmitted from one end of the wood to the other, or a reflection method in which the ultrasound waves emitted from one end are reflected back by internal defects and are measured. These methods have the following problems, and it is currently difficult to use them for detecting internal defects in materials.

すなわち、年輪と木部が共存する木材のような
不均質材料では、その中をできるだけ減衰しない
で伝播させるためには低周波の超音波を利用する
必要がある反面、その指向性が悪く、波の速度差
に基づく差異を区別することに限界がある。更
に、受信波の到達時間を測定する際の受信波形の
立ち上がり時間(正確には到達した瞬間の時間)
の判定に人為的判断誤差が伴い、この判定の精度
が低い場合には欠陥の探傷が不可能となる。また
更に、低周波を用いた反射法では送信波と反射波
の干渉が生じてしまい、反射波の抽出が困難であ
る。
In other words, in a heterogeneous material such as wood, where tree rings and xylem coexist, it is necessary to use low-frequency ultrasonic waves to propagate through the material with as little attenuation as possible. There are limits to distinguishing between differences based on speed differences. Furthermore, when measuring the arrival time of the received wave, the rise time of the received waveform (more precisely, the time at the moment of arrival)
This judgment is accompanied by human judgment errors, and if the accuracy of this judgment is low, it becomes impossible to detect defects. Furthermore, in the reflection method using low frequencies, interference occurs between the transmitted wave and the reflected wave, making it difficult to extract the reflected wave.

(発明が解決しようとする問題点) 本発明は上記従来の受信した波の時間差を基礎
として内部欠陥の有無を判定する方式の欠陥を、
受信した波の形の位相差により同じく有無を判定
する方式により解消しようとするものである。
(Problems to be Solved by the Invention) The present invention solves the drawbacks of the conventional method of determining the presence or absence of internal defects based on the time difference of received waves.
This problem is attempted to be solved by a method that similarly determines the presence or absence of the wave based on the phase difference in the shape of the received wave.

(問題点を解決するための手段) 本発明は、超音波を利用して内部欠陥を非破壊
的に探傷する方法において、木質系探傷対象物の
所要の測定個所において、一個の超音波発信用探
触子から発信した超音波による定在波を該探触子
を挟んで前記対象物の等間隔の検出位置で定在渡
受信用探触子で受信し、該両探触子より定在波を
測定手段に入力し、該測定手段で両定在波の位相
差を測定し、同一測定条件下での無傷の建全な木
質系探傷対象物の位相差特性値をしきい値とし、
該しきい値を基準として前記位相差と比較して内
部欠陥の有無を判定するものである。
(Means for Solving the Problems) The present invention provides a method for non-destructively detecting internal defects using ultrasonic waves, in which a single ultrasonic beam is transmitted at a required measurement point of a wooden flaw detection object. A standing wave of ultrasonic waves emitted from a probe is received by a standing wave reception probe at equally spaced detection positions on the object across the probe, and Input the waves into a measuring means, measure the phase difference between the two standing waves with the measuring means, and use the phase difference characteristic value of an intact and intact wood-based flaw detection object under the same measurement conditions as a threshold;
The presence or absence of an internal defect is determined by comparing the phase difference with the threshold value as a reference.

ここで、本発明の原理を第1図に基づいて説明
すると、第1図は定在波の位相が内部欠陥5の存
在によりずれることを定性的に述べるものであ
る。図において1および2は定在波を受信する定
在波受信用探触子(以下、単に探触子とする。)、
3は超音波を発信する超音波発信用探触子(以
下、単に探触子とする。)、4は探傷対象物、5は
内部欠陥、aおよびbは探触子3と探触子1およ
び2との配置間確を示す。探触子3より超音波の
連続波を発信すると、波は矢印で表す種々の方向
に伝わり、表面波、反射波および透過波の波動が
干渉し合つて定在波を形成する。ここで探傷対象
物4が探触子3を中心にして材質的に且つ形状的
に同一であれば、探触子3から等間隔にある探触
子1および2から得られる定在波の波形は同一位
相の波形となる。しかし、図に示すような内部欠
陥5が探傷対象物4の内部に一方的に存在する
と、その欠陥部分において超音波の屈折および反
射が生じ、結果的には欠陥部分側の定在波に乱れ
が生ずる。この状態のもとで探触子1および2が
受けたそれぞれの波形を比較すると互いの位相が
ずれている。このような定在波の位相差から内部
欠陥の有無を調べることができる。本発明は上記
の原理を利用したものである。
Here, the principle of the present invention will be explained based on FIG. 1. FIG. 1 qualitatively describes that the phase of a standing wave shifts due to the presence of an internal defect 5. In the figure, 1 and 2 are standing wave receiving probes (hereinafter simply referred to as probes) that receive standing waves;
3 is an ultrasonic transmitting probe that emits ultrasonic waves (hereinafter simply referred to as a probe); 4 is an object to be inspected; 5 is an internal defect; a and b are probe 3 and probe 1. The placement accuracy with and 2 is shown. When a continuous ultrasonic wave is emitted from the probe 3, the wave propagates in various directions indicated by arrows, and the surface waves, reflected waves, and transmitted waves interfere with each other to form a standing wave. Here, if the flaw detection object 4 is the same in material and shape with the probe 3 at the center, the waveform of the standing wave obtained from the probes 1 and 2 that are equally spaced from the probe 3 are waveforms with the same phase. However, if an internal defect 5 as shown in the figure exists unilaterally inside the inspection target 4, the ultrasonic waves are refracted and reflected at the defect, and as a result, the standing waves on the defect side are disturbed. occurs. Comparing the respective waveforms received by probes 1 and 2 under this condition, they are out of phase with each other. The presence or absence of internal defects can be investigated from the phase difference of such standing waves. The present invention utilizes the above principle.

(作用) 本発明によれば、前記の位相差は欠陥の大き
さ、位置および種類等によつてその度合いが変る
が、秋田杉丸太材の内部に存在する節欠陥を探傷
した場合、その位相差約90度をしきい値とし、こ
の値を基準にしてこれ以上の位相差の度合いによ
り節欠陥の存在を定量的に判定できるものであ
る。また、前述の定在波の測定個所は2か所同時
でなくても1か所ずつの波形を測定して記憶さ
せ、その後で両者の位相差を測定することによつ
ても欠陥の探傷はできる。更に、本発明では使用
した超音波の周波数は探傷対象物の性状や探傷欠
陥により任意に選択することができる。木質系材
料を対象にした場合1〜10KHz程度の周波数が適
当である。また、このことは探傷対象物が均一材
料になればなるほど高い範囲の周波数の超音波を
用いることにより微少な内部欠陥をも捕えること
が可能である。また更に、本発明では探傷対象物
に探触子を密着させる方法として、探触子底面に
突き出たピンを介して超音波を伝える手段を用
い、従来の接触媒体の添加或いは接着剤の塗布ま
たは機械的密着等の作業性の悪さを改善するとと
もに、探触子の位置決め精度を高めることができ
る。
(Function) According to the present invention, the degree of the phase difference changes depending on the size, position, type, etc. of the defect, but when a knot defect existing inside an Akita cedar log is detected, A phase difference of approximately 90 degrees is set as a threshold value, and the presence of a node defect can be quantitatively determined based on the degree of phase difference greater than this value. Furthermore, even if the standing waves are not measured at two locations at the same time, defects can also be detected by measuring and storing the waveform at one location at a time, and then measuring the phase difference between the two locations. can. Furthermore, in the present invention, the frequency of the ultrasonic waves used can be arbitrarily selected depending on the properties of the object to be detected and the defects to be detected. When targeting wood-based materials, a frequency of about 1 to 10 KHz is appropriate. Furthermore, the more uniform the material of the object to be inspected, the more minute internal defects can be detected by using ultrasonic waves of a higher frequency range. Furthermore, in the present invention, as a method for bringing the probe into close contact with the object to be detected, a means for transmitting ultrasonic waves through a pin protruding from the bottom of the probe is used, and conventional methods such as adding a contact medium, applying an adhesive, or In addition to improving workability such as mechanical adhesion, it is possible to improve the positioning accuracy of the probe.

(実施例) 本発明の実施例を図に基づいて説明すると、比
較的年輪層が薄いといわれているラワン板材の内
部欠陥探傷の実施例を示すと、第2図は探傷対象
物4であるラワン板材の定在波探傷装置の説明図
で、ラワン板材の探傷面Aの中心にピンを突き刺
して密着させた探触子3を介して信号発生器6か
ら0.2KHz毎に1KHzから10KHzまでの正弦波形の
超音波を発信する。発生した定在波は探触子3か
ら左右に6cmの等間隔にピンを突き刺して密着配
置した探触子1および2により受信される。この
態様において、内部欠陥の有無による定在波の位
相差を調べてみると、第3図はラワン板材に内部
欠陥5に代えた切り込み溝5′を入れていない状
態での定在波の位相差を示すグラフであり、周波
数2.8KHzを発信した際110度程度、7.2KHzで60度
ほどの位相差をもつ定在波を示す。第4図は第2
図に示すように探触子3の位置から底面Bに垂線
を下した点から底面に沿つて6mm右へ離れた点に
深さ4cmの切り込み溝5′を入れた状態での同じ
くグラフであり、この場合の定在波の位相差は、
第4図から明らかなように周波数2.8KHzの所で
約180度、7.2KHzで約110度であり、いずれの周
波数においても切り込み溝5′が存在することに
より約50度ほど位相差が高くなつている。このよ
うに無欠陥時の位相差特性を予め把握し、探傷対
象物に応じて設定した位相差のしきい値を越える
位相差が認められた場合には内部欠陥5の存在を
推定できるものである。
(Example) An example of the present invention will be explained based on the drawings. Fig. 2 shows an example of internal defect detection of a lauan plate material, which is said to have a relatively thin annual ring layer. This is an explanatory diagram of a standing wave flaw detection device for lauan plate material. This is an explanatory diagram of a standing wave flaw detection device for lauan plate material. Emit sinusoidal ultrasound waves. The generated standing waves are received by probes 1 and 2, which are closely arranged with pins inserted at equal intervals of 6 cm from the probe 3 to the left and right. In this embodiment, when examining the phase difference of the standing waves depending on the presence or absence of internal defects, Fig. 3 shows the position of the standing waves in a state where the cut grooves 5' in place of the internal defects 5 are not made in the lauan plate material. This is a graph showing the phase difference, and shows a standing wave with a phase difference of about 110 degrees when transmitting at a frequency of 2.8KHz and about 60 degrees at 7.2KHz. Figure 4 is the second
As shown in the figure, this is the same graph with a cut groove 5' with a depth of 4 cm made at a point 6 mm to the right along the bottom from the point drawn from the perpendicular line from the position of the probe 3 to the bottom surface B. , the phase difference of the standing wave in this case is
As is clear from Figure 4, the phase difference is approximately 180 degrees at a frequency of 2.8 KHz and approximately 110 degrees at 7.2 KHz, and at both frequencies, the presence of the groove 5' increases the phase difference by approximately 50 degrees. ing. In this way, the phase difference characteristics when there are no defects can be ascertained in advance, and if a phase difference exceeding the phase difference threshold set according to the object to be detected is observed, the presence of an internal defect 5 can be estimated. be.

第2の実施例として樹皮つきの造林杉丸太の内
部欠陥5の探傷例を示す。第5図は丸太材の定在
波探傷装置の説明図である。図において、探傷対
象物4である丸太材の長手方向(母線)に直角な
面(丸太材端面と平行な面)の輪郭(外周線)に
沿つて探触子3を、また、等間隔に探触子1およ
び2を配置する。この例においても探傷対象物か
ら得られる定在波の位相差は丸太材の年輪分布、
丸太材断面の真円度、内部欠陥5の大きさ、形状
等により異なる。また、探触子3より発信する超
音波の周波数によつてもその位相差は変る。更
に、内部欠陥5たとえば節や探触子3、探触子1
および2の位置がある一定の相対的関係になつた
場合に、その定在波の位相差は大きく変化する。
すなわち、その相対的関係に近づくにつれて位相
差は初め大きく増え、その後で急激に減少する。
逆に、その関係から遠のくにつれて位相差は再び
大きく増えるという、いわゆる谷間現象を呈す
る。
As a second example, an example of detecting internal defects 5 in a silvicultural cedar log with bark will be shown. FIG. 5 is an explanatory diagram of a standing wave flaw detection device for log materials. In the figure, the probe 3 is placed along the contour (periphery line) of a surface perpendicular to the longitudinal direction (generating line) of the log that is the object 4 to be detected (parallel to the end surface of the log), and at regular intervals. Place probes 1 and 2. In this example as well, the phase difference of the standing waves obtained from the object to be tested is based on the annual ring distribution of the log,
It varies depending on the roundness of the log cross section, the size and shape of the internal defect 5, etc. Further, the phase difference also changes depending on the frequency of the ultrasonic waves emitted from the probe 3. Furthermore, internal defects 5 such as knots, probe 3, probe 1
When the positions of and 2 have a certain relative relationship, the phase difference of the standing waves changes significantly.
That is, as the relative relationship approaches, the phase difference increases greatly at first, and then decreases rapidly.
On the contrary, as the distance from this relationship increases, the phase difference increases again, a so-called valley phenomenon.

第7図は予め内部欠陥5が知られている丸太材
について探傷した際の材料横断面上での定在波の
位相差を円形座標図で示したもので、内部欠陥5
は後述の円周目盛11および32付近に存在する
ことが確められる。図において半径方向の値は位
相差の大きさを表し、この場合の半径に示される
位相差は108度を表す。外周線上の目盛は探傷時
の探触子3の位置を示すものであり、本実施例で
は丸太材の全周65箇所の分割点で測定したもので
ある。したがつて、これより直径の大なる丸太材
であれば測定箇所も増え、直径の小なる丸太材で
あれば該測定箇所が減ずることになるから、円形
座標図での分割目盛は適宜に選択決定される。探
触子1および2は探触子3よりそれぞれ2目盛ず
つ等間隔に置かれている。第6図において定めた
測定位置にしたがつて位相差の測定結果を第7図
に示す円形座標図として表現すれば、しきい値が
90度以上の位相差をもつ谷間現象を呈する領域
(便宜上この状態の図であるが、該図を右方へ傾
ければ第6図とぴつたり一致する。)は円周目盛
11および32を中心とする2箇所に存在してお
り、予め確認してある内部欠陥の存在位置にほぼ
対応している。
Figure 7 is a circular coordinate diagram showing the phase difference of standing waves on the cross section of the material when a log material with internal defects 5 is known in advance is detected.
It is confirmed that these exist near circumferential scales 11 and 32, which will be described later. In the figure, the value in the radial direction represents the magnitude of the phase difference, and in this case, the phase difference indicated by the radius represents 108 degrees. The scale on the outer circumference line indicates the position of the probe 3 during flaw detection, and in this example, measurements were taken at 65 dividing points around the entire circumference of the log. Therefore, if the diameter is larger than this, the number of measurement points will increase, and if the diameter is smaller than this, the number of measurement points will decrease, so choose the dividing scale in the circular coordinate diagram appropriately. It is determined. Probes 1 and 2 are each placed at equal intervals of two scales from probe 3. If the measurement results of the phase difference are expressed as a circular coordinate diagram shown in Fig. 7 according to the measurement positions determined in Fig. 6, the threshold value is
Areas exhibiting a valley phenomenon with a phase difference of 90 degrees or more (this state is illustrated for convenience, but if you tilt the figure to the right, it will match exactly with Fig. 6) are marked on the circumferential scales 11 and 32. They exist at two central locations, which approximately correspond to the locations of internal defects that have been confirmed in advance.

(発明の効果) 本発明は以上説明したように、探傷対象物毎の
種類、寸法、形状等の対象条件と超音波の発信周
波数等の測定条件に対応した無欠陥状態の位相差
特性を予め把握し、同一条件下で測定した探傷対
象物の位相差と前記の把握された位相差とを比較
して内部欠陥の有無を判定するものであるから、
探傷技術の熟練度等に無関係に探傷できる効果が
ある。
(Effects of the Invention) As explained above, the present invention provides phase difference characteristics in a defect-free state that corresponds to the target conditions such as the type, size, and shape of each object to be tested and the measurement conditions such as the transmission frequency of the ultrasonic waves. This is because the presence or absence of internal defects is determined by comparing the phase difference of the detected object measured under the same conditions with the determined phase difference.
It has the effect of allowing flaw detection regardless of the proficiency level of the flaw detection technique.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超音波の定在波探傷方法の説
明図、第2図は板材に適用した本発明の第1実施
例の説明図、第3図は第1実施例における無欠陥
状態での定在波の位相差を示すグラフ、第4図は
第1実施例における切り込み溝を入れた状態での
定在波の位相差を示すグラフ、第5図は第2実施
例として丸太材に適用した探傷装置の説明図、第
6図は第5図のA−A′断面図、第7図は第2実
施例での丸太材の全周測定位置における位相差を
半径方向に表示した円形座標図である。 図中、1および2は定在波受信用探触子、3は
超音波発信用探触子、4は探傷対象物、5は内部
欠陥、6は超音波信号発生器、7はオシロスコー
プ。
Fig. 1 is an explanatory diagram of the ultrasonic standing wave flaw detection method of the present invention, Fig. 2 is an explanatory diagram of the first embodiment of the present invention applied to a plate material, and Fig. 3 is a defect-free state in the first embodiment. Fig. 4 is a graph showing the phase difference of the standing waves in the state in which notches are made in the first embodiment, and Fig. 5 is a graph showing the phase difference of the standing waves in the state where the cut grooves are made in the first embodiment. Fig. 6 is a sectional view taken along A-A' in Fig. 5, and Fig. 7 shows the phase difference in the circumferential measurement position of the log in the second embodiment in the radial direction. It is a circular coordinate diagram. In the figure, 1 and 2 are probes for receiving standing waves, 3 is a probe for transmitting ultrasonic waves, 4 is an object to be detected, 5 is an internal defect, 6 is an ultrasonic signal generator, and 7 is an oscilloscope.

Claims (1)

【特許請求の範囲】 1 超音波を利用して内部欠陥を非破壊的に探傷
する方法において、木質系探傷対象物の所要の測
定個所において、一個の超音波発信用探触子から
発信した超音波による定在波を該探触子を挟んで
前記対象物の等間隔の検出位置で定在波受信用探
触子で受信し、該両探触子より定在波を測定手段
に入力し、該測定手段で両定在波の位相差を測定
し、同一測定条件下での無傷の健全な木質系探傷
対象物の位相差特性値をしきい値とし、該しきい
値を基準として前記位相差と比較して内部欠陥の
有無を判定することを特徴とする超音波の定在波
探傷方法。 2 探触子底部に突起状ピンを設け、該ピンを介
して探傷対象物に探触子を密着させて成る特許請
求の範囲第1項記載の超音波の定在波探傷方法。
[Claims] 1. In a method for non-destructively detecting internal defects using ultrasonic waves, ultrasonic waves emitted from a single ultrasonic emitting probe are used at required measurement points of a wood-based flaw detection target. A standing wave due to a sound wave is received by a standing wave receiving probe at equally spaced detection positions of the object across the probe, and the standing wave is inputted from both probes to a measuring means. , the phase difference between the two standing waves is measured by the measuring means, the phase difference characteristic value of the intact and healthy wood-based flaw detection object under the same measurement conditions is taken as a threshold value, and the An ultrasonic standing wave flaw detection method characterized by comparing the phase difference to determine the presence or absence of internal defects. 2. The ultrasonic standing wave flaw detection method according to claim 1, wherein a protruding pin is provided at the bottom of the probe, and the probe is brought into close contact with the object to be detected via the pin.
JP60129190A 1985-06-13 1985-06-13 Method for flaw detection by standing wave of ultrasonic wave Granted JPS61286750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60129190A JPS61286750A (en) 1985-06-13 1985-06-13 Method for flaw detection by standing wave of ultrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60129190A JPS61286750A (en) 1985-06-13 1985-06-13 Method for flaw detection by standing wave of ultrasonic wave

Publications (2)

Publication Number Publication Date
JPS61286750A JPS61286750A (en) 1986-12-17
JPH0431350B2 true JPH0431350B2 (en) 1992-05-26

Family

ID=15003367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60129190A Granted JPS61286750A (en) 1985-06-13 1985-06-13 Method for flaw detection by standing wave of ultrasonic wave

Country Status (1)

Country Link
JP (1) JPS61286750A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6684705B1 (en) * 1999-05-07 2004-02-03 U.S. Natural Resources, Inc. Roller mechanism using an array of ultrasound elements to interrogate wood properties
KR100604415B1 (en) 2005-04-04 2006-07-25 재단법인서울대학교산학협력재단 Wood deterioration computed tomography inspection method
JP2008026162A (en) * 2006-07-21 2008-02-07 Sekisui Chem Co Ltd Inspection method for inspecting deterioration state of embedded pipe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393886A (en) * 1977-01-27 1978-08-17 Kansai Electric Power Co Inspection method of steel pipe materials
JPS5713351A (en) * 1980-06-03 1982-01-23 Unisearch Ltd Method of and apparatus for detecting decomposition in wood

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393886A (en) * 1977-01-27 1978-08-17 Kansai Electric Power Co Inspection method of steel pipe materials
JPS5713351A (en) * 1980-06-03 1982-01-23 Unisearch Ltd Method of and apparatus for detecting decomposition in wood

Also Published As

Publication number Publication date
JPS61286750A (en) 1986-12-17

Similar Documents

Publication Publication Date Title
Dackermann et al. In situ assessment of structural timber using stress-wave measurements
CA2386173C (en) System and method of assessing the structural properties of wooden members using ultrasound
Vössing et al. Nondestructive assessment and imaging methods for internal inspection of timber. A review.
US7383730B2 (en) Methods for determining velocity of a stress wave within a material and homogeneity of properties within the material
JP3477170B2 (en) Apparatus for detecting defects in continuously moving plastic strips or tubes using ultrasonic signals and / or measuring their wall thickness
US20170058660A1 (en) Method and a system for ultrasonic inspection of well bores
US20020194916A1 (en) Method for inspecting clad pipe
JPH0431350B2 (en)
US3592052A (en) Ultrasonic crack depth measurement
WO1990013024A1 (en) Calibration standard for measuring surface cracks by ultrasound and method
CN105116057B (en) Small-bore pipe rolling defect ultrasonic probe and matching used test block
JP3729686B2 (en) Defect detection method for piping
US11067540B2 (en) Method and device for checking an object for flaws
JP3413249B2 (en) Standard specimen for non-destructive inspection of piping
JPS63221211A (en) Ultrasonic thickness measuring method for laminar body
RU2761415C1 (en) SENSOR CARRIER FOR PIPELINE CONTROL USING TIME DIFFRACTIONAL ToFD METHOD
RU2191376C2 (en) Method measuring sizes of defects in process of ultrasonic inspection of articles
JP3313470B2 (en) Standard specimen for non-destructive inspection of piping
Rinn How Sensor Positioning Influences Sonic Tomography Results
RU2138778C1 (en) Method of evaluation of column thickness by ultrasonic control method
JPH01107149A (en) Standard test piece for ultrasonic flaw detector
RU2679480C1 (en) Method of acoustic control of bars with waveguide method
RU2032171C1 (en) Ultrasonic test method for cylindrical parts
SU1364971A1 (en) Specimen for ultrasonic check
SU1265594A1 (en) Method for ultrasound inspection of articles