JPS6013257A - Ultrasonic diagnosis - Google Patents

Ultrasonic diagnosis

Info

Publication number
JPS6013257A
JPS6013257A JP58121253A JP12125383A JPS6013257A JP S6013257 A JPS6013257 A JP S6013257A JP 58121253 A JP58121253 A JP 58121253A JP 12125383 A JP12125383 A JP 12125383A JP S6013257 A JPS6013257 A JP S6013257A
Authority
JP
Japan
Prior art keywords
measured
ultrasonic
propagation time
decayed
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58121253A
Other languages
Japanese (ja)
Inventor
Toshiaki Arai
敏明 新井
Kuniomi Mochida
持田 国臣
Takahito Kameoka
亀岡 孝仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP58121253A priority Critical patent/JPS6013257A/en
Publication of JPS6013257A publication Critical patent/JPS6013257A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/46Wood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0238Wood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Wood Science & Technology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To achieve a quantitative detection of any decay defect of a wood pillar or the like accurately by measuring an ultrasonic wave propagation time at the parts on the straight line passing the imaginary center of a measuring section and divided by imaginery lines to determine the shaped and the position of a defect. CONSTITUTION:Ultrasonic probes 2a and 2b are provided at the point P1 and P1' opposite thereto or the like among intersections P1 and P1'-P8 and P8' between imagenery straight lines passing the imagenery center O of the section 5 to be measured of a wood pillar or the like and the propagation time of an ultrasonic wave propagating through the straight line P1 and P1' or the like is measured. In this case, the ultrasonic wave propagates shunting the decayed part H and the comparison between the measured time and the reference propagation time determines the length l1 of the decayed part H. On the other hand, the ultrasonic wave propagation times in parts at 90 deg. or the like divided by the imagenery lines are measured with the probes 2a and 2b provided at the points P1 and P5, P1 and P5', P1' and P5, P1' and P5' and the like and compared with the reference time to calculate the probability of presence of decayed parts thereby determinining the position of decayed parts from the maximum probability. Thus, decay defects of the wood pillar or the like can be accurately detected quantitatively.

Description

【発明の詳細な説明】 この発明は超音波によって例えば木柱等の被測定物内部
に存在する欠陥部の形状および位置を診断する超音波診
断方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic diagnostic method for diagnosing the shape and position of a defect within an object to be measured, such as a wooden pole, using ultrasonic waves.

木製の電柱(木柱)は運搬、建柱が容易であるため、現
在でも多数使用されている。しかし、この木柱は基部か
ら腐朽が発生するため、定期的に腐朽状態を点検する必
要がある。従来、この水柱の腐朽を点検する方法として
、木柱をハンマでたたいたシ、キリによυ穴をあけて点
検する等の方法が採られていたが、これらの方法は点検
者の勘に頼るところが大きく、判定を誤まる恐れが多分
にあった。
Many wooden utility poles are still in use today, as they are easy to transport and erect. However, as these wooden pillars begin to rot from the base, it is necessary to periodically inspect the state of decay. Conventionally, methods of inspecting the decay of this water column include hitting the wooden column with a hammer or drilling a υ hole with a drill. There was a great deal of reliance on this, and there was a high risk of making incorrect decisions.

この発明は上記事情に鑑みてなされたもので、木柱等の
被測定物の欠陥部(腐朽部)を定量的に、かつ正確に検
知することができる超音波診断方法を提供することを目
的としている。
This invention was made in view of the above circumstances, and an object thereof is to provide an ultrasonic diagnostic method that can quantitatively and accurately detect defective parts (decayed parts) of objects to be measured such as wooden poles. It is said that

以下、この発明を木柱の腐朽部の診断を例にとυ説明す
る。最初に、この発明による診断方法の基本原理を簡単
VC説明する。
This invention will be explained below using the diagnosis of a rotten part of a wooden pole as an example. First, the basic principle of the diagnostic method according to the present invention will be briefly explained.

木柱に腐朽部があると、超音波はその部分を避け、遠ま
わシして伝搬する性質がちる。すなわち、木柱に腐朽部
がある場合は、健全な部分よりも超音波の伝搬時間が長
くかかることから、2点間の伝搬時間を測定することに
よってその間の腐朽部の有無を検知することができる。
If there is a rotten part of the wooden pole, the ultrasonic waves tend to avoid that part and travel a long way before propagating. In other words, if there is a rotten part of a wooden pole, the propagation time of the ultrasonic wave is longer than in a healthy part, so it is possible to detect whether there is a rotten part between two points by measuring the propagation time between two points. can.

また、超音波の伝播時間は、腐朽部の大きさに依存し、
大きい腐朽部はど時間がかかる。したがって、超音波の
伝きる。
In addition, the propagation time of ultrasonic waves depends on the size of the decayed area.
Large decayed areas take time. Therefore, ultrasonic waves are transmitted.

この発明は以上の原理を更に発展させたもので、以下、
この発明による方法の一実施例を順を追って説明する。
This invention is a further development of the above principle, and the following:
An embodiment of the method according to the present invention will be explained step by step.

C1)基準伝播時間の測定および算出 基準伝播時間とは、木柱の健全部(腐朽部がない部分)
の超音波伝播時間であυ、この実施例においては、次の
、2種類の基準伝播時間T1.T2を各々測定および算
出する。
C1) Measurement and calculation of standard propagation time The standard propagation time refers to the healthy part of the wooden pole (the part without rotten parts).
In this embodiment, the following two types of reference propagation times T1. Measure and calculate T2 respectively.

■ 第7図(イ)に示すように、木柱1の比較的上部の
一点に、木柱1の中心Oに向けて超音波探子2aを当接
し、この超音波探子2aと中心0を介して対向する位置
に、超音波探子2bを中心0に向けて当接し、そして、
超音波探子2a。
■ As shown in Fig. 7 (a), the ultrasonic probe 2a is brought into contact with a relatively upper point of the wooden column 1, pointing toward the center O of the wooden column 1, and the ultrasonic probe 2a and the center 0 are connected to each other. The ultrasonic probe 2b is brought into contact with the center facing toward the center 0, and
Ultrasonic probe 2a.

2b間の超音波伝播時間を測定する。この測定結果が基
準伝播時tHjTtである。
Measure the ultrasonic propagation time between 2b. This measurement result is the reference propagation time tHjTt.

なお、木柱の比較的上部において上記測定を行う理由は
、木柱の上部が腐朽されている場合がほとんどないから
である。
The reason why the above measurement is performed at a relatively upper part of the wooden pole is that the upper part of the wooden pole is rarely rotten.

Q)第1図(ロ)に示すように、木柱1の上部側面の中
心OからみてりOoをなす位置に、超音波探子2a、2
bを各々中心OK向けて当接した時の超音波探子2a 
、2b間の超音波伝播時間が基準伝播時間T2でちる。
Q) As shown in Figure 1 (b), place the ultrasonic probes 2a and 2 at the position Oo when viewed from the center O of the upper side of the wooden pillar 1.
Ultrasonic probe 2a when b is in contact with each other facing the center OK
, 2b is equal to the reference propagation time T2.

この基準伝播時間T2は上述した基準伝播時間T1の約
りOチと万ることが経験上知られており、したがって、
基準伝播時間T2は、 T 2 = 02TI ・・・・・・・・・ (1)な
る式に基づいて算出される。
It is known from experience that this reference propagation time T2 is approximately the same as the reference propagation time T1 mentioned above, and therefore,
The reference propagation time T2 is calculated based on the formula: T 2 = 02TI (1).

(2)木柱の直径対向位fftKおける伝播時間の測定
第2図は腐朽部Hがちると推定される木柱の部分を水平
に切断した仮想上の測定断面5を示す図であわ、この図
において直@PxP’s 、P2P2’・・・・・・P
sP’aは各々木柱の中心0を通シ、かつ、互いに、2
2.5′。をなす仮想線、また、点P1〜P s +p
 / l〜P′8は各々上記仮想線と測定断面5の外周
との交点である。
(2) Measurement of propagation time at a position fftK opposite the diameter of the wooden pole Figure 2 shows a hypothetical measurement cross section 5 horizontally cut through the part of the wooden pole where the decayed part H is estimated to be. In the figure, direct @PxP's, P2P2'...P
sP'a respectively pass through the center 0 of the wooden pillars, and each other, 2
2.5′. , and the points P1 to P s +p
/l to P'8 are the intersection points of the virtual line and the outer periphery of the measurement section 5, respectively.

この(2)項の測定においては、まず、点P1.P’1
に各々超音波探子2a 、2bを中心0に向けて当接し
て点P1.’P’1間の超音波伝播時間を測定し、次い
で、点P 2 、 P’2間の伝播時間を沖1定し、以
下、点PB、P’stで同様の測定を行う。ここで上記
各測定結果を各々t1〜t8(=t)とする。
In the measurement of this item (2), first, point P1. P'1
The ultrasonic probes 2a and 2b are brought into contact with each other toward the center 0 to point P1. The ultrasonic propagation time between 'P'1 is measured, then the propagation time between points P2 and P'2 is determined, and similar measurements are made at points PB and P'st. Here, each of the above measurement results is assumed to be t1 to t8 (=t).

(3)腐朽部の長さの算出 この(3)項においては、直線PIP’l〜P s P
’s上に各々存在する瓶朽部の長さt(−11,C2・
・・・・・C8;第2図参照)をめる。
(3) Calculation of the length of the decayed part In this (3) section, the straight line PIP'l ~ P s P
The length t(-11, C2・
...C8; see Figure 2).

まず、腐朽部の長さtが各直線PIP’l〜P8p/ 
s上に占める割合 L(=L1.L2・・・・・・Ls
)は、前記α)、(2)項の測定結果から次式に基づい
て算出される。
First, the length t of the decayed part is determined by each straight line PIP'l~P8p/
Proportion L on s (=L1.L2...Ls
) is calculated from the measurement results of the above α) and (2) terms based on the following equation.

Lル(t/Tx’)=COI、+C1・・・・・・・・
・ (2)なおこの式において、Co、CtFi各々実
験結果に基づいて得られる定数である。したがって腐朽
部の長さtは、上記(2]式によって1出された割合し
に木柱の直径を乗することによりめられる。
L (t/Tx') = COI, +C1...
- (2) In this equation, Co and CtFi are constants obtained based on experimental results. Therefore, the length t of the decayed part can be determined by multiplying the ratio obtained by equation (2) above by the diameter of the wooden pillar.

以上述べた(1)〜(3)項の各処理によシ、直@PI
P’1−p8p’s上に各々存在する腐朽部の長さtが
められた。しかしながら、この段階では、例えば直線P
IF’l上の腐朽部が直@OPl上にあるのか、直線o
 p、’上にあるのか、あるいは第3図に示すように直
filOPl上および直線OP′上に分かれて存在する
のかが判断できない。そこで以下の処理を行う− (4) 200位11へ゛における伝播時間の測定まず
、第2図における点P1.P5に各々超音波探子2a、
2bを中心OK向けて当接し、そして、点Pi 、P5
間の伝播時間τl’に測定する。
According to each of the above-mentioned processes (1) to (3), direct@PI
The length t of the decayed parts present on each of P'1-p8p's was determined. However, at this stage, for example, the straight line P
Is the decayed part on IF'l directly on @OPl?
It is not possible to determine whether it is on the straight line OP1 or on the straight line OP' as shown in FIG. Therefore, the following process is performed. (4) Measurement of propagation time at point P1 in FIG. 2. Ultrasonic probe 2a on P5,
2b toward the center OK, and then point Pi, P5
The propagation time τl' is measured between .

以下同様にして点P s e P’ 1間、点271.
215間、点21521間の各伝播時間τ2〜τ4を測
定する、 (5)腐朽部の存在確率の算出 いま、例えば上記(4)項の測定結果が、τ1 = /
 J’θ τ2 = /グθ τ 3=io。
Similarly, between points P s e P' 1 and 271.
215 and between points 21521 and 21521. (5) Calculating the probability of existence of a decayed part. Now, for example, if the measurement result of the above item (4) is τ1 = /
J'θ τ2 = /gθ τ 3 = io.

τ4=/ J O であったとし、また、前記(1)項における基準伝播時
間T2の算出結果が、 T2−/ θO であったとする。この場合、まず、第≠図に示すように
点P1とP5の中間点P3に数値/ざOを、点P5とP
’tの中間点P7に数値ipoを、点P′1とp/、の
中間点P’3に数値100を1、また、点P′5とPl
との中間点P’ 7 K数値へUを各々割当てる。次に
、点PsK数値/10とia。
Assume that τ4=/JO, and that the calculation result of the reference propagation time T2 in the above section (1) is T2-/θO. In this case, first, as shown in Fig.
The value ipo is set to the midpoint P7 of 't, the value 100 is set to 1 at the midpoint P'3 between points P'1 and p/, and the value 100 is set to 1 between the points P'5 and Pl.
Assign U to each intermediate point P' 7 K value. Next, the point PsK value/10 and ia.

との中間値/60を、点P4に数値iroと/1,0と
の中間値/70を、点P6に数値itoとlグ0との中
間値/30を各々割当てる。他の点Pg。
The intermediate value /60 is assigned to the point P4, the intermediate value /70 between the numerical value iro and /1,0 is assigned to the point P6, and the intermediate value /30 between the numerical value ito and lg0 is assigned to the point P6. Other points Pg.

P’ 1 + P’ 2 * P’ 4 * P’ s
・P’6・P’81P1轡P2についても同様にして数
値を割当てる。次にこのようにして割当てられた各数値
と基準伝播時間T2(=10θ)との比をとる。これに
よシ得られた数値(以下、この数値を確率値にと呼ぶ)
を各々第μ図に示す。
P' 1 + P' 2 * P' 4 * P' s
- Numerical values are assigned in the same way for P'6 and P'81P1轡P2. Next, the ratio between each numerical value assigned in this manner and the reference propagation time T2 (=10θ) is calculated. The numerical value obtained by this (hereinafter, this numerical value will be referred to as the probability value)
are shown in Figure μ.

しかして、上記確率イ+?IKがlθとは、その点(第
≠図においてはP′3)と中心0との間に腐朽部が存在
しないことを意味し、捷た、値がioを越える各確率値
には、その点と中心0との間に腐朽部が存在する確率を
示している。例えば、点Pi。
However, the above probability is +? When IK is lθ, it means that there is no decayed part between that point (P'3 in the figure) and the center 0, and each probability value that exceeds io is It shows the probability that a decayed part exists between the point and the center 0. For example, point Pi.

P’IK対応する確率値には、直線OPI上の腐朽部の
長さと、直aOP’母つ腐朽部の長さとの比かよ:、2
であることを示している。
The probability value corresponding to P'IK is the ratio of the length of the decayed part on the straight line OPI and the length of the decayed part on the straight line aOP':,2
It shows that.

なお、確率値には、名点に割当てられた数値(/ 10
 、 / 11.0%)と、基準伝播時間T2との比の
対数をとった値でもよい。
In addition, the probability value is the numerical value (/10
, / 11.0%) and the reference propagation time T2.

(5)腐朽部の検出 以上の各処理の結果から、木柱に存在する腐朽部の形お
よび位置を次の様にして検出する。すなわち、まず前記
(3)項においてめた直@P 1. P’を上の腐朽部
の長さtlと、前記(4)項においてめた確率値にとに
基づいて、直線OP 1 * OP ’ 1上の各腐朽
部の長さtla、11k)(tI B+t1 b=t1
)を各々求める。次に、第を図に示すよう忙点P 1 
s P’ 1から木柱の直径のユ!チ内側の点Q1a−
Q1a’を各々求め、次いで、点Q i a +Q/1
&から中心0の方向、長さzx a 、 tl bの点
Q lb * Q’1bを各々求める。以下、他の直線
P 2 P’2〜P s P’sについても同@にして
点Q2a。
(5) Detection of Decayed Parts From the results of each of the above processes, the shape and position of the decayed parts present in the wooden pole are detected as follows. That is, first of all, in the above-mentioned item (3), please read @P1. Based on the length tl of the decayed part above P' and the probability value determined in the above (4), the length tla, 11k) of each decayed part on the straight line OP 1 * OP' 1 (tI B+t1 b=t1
). Next, as shown in the figure, the busy point P1
s P' 1 to the diameter of the wooden pillar! Point Q1a- inside the hole
Find each Q1a', then find the point Q i a +Q/1
A point Qlb*Q'1b in the direction of center 0, length zx a, and tl b is determined from &. Hereinafter, the other straight lines P 2 P'2 to P s P's are also marked with the same @ and point Q2a.

を各々求め、そして、これらの各点を第5図に示すよう
に接続すると七によシ、腐朽部の形および位置を検出す
ることができる。
By finding each of these points and connecting these points as shown in FIG. 5, it is possible to detect the shape and position of the decayed part.

以上が木柱の瓶朽部検出の基本的過程である。The above is the basic process of detecting rotten parts of wooden pillars.

木柱の腐朽部は通常外周に沿って発生し、したがって通
常は上記過程によシ腐朽部の検出をすることができる。
Decayed parts of wooden poles usually occur along the outer periphery, and therefore, the above-mentioned process can usually detect rotted parts.

しかしながら、場合によっては腐朽部が第を図に符号H
1にて示すように、木柱の中心部に発生することがおる
。以下、この場合について説明する。
However, in some cases, the decayed part is marked H in the figure.
As shown in 1, it may occur in the center of the wooden pillar. This case will be explained below.

腐朽部が木柱の中心部にある場合は、前記(4)項の測
定結果がいずれも非常に小さい値6.すなわち基準伝播
時間T2に近い値となる。したがって、前記(2)項の
測定によシ腐朽部の存在がm認され、かつ前記(4)項
の測定結果がいずれも小さい値であった場合は、腐朽部
が木柱の中心部にあると判断することができる。この場
合の〃べ朽部の検出過程は、前記(1)〜(4)項につ
いては前述した場合と全く同様であるが、(5)項が少
し異なる。すなわち、(5)項において、算出された長
さ41a−tlb・・・・・・を木柱の外周からユjチ
の位置に配置するのではなく、第を図に示すように中心
0から配置する。
If the decayed part is located in the center of the wooden pillar, the measurement results in item (4) above will all be very small values6. In other words, the value is close to the reference propagation time T2. Therefore, if the presence of a rotten part is confirmed by the measurement in item (2) above, and the measurement results in item (4) above are all small, then the rotten part is located in the center of the wooden pillar. It can be determined that there is. In this case, the process of detecting rotten parts is exactly the same as in the above-mentioned case in terms of items (1) to (4), but item (5) is slightly different. That is, in item (5), instead of placing the calculated length 41a-tlb... from the outer periphery of the wooden pillar to the position of the end, the length is placed from the center 0 as shown in the figure. Deploy.

以上の説明から明らかなように、この発明による診断方
法によれば被測定物内部に存在する欠陥部の位置および
形状を正確に検知することができ、したがって、木製電
柱の腐朽部の検出のみならず、樹木、家の柱等の腐朽状
態の検出あるいは鋳物の「す」の検出等の場合において
も極めて有効である。
As is clear from the above explanation, the diagnosis method according to the present invention can accurately detect the position and shape of the defective part existing inside the object to be measured. In addition, it is extremely effective in detecting the state of decay of trees, house pillars, etc., and in detecting cast iron.

【図面の簡単な説明】[Brief explanation of the drawing]

第7図(イ)、Oo)は各々、基準伝播時間TI 、T
2の測定方法を示す図、第2図は木柱の測定断面を示す
図、第3図は木柱に発生する腐朽部の一例を示す図、第
μ図は確率値Kをめる過程を説明するための図、第3図
は木柱に存在する腐朽部の位置および形状を検出する過
程を説明するだめの図、第を図は木柱の中心部に発生す
る暦朽部を示す図である。 2a、2b・・・・・・超音波探子、5・・・・・・測
定断面、H,Hl・・・・・・)αi朽部。 第1図 (匂 (田 b 第2図 pゎ 第3図 5 P’5 第4図 6 1.5 17 60 ++u 、1.15 1.05
Figure 7 (A) and Oo) are the reference propagation times TI and T, respectively.
2 is a diagram showing the measurement method of 2. Figure 2 is a diagram showing a measurement cross section of a wooden pole. Figure 3 is a diagram showing an example of a decayed part that occurs on a wooden pole. Figure µ is a diagram showing the process of calculating the probability value K. Figure 3 is a diagram for explaining the process of detecting the position and shape of a decayed part in a wooden pillar. Figure 3 is a diagram showing a decayed part that occurs in the center of a wooden pillar. It is. 2a, 2b...Ultrasonic probe, 5...Measurement cross section, H, Hl...) αi rotten part. Figure 1 (b) Figure 2 pゎFigure 3 5 P'5 Figure 4 6 1.5 17 60 ++u , 1.15 1.05

Claims (1)

【特許請求の範囲】 被測定物内に測定断面を設定し、この測定断面の外周上
の一点から前記測定断面の中心点0へ向けて超音波を送
信し、この送信された超音波を前記測定断面の他の一点
において受信し、この送受信間の超音波伝播時間に基づ
いて前記被測定物体内の欠陥部を検出する超音波診断方
法において、(a)前記測定断面上に中心点Oを通るル
本の仮想線を設定し、これらの仮想線と前記測定断面の
外 3゜周との夕点(Px、Px’)、(’P2.P2
’)・・・・・・(Pn、Pnりをめ、前記交点P1.
P1’間。 P2.P2’間・・・・・・P n * P rL’間
の各超音波伝播時間を測定する第7の過程と、 (b)前記第7の過程によって測定された超音波伝播時
間から、仮想線PtPt’*PzP2’、・・・・・・
PnPル′上忙上身各々存在前記欠陥部の長さを算出す
る第一の過程と、 (c) 前記測定断面を前記仮想線に基づいて複数の部
分を区分けし、各部分を通過する超音波伝播時間を各々
測定する第3の過程と、 (d)前記第3の過程によって測定された超音波伝播時
間に基づいて、仮想Ivj!OPx、OP2・・・・・
・OPユ、 OP’l 、 OP’2・・・・・・op
’ル上における前記欠陥部の存在確率を算出する第グの
過程と、を有し、前記第一の過程および前記第≠の過程
における算出結果に基づいて前記欠陥部の位置および形
状を検出することを特徴とする超音波診断方法。
[Claims] A measurement cross section is set within the object to be measured, and an ultrasonic wave is transmitted from a point on the outer periphery of this measurement cross section toward the center point 0 of the measurement cross section, and the transmitted ultrasonic wave is transmitted to the In the ultrasonic diagnostic method of detecting a defective part in the object to be measured based on the ultrasonic wave propagation time between transmission and reception by receiving ultrasonic waves at another point on the measurement cross-section, (a) a center point O is placed on the measurement cross-section; Set virtual lines passing through the plane, and set the evening points (Px, Px'), ('P2.P2
')...(Pn, Pn Rimome, said intersection P1.
Between P1'. P2. A seventh process of measuring each ultrasonic propagation time between P2'... P n * P rL'; (b) From the ultrasonic propagation time measured in the seventh process, a virtual Line PtPt'*PzP2',...
A first step of calculating the length of each defective part of the upper body; (c) dividing the measurement cross section into a plurality of parts based on the virtual line and transmitting an ultrasound wave through each part; a third step of respectively measuring propagation times; (d) based on the ultrasound propagation times measured by said third step, virtual Ivj! OPx, OP2...
・OP Yu, OP'l, OP'2...op
a third step of calculating the existence probability of the defective portion on the file, and detecting the position and shape of the defective portion based on the calculation results in the first step and the second step. An ultrasonic diagnostic method characterized by:
JP58121253A 1983-07-04 1983-07-04 Ultrasonic diagnosis Pending JPS6013257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58121253A JPS6013257A (en) 1983-07-04 1983-07-04 Ultrasonic diagnosis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58121253A JPS6013257A (en) 1983-07-04 1983-07-04 Ultrasonic diagnosis

Publications (1)

Publication Number Publication Date
JPS6013257A true JPS6013257A (en) 1985-01-23

Family

ID=14806682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58121253A Pending JPS6013257A (en) 1983-07-04 1983-07-04 Ultrasonic diagnosis

Country Status (1)

Country Link
JP (1) JPS6013257A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200468A (en) * 1985-03-01 1986-09-05 Mitsubishi Electric Corp Ultrasonic diagnostic apparatus
FR2758883A1 (en) * 1997-01-24 1998-07-31 France Telecom Testing state of wooden poles
EP1057011A1 (en) * 1998-02-26 2000-12-06 Perceptron, Inc. Ultrasonic apparatus for characterizing wooden members using a measurement of wave distortion
KR100604415B1 (en) 2005-04-04 2006-07-25 재단법인서울대학교산학협력재단 Wood deterioration computed tomography inspection method
EA016061B1 (en) * 2007-08-20 2012-01-30 Беа Электрикс Энергитехник Гмбх Method for inspecting and assessing the stability of wooden masts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197853A (en) * 1983-04-23 1984-11-09 Nippon Telegr & Teleph Corp <Ntt> Ultrasonic diagnostic device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197853A (en) * 1983-04-23 1984-11-09 Nippon Telegr & Teleph Corp <Ntt> Ultrasonic diagnostic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200468A (en) * 1985-03-01 1986-09-05 Mitsubishi Electric Corp Ultrasonic diagnostic apparatus
FR2758883A1 (en) * 1997-01-24 1998-07-31 France Telecom Testing state of wooden poles
EP1057011A1 (en) * 1998-02-26 2000-12-06 Perceptron, Inc. Ultrasonic apparatus for characterizing wooden members using a measurement of wave distortion
EP1057011A4 (en) * 1998-02-26 2003-08-13 Us Natural Resources Ultrasonic apparatus for characterizing wooden members using a measurement of wave distortion
KR100604415B1 (en) 2005-04-04 2006-07-25 재단법인서울대학교산학협력재단 Wood deterioration computed tomography inspection method
EA016061B1 (en) * 2007-08-20 2012-01-30 Беа Электрикс Энергитехник Гмбх Method for inspecting and assessing the stability of wooden masts

Similar Documents

Publication Publication Date Title
CA2978468C (en) Method for inspecting a weld seam with ultrasonic phased array
CN105783794B (en) A kind of plane monitoring-network method and apparatus
CN105628283B (en) A kind of ultrasonic wave residual stress test equipment
US7938007B2 (en) Method for inspecting joined material interfaces
RU2630856C1 (en) Method for diagnosting technical state of underground pipelines
CN205036370U (en) A device for evaluating two interface cement of cased well tie quality
CN106198738A (en) A kind of localization method of rayleigh waves inspection small diameter tube longitudinal defect
CN105467012A (en) Method for detecting defect positions on radial sections of trees
CN108844963A (en) Large-scale storage tank Corrosion of base plate defect on-line monitoring system and method
EP4198506B1 (en) Steel wire rope tension defect detection method
CN103225502A (en) System for measuring hole diameter and method thereof
JPS6013257A (en) Ultrasonic diagnosis
CN109765296A (en) Thick-wall tube internal flaw ultrasound detection 3-D positioning method
CN105866247A (en) Device and method for detecting sticking compactness of steel plate
US11320402B2 (en) Method for ultrasonic inspection of a test object
SA517390041B1 (en) Tools for the calibration of an ultrasound inspection device
CN103512953A (en) Ultrasonic testing method adopting multiple probes
CN112147230B (en) Method for detecting quality of concrete joint surface by using sound wave attenuation coefficient
JPS60202358A (en) Ultrasonic diagnosis
RU2156455C1 (en) Method of diagnostics of condition of main pipe-lines
JP2018119899A (en) Method for inspecting inner surface of tube
JPS6196401A (en) Method for measuring thickness of liner on the basis of two frequency
JPH0387655A (en) Ultrasonic wave transfer speed measuring method in concrete plate
CN205538852U (en) Austenite stainless steel welding seam ultrasonic detection comprehensive properties calibrates reference block
JP2016031310A (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus