JPS6196401A - Method for measuring thickness of liner on the basis of two frequency - Google Patents

Method for measuring thickness of liner on the basis of two frequency

Info

Publication number
JPS6196401A
JPS6196401A JP21919084A JP21919084A JPS6196401A JP S6196401 A JPS6196401 A JP S6196401A JP 21919084 A JP21919084 A JP 21919084A JP 21919084 A JP21919084 A JP 21919084A JP S6196401 A JPS6196401 A JP S6196401A
Authority
JP
Japan
Prior art keywords
liner
change
thickness
lift
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21919084A
Other languages
Japanese (ja)
Inventor
Masayoshi Iwasaki
岩崎 全良
Akio Suzuki
紀生 鈴木
Manabu Kotani
学 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP21919084A priority Critical patent/JPS6196401A/en
Publication of JPS6196401A publication Critical patent/JPS6196401A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To attain precise measurement by erasing the superposition of a noise signal due to the variation of lift-off or the like to a film thickness signal and its sensitivity change by a specific phase detecting output. CONSTITUTION:A probe 3 is set up so as to be moved in a liner coating tube 1 to be rotated by a rotor 2 in the axial direction of the tube 1 by a driving device 4. At the execution of measurement, two kinds of frequency are used and the impedance change of the coil of the probe 3 is converted into a voltage by an eddy current flaw detector body 5, the voltage is converted into liner thickness by an arithmetic unit 6 and the liner thickness is displayed on a display device together with its measuring position. In this case, the phase detecting output of the body 5 at the change of lift-off is measured by the tube 1 having liner layer conductivity and zircaloy part conductivity which are different values each other to calculate an impedance component of the lift-off changing direction and table based upon the change of the liner thickness. On the basis of the table, the superposition of a noise signal to a film thickness signal and the sensitivity change of the signals are erased by the four kinds of phase detecting outputs of the body 5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、原子力炉の燃料棒ヲ倶成するペレット状燃料
充填用の被覆管をシルクロイ母材管の内面に極薄の純ジ
ルコニクムmt−複合してライナ被覆管とする場合に、
そのライナ厚を渦電流法によって測定する方法、特に測
定に際して雑音信号となり得るリフトオフ変動、導電率
変動等の誤差因子の影響を除いて正側なりイナ層の測定
を可能とする方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a cladding tube for filling pelleted fuel that forms fuel rods in nuclear reactors by using ultra-thin pure zirconium mt- When combining liner cladding tubes,
The present invention relates to a method for measuring the liner thickness by an eddy current method, and in particular a method that enables measurement of the inner layer on the positive side by eliminating the effects of error factors such as lift-off fluctuations and conductivity fluctuations that can become noise signals during measurement.

(従来の技術) 電力需iI変化に対応する原子カ勤カ炉のJul率遅転
のためには急Ikな出方上昇、下降が不可欠でるる。ジ
ルカロイのみの従来のMI債覆管急激な出力変動にょD
f5カN蝕割fLを起す懸念がある。応力腐蝕割れを防
ぐため、ジルヵロ子母材管の内面に極薄の純ジルコニク
ムライナtSしたライナwI(I管が開発されその関連
技術の確立により数年俊には従来のM覆管にとってかゎ
って全面使用されることが予想されている。
(Prior art) In order to slow down the Jul rate of a nuclear power reactor in response to changes in electric power demand, a sudden rise and fall in Ik output is essential. Sudden output fluctuations due to overturning of conventional MI bonds only for Zircaloy
There is a concern that f5 may cause eclipse fL. In order to prevent stress corrosion cracking, liner WI (I pipe), which is made of ultra-thin pure zirconium liner TS on the inner surface of the Zircaro base material pipe, was developed and related technology was established. It is expected that it will be fully used.

上記のライナ被覆管は、i度上の問題等によってライナ
層が所定厚さであることが必要かっ重要でろる@クィナ
WI覆管のように2種の金4からできている複合管の岸
側測定にFi破壊的検    ′査と非破壊的検査とが
あるが、破壊的検査では管の両端部の切wt倹査しかで
きず、管の全長。
The above-mentioned liner clad pipe requires that the liner layer has a specified thickness due to the above problems. Side measurements include destructive inspection and non-destructive inspection, but destructive inspection can only measure the length of the pipe at both ends.

全局にわたるライナ層の保証の必要なライナ砂覆管には
不適当である。非破壊的検査としては各種方法のうち超
音波法と渦電流法とが考えらnZsが、If波法ではラ
イナ層とジルカロイ母材管との境界部でのエコーの識別
が不可能であの比透磁率はともに1で差がないが、固有
抵抗ρはμg−1:* 4位で前者が40%後者が70
でるり。
It is unsuitable for liner sand-covered pipes that require guarantee of liner layer throughout the station. Among various methods for non-destructive inspection, the ultrasonic method and the eddy current method are considered, but the If wave method cannot identify echoes at the boundary between the liner layer and the Zircaloy base material tube, so The magnetic permeabilities are both 1 and there is no difference, but the specific resistance ρ is μg-1: * The former is 40 and the latter is 70.
Deluri.

その逆数の導電率tlc=1/p)の差を利用すればラ
イナ層厚の測定も可能でるる。#fhtIi流法は、原
理的に、ある周波の交流型tlIt−流したコイルを金
属表面に近接させることにより金属表面に渦電流が流n
%そり渦電流によってコイル゛のインピーダンスが変化
し、このインピーダンス変化量によって金属表面の清報
を得るものである。ライナ砂覆管の場合、管内面から渦
電流法を適用すれば、ライナ層の1動によってインピー
ダンス変化1が変るので、このことをライナ層の測定に
利用できる。
It is also possible to measure the liner layer thickness by using the difference in the reciprocal conductivity (tlc=1/p). #fhtIi flow method is based on the principle that an eddy current is caused to flow on a metal surface by bringing a coil through which a certain frequency of AC type tlIt-flow is brought close to the metal surface.
The impedance of the coil changes due to the eddy current, and the amount of change in impedance is used to obtain detailed information about the metal surface. In the case of a liner sand-covered pipe, if the eddy current method is applied from the inner surface of the pipe, the impedance change 1 will change with each movement of the liner layer, and this can be used to measure the liner layer.

従来の渦電流法によるライナ砂覆管のライナ厚測定技術
としては′f?IFM昭59−67405 、特開昭5
9−67406等がめる。これらはり7トオ7(コイル
と管Pj血との距離)によるインピーダンス変化成分を
抽出してリフトオフi!t−算出することによりライナ
層を補正しようとするものである。しかしライナ砂覆管
のライナ層の導電率σAFi熱処MA浬度により変化し
、またジルカロイ部の導電率σBはジルカロイに含有さ
れる硬度付与成分の8nの量によって変化する。これら
の導電率の製品ロフトによる差はライナ砂覆管では当然
発生する。従ってライナ層を正確に測定しようとすると
、ライナ層とジルカロイ部の導電率の変化を考慮する必
要があるが、上記特開の従来技術ではこれら変化を考慮
していない。
The conventional eddy current method for measuring the liner thickness of liner sand-covered pipes is 'f? IFM 1986-67405, Japanese Patent Application Publication No. 1983
9-67406 etc. Extract the impedance change component due to these beams 7 to 7 (distance between the coil and the pipe Pj blood) and lift off i! The purpose is to correct the liner layer by calculating t. However, the electrical conductivity σAFi of the liner layer of the liner sand-covered pipe changes depending on the degree of heat treatment MA, and the electrical conductivity σB of the Zircaloy part changes depending on the amount of 8n of the hardening component contained in the Zircaloy. These differences in conductivity depending on the product loft naturally occur in liner sand-covered pipes. Therefore, in order to accurately measure the liner layer, it is necessary to take into account changes in the conductivity of the liner layer and the Zircaloy portion, but the prior art disclosed in the above-mentioned Japanese Patent Publication does not take these changes into account.

他の参考技術として特開昭59−9552がろる。Another reference technique is JP-A-59-9552.

(発明が解決しようとする問題点) 本発明は%渦電流法によるライナ砂覆管のライナ層の測
定において、す7トオ7震動および管材質の導電率の変
動による誤差装置の影響を除いて正確な測定を可能とす
る方法七与えることを目的とする。
(Problems to be Solved by the Invention) The present invention eliminates the influence of an error device due to vibrations and fluctuations in the conductivity of the pipe material in the measurement of the liner layer of a liner sand-covered pipe by the % eddy current method. The purpose is to provide seven methods that enable accurate measurements.

(問題点を解決するための手段、作用および実施例) この種クイナwgI管はライナ層の厚ざが80μm全厚
さが860μm程度が基準あるいは公臀値のものである
。この極薄のライナ層の厚さは管内側からの渦電℃法に
よりプローグのコイルのインピーダンスの変化によって
測定される。
(Means, effects and embodiments for solving the problems) The standard or official value of this kind of Kuina WgI tube is that the thickness of the liner layer is 80 μm and the total thickness is about 860 μm. The thickness of this ultra-thin liner layer is measured by the change in impedance of the prologue coil using the eddy current C method from inside the tube.

本@明では、この測定に際してプロー1の振動等によっ
て生ずるリフトオフ(コイルと管内面との′!!!隙距
M)の変動およびライナ仮覆管の材質の変化によって生
ずる導電率の変動に起因する雑音信号の膜厚信号への重
畳および膜厚信号の感度変化を消去し補正する。その九
め2種の測定局I!を敗で同時に測定して得られる渦流
探傷器の4種の位相検波出力によってこrLt−行う。
In this @Akira, during this measurement, changes in lift-off (gap distance M between the coil and tube inner surface) caused by vibrations of the plow 1, etc., and changes in conductivity caused by changes in the material of the liner temporary casing, etc. The superposition of the noise signal on the film thickness signal and the sensitivity change of the film thickness signal are eliminated and corrected. Measurement station I of the ninth type! This is done using the four types of phase detection outputs of the eddy current flaw detector obtained by simultaneously measuring .

第1図はコイルの出力のインピーダンスの変化を正規化
し次インピーダンス平向上に示したものである。コイル
単独でのインダクタンスLυ。
FIG. 1 normalizes the change in impedance of the output of the coil and shows it as an impedance average. Inductance Lυ of the coil alone.

抵抗Ro 、周波数kfsm=2trfとし、縦軸は測
定時のインダクタンス”  ’toLoとし、横軸は測
定時の抵抗Rt”(R−Ro)/ωLOとし正規化しで
ある。
The resistance Ro and the frequency kfsm=2trf, the vertical axis is the inductance at the time of measurement "'toLo", and the horizontal axis is the resistance at the time of measurement Rt"(R-Ro)/ωLO, which is normalized.

Wc1図には、低い周波孜fa時と高い周波数fbとに
おいて、インピーダンス変化方向の成分をそれぞれi、
i、s、%によって添字a、bを付して区別して示す。
In diagram Wc1, the components in the impedance change direction at low frequency fa and high frequency fb are shown as i, respectively.
Subscripts a and b are added to distinguish between i, s, and %.

iはり7トオ7変動、lはライナ層の導電率σAの変動
、iはジルカロイ母材部の導電率σBの変動、子はライ
ナ層変動にによる成分を示す。このように周波数fa、
fb時に各バクメータi、A、n% テのインピーダン
ス変化方向が異なっているので、原理的にはこれらを弁
別することにより識別可能なことが知られる。
i indicates the variation in the conductivity σA of the liner layer, i indicates the variation in the electrical conductivity σB of the Zircaloy base material, and the child indicates the component due to the variation in the liner layer. In this way, the frequency fa,
It is known that since the impedance change directions of each of the bacmeters i, A, and n% are different during fb, it is possible to identify them by distinguishing them in principle.

そして単−周波では2種の位相検波出力しか得られない
ので具体的に識別することは不能であるが、本発明でi
j2種の絢fILIi、を用いることにより4Nの位相
M波出力を得るのでこれらの関連により識別可1fUと
なる。
Since only two types of phase detection outputs can be obtained with a single frequency, it is impossible to specifically identify them, but with the present invention, i
By using two types of power fILIi, a 4N phase M-wave output is obtained, so that 1fU can be identified by these relationships.

すなわち、この4Nの位相検波出力に対する各パラメー
タIIL、R,8でのライナ厚を変動のチーグルをあら
かじめ既知のクイナ′wIat管基準によジ作成してお
き、被検査管の芙測時に得られる位相M波出力の値より
上記テーブルを用いる演算によりクイナ厚′fr″求め
る。このライナRC算田時にはW開法を用いて算出する
In other words, the liner thickness variation for each parameter IIL, R, and 8 for this 4N phase detection output is created in advance using the known Kuina'wIat pipe standard, and is obtained when measuring the pipe to be inspected. The liner thickness 'fr' is determined from the value of the phase M-wave output by calculation using the above table.When performing this liner RC calculation, the W-opening method is used to calculate it.

ここで、本発明t″実施る装置の1例を説明してはく。An example of an apparatus for carrying out the present invention will now be described.

第2図はその構成の概要を示す。クイナli瑣管(1λ
は回転機(2ンによって管周方向に転回させられる。プ
ローブ(3)は内挿型で絶M値型フィル倉持ち、駆動装
置t(47により管内を細線方向に移動する0こうして
コイルの管内測定位置が位置決めされる。ライナ厚変動
を高分解にとで得る丸めコイルは小径−例えば1胴とす
る。
FIG. 2 shows an outline of its configuration. Kuina Li Dong Tube (1λ
is rotated in the circumferential direction of the tube by a rotary machine (2).The probe (3) is an interpolation type, absolute M value type filter holder, and is moved in the tube in the thin wire direction by a drive device (47). The measurement position is determined.The rounding coil that can obtain high resolution of liner thickness fluctuations is of small diameter, for example, one cylinder.

本0による2種の#セシ欽ri例えばfa li 2M
IIZ、fbは4MHzとする。こうして測定t−冥施
し、コイルのイノビーダンス大忙t#[探傷器本体(5
ンによって電圧に変換する。このIIt8Eは本侘明方
法による演算f:道行する演算装置t(旬によってライ
ナ厚に変換され、測定位置とともに表示器(7)に表示
される。
2 types of #Seshikinri according to book 0, such as fa li 2M
IIZ and fb are set to 4MHz. In this way, we performed the measurement and performed the coil's innovative dance.
Converts to voltage by voltage. This IIt8E is calculated by the Honwaaki method: f: is converted into the liner thickness by the traveling calculation device t, and is displayed on the display (7) together with the measurement position.

演算装置(0)における本発明方法による演算は次の2
11[の演算を行う。
The calculations performed by the method of the present invention in the calculation device (0) are as follows:
11 [operation is performed.

ナなわ101クイナ層導電率σA、ジルカロイ部導電率
σB既知、段階的既知ライナ!l!、tiのライナ11
1覆管の試験体またはそのテンプルを用い、上記85!
6IIt探傷器を用いて、周波数は低い周波数raとし
て、渦護探傷器の位相検波出力Hta 、 V IJL
を測定し1次に同一の測定−9’rでり7トオ7 /1
を段階的既知鯵でズ化させてその出力H−% v6t−
測定する。これらの測定値からり7トオフ変化方向を計
算する。このす7トオフ叉化方向のインピーダンス成分
をVyaとし、これと直交する方向のインピーダンス成
分5t Vxaとする◎ま現原点はHla、 V貞とす
る。
Nanowa 101 Quina layer conductivity σA, Zircaloy part conductivity σB known, stepwise known liner! l! , ti liner 11
1 Using the test specimen of cladding or its temple, the above 85!
Using a 6IIt flaw detector, the frequency is set to a low frequency ra, and the phase detection outputs of the eddy protection flaw detector Hta, V IJL
Measure 1st and make the same measurement - 9'r = 7 to 7 /1
The output H-% v6t-
Measure. From these measured values, the direction of change in toe-off is calculated. Let the impedance component in the 7-off fork direction be Vya, and let the impedance component in the direction perpendicular to this 5t be Vxa. The current origin is Hla and V.

下記第1表および第2表はこのようにして測定を行って
得らfL7j VxaおよびVyaについてのインピー
ダンス成分(無次元i1)のチー1ルを示し、またJ@
6図は”ixh k縦座標に、  Vyaを横座標(任
意目盛ンとして一図にまとめ九番す7トオ71でのライ
ナ厚変動による”Ixa−Vyaの変化図を示す。
Tables 1 and 2 below show the impedance components (dimensionless i1) for fL7j Vxa and Vya obtained by performing measurements in this manner, and also show the coefficients of impedance components (dimensionless i1) for
Figure 6 shows a diagram of changes in Ixa-Vya due to changes in liner thickness at 71, with ixh k on the ordinate and Vya on the abscissa (arbitrary scale).

第1表 vxa変化チーグル  (無次元It)はts
> ta> tm> ta> ta> ti> tt>
 ta> to、リフトオア量xi Fiz皿< 1 
g < / s (/ a (l mでろる。周波数f
aは2 l[Hg 、コイル径Fi1 ma+であるO
t九高い#llit(fbの4 MHzで測定し上記と
同じ手順により座標系Vxb −Vybを設定し、第1
表、嬉2表と陶様なチー1ル、第3図と同様な変化図を
つくる。
Table 1 vxa change cheagle (dimensionless It) is ts
>ta>tm>ta>ta>ti>tt>
ta > to, lift or amount xi Fiz dish < 1
g < / s (/ a (l m). Frequency f
a is 2 l[Hg, O is the coil diameter Fi1 ma+
t nine high #llit (measured at 4 MHz of fb, set the coordinate system Vxb - Vyb by the same procedure as above, and
Create a change diagram similar to the table, happy 2 table, and ceramic 1 wheel, and figure 3.

さらに、ライナ層*t*σAおよびジルカロイS岬電率
ttBの異なるライナ被覆管試験体を用い例えば10 
 σ−41位でaA f 115Q、?/40 、11
50ttB f 1/5O11/70.1/80とLり
Jj)&ニ、上記と同じ手順によg%第3図と同様な各
す7トオ7@11でのライナ厚t、  ffi化にょる
Vxa −Vya、Vxb −Vyb図をっ〈9、第1
表、第2表と同様なテーブルを作成する。
Furthermore, for example, 10
aA f 115Q at σ-41st position,? /40, 11
50ttB f 1/5O 11/70. Vxa -Vya, Vxb -Vyb diagram〈9, 1st
Create a table similar to Table 2.

こうして演算準備設定をした上で、ライナ被覆管の被検
査管について[1探傷器で所定個所の測定を行い、実測
した位相検波出力H6JL、 V5aおよびH5b、’
i5bを上記のVx −Vy座標系の値に変換し、あら
かじめ作成しておいた4次元のクイナ厚算出テーブルに
より演算し、補間法を   “用いて各測定個所でのラ
イナ厚を算出する。
After making the calculation preparation settings in this way, the liner cladding tube to be inspected is measured at specified points with a flaw detector, and the measured phase detection outputs H6JL, V5a and H5b,'
i5b is converted to the value of the above Vx-Vy coordinate system, calculated using a four-dimensional Kuina thickness calculation table created in advance, and the liner thickness at each measurement point is calculated using the interpolation method.

すなわち、例えば1つの演算手法として、faおよびf
bでの計11!I値から、ろるσA1σB値の”Ixa
−Vyaおよびvxb −vybの表あるいはテーブル
により演算してライナj@を攻め1両周波数でのライナ
I$値が一致をみれば、その測定位置の正確なライナ厚
が求tり、σム、σB 、 liが知られる。若し一致
をみなければ最も差の小さいσA1cBm合せの表ある
いはチーグルと中心として1σAftを一定としてσB
を変え%dB値を一定としてσAを変え、あるいはgA
 、 σBを変更する補間演算によりfaとfbとの計
測値からのライナ厚を一致に近付ける。
That is, for example, as one calculation method, fa and f
Total of 11 in b! From the I value, the “Ixa” of the σA1σB value
-Vya and vxb -Vyb - Attack the liner j@ by calculation using the table or table. If the liner I$ values at both frequencies match, the accurate liner thickness at that measurement position can be found, σm, σB and li are known. If there is no match, use the table of σA1cBm combinations with the smallest difference or σB with 1σAft as the center and the center.
By changing σA and keeping the %dB value constant, or by changing gA
, σB are changed to bring the liner thicknesses from the measured values of fa and fb closer to matching.

演算のシーケンスは前記と異なる順序とすることができ
る。
The sequence of operations may be in a different order than described above.

リフトオフ、σAおよびσBは同時に復電できるけれど
も、これらは演算のパラメータとして用いるものであり
必しも求める必要はない。
Although lift-off, σA, and σB can be restored at the same time, these are used as calculation parameters and do not necessarily need to be determined.

振動により震動するリフトオフ値は1機械的あるいは電
磁的振動の何れであってもその平均値のリフトオフとし
て把握すればよい。知り得たσA@およびσB値は異な
る測定個所で得られた値と比較して較正に用いることが
できる。
The lift-off value caused by vibration can be understood as the lift-off of the average value of either mechanical or electromagnetic vibration. The σA@ and σB values known can be compared with values obtained at different measurement points and used for calibration.

また導電率σA、σBの変化は1本の管では小゛さいの
で、管端の1個所でのみその影#!を上記方法により測
定し、その開定匍のσA1 σBを用いてその被検査管
の全周、全長にわたるライナ厚を測定するようにするこ
とができ、この一部手順簡略の演算によっても、高精度
の測定結果が得られる。
Also, since the changes in conductivity σA and σB are small in a single tube, the effect is only at one point at the end of the tube. can be measured by the above method, and the liner thickness over the entire circumference and length of the pipe to be inspected can be measured using the opening constant σA1 σB. Even with this partially simplified calculation, high Accuracy measurement results are obtained.

(発明の効果) 本発明方法によると、す7トオフ変動、クイナ層導電率
の変動、ジルカロイ部欅電手の変動に起因する誤差因子
の影響を除去して止伽なライナ厚を測定し得る効果があ
る。
(Effects of the Invention) According to the method of the present invention, it is possible to measure the consistent liner thickness by removing the effects of error factors caused by variations in the conductivity of the liner layer, variations in the conductivity of the Zircaloy part, and variations in the conductivity of the Zircaloy part. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

1g1図はコイルの田方のインピーダンスの変化t−2
周波敗において示す正規化インピーダンス平面図%第2
図は本発明を実施する装置tの構成の1例を示す斜視図
訃よびグロンク図、第5図は各リフトオフ1でのクイナ
厚又勤によるインピーダンス変化を示す’iX −vy
座標系線図である。 (1)・・2イナ砂覆管s (2)−・回転機、(3)
・・プローグ、(4)・・運動装置、(5)・・渦流探
傷器本体、(6)・・演算装置、(7)・φ表示器* 
(ti)・・ライナ厚、(11)・・す7トオ7零k 
 (IA)・・クイナ層ug電率、(σB)−・ジルカ
ロイ部III電率、(fa)・・低い周波&% (fb
)・・高い周波&%(イ)・・リフトオフ変動によるイ
ンピーダンスR化−ダンス変化成分、ψ)・・ジルカロ
イsNI電率實勘によるインピーダンス変化成分、(η
・・ライナ厚変動によるインピーダンス変化成分、(V
y)・・す7トオ7変化方向のインピーダンス成分s 
(”)・・直角方向のインピーダンス成分(F1a)−
6周波1k b (Rmean) e *コイル半径。
Figure 1g1 shows the change in the Tagata impedance of the coil t-2.
Normalized impedance plan view shown at frequency loss %2
The figure is a perspective view and a Gronk diagram showing one example of the configuration of the device t implementing the present invention, and FIG.
It is a coordinate system diagram. (1)...2 Ina sand covered pipes (2)--Rotating machine, (3)
... Progue, (4) ... Movement device, (5) ... Eddy current flaw detector main body, (6) ... Arithmetic device, (7) ... φ indicator *
(ti)... liner thickness, (11)... 7 to 7 zero k
(IA)...Quina layer UG electrical conductivity, (σB)--Zircaloy part III electrical conductivity, (fa)...Low frequency &% (fb
)...High frequency & %(a)...Impedance R change due to lift-off fluctuation - dance change component, ψ)...Impedance change component due to Zircaloy sNI electrical efficiency actual intuition, (η
...Impedance change component due to liner thickness variation, (V
y)...impedance component s in the direction of change
('')...Impedance component in the right angle direction (F1a) -
6 Frequency 1k b (Rmean) e *Coil radius.

Claims (1)

【特許請求の範囲】[Claims] ライナ被覆管のライナ厚を渦電流法により測定する場合
に、プローブの振動等によつて生ずるリフトオフの変動
およびライナ被覆管の材質の変化によつて生ずる導電率
の変動に起因する雑音信号の膜厚信号への重畳および膜
厚信号の感度変化を、2種の測定周波数で同時に測定し
て得られる渦流探傷器の4種の位相検波出力によつて消
去し、補正することを特徴とする2周波によるライナ厚
測定方法。
When measuring the liner thickness of a liner cladding tube using the eddy current method, a film of noise signals is generated due to variations in lift-off caused by vibration of the probe, etc., and fluctuations in conductivity caused by changes in the material of the liner cladding tube. The superimposition on the thickness signal and the sensitivity change of the film thickness signal are canceled and corrected by four types of phase detection outputs of the eddy current flaw detector obtained by simultaneous measurement at two types of measurement frequencies. Frequency-based liner thickness measurement method.
JP21919084A 1984-10-18 1984-10-18 Method for measuring thickness of liner on the basis of two frequency Pending JPS6196401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21919084A JPS6196401A (en) 1984-10-18 1984-10-18 Method for measuring thickness of liner on the basis of two frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21919084A JPS6196401A (en) 1984-10-18 1984-10-18 Method for measuring thickness of liner on the basis of two frequency

Publications (1)

Publication Number Publication Date
JPS6196401A true JPS6196401A (en) 1986-05-15

Family

ID=16731616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21919084A Pending JPS6196401A (en) 1984-10-18 1984-10-18 Method for measuring thickness of liner on the basis of two frequency

Country Status (1)

Country Link
JP (1) JPS6196401A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2712975A1 (en) * 1993-11-23 1995-06-02 Framatome Sa Wall thickness measurement of tubes in terms of magnetic impedance
WO2000037881A3 (en) * 1998-12-18 2000-10-19 Micro Epsilon Messtechnik Method for operating an eddy current sensor and eddy current sensor
JP2008111738A (en) * 2006-10-31 2008-05-15 Railway Technical Res Inst Thickness measurement apparatus and program
JP2012078309A (en) * 2010-10-06 2012-04-19 Hitachi-Ge Nuclear Energy Ltd Position detection method and position detection device for structure by eddy current probe
JP2013015355A (en) * 2011-07-01 2013-01-24 Azbil Corp Conductive film sensor and detection method of conductive film
JP2013015354A (en) * 2011-07-01 2013-01-24 Azbil Corp Conductor sensor and conductor detection method
CN106931868A (en) * 2015-12-30 2017-07-07 核动力运行研究所 A kind of eddy current probe position detecting device and method based on magnetic sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599552A (en) * 1982-07-08 1984-01-18 Sumitomo Metal Ind Ltd Electromagnetic induction tester
JPS5967405A (en) * 1982-09-30 1984-04-17 Sumitomo Metal Ind Ltd Method for measuring thickness of liner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599552A (en) * 1982-07-08 1984-01-18 Sumitomo Metal Ind Ltd Electromagnetic induction tester
JPS5967405A (en) * 1982-09-30 1984-04-17 Sumitomo Metal Ind Ltd Method for measuring thickness of liner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2712975A1 (en) * 1993-11-23 1995-06-02 Framatome Sa Wall thickness measurement of tubes in terms of magnetic impedance
WO2000037881A3 (en) * 1998-12-18 2000-10-19 Micro Epsilon Messtechnik Method for operating an eddy current sensor and eddy current sensor
US6479990B2 (en) 1998-12-18 2002-11-12 Micro-Epsilon Messtechnik Gmbh & Co. Kg Eddy current sensor for analyzing a test object and method of operating same
JP2008111738A (en) * 2006-10-31 2008-05-15 Railway Technical Res Inst Thickness measurement apparatus and program
JP2012078309A (en) * 2010-10-06 2012-04-19 Hitachi-Ge Nuclear Energy Ltd Position detection method and position detection device for structure by eddy current probe
JP2013015355A (en) * 2011-07-01 2013-01-24 Azbil Corp Conductive film sensor and detection method of conductive film
JP2013015354A (en) * 2011-07-01 2013-01-24 Azbil Corp Conductor sensor and conductor detection method
CN106931868A (en) * 2015-12-30 2017-07-07 核动力运行研究所 A kind of eddy current probe position detecting device and method based on magnetic sensor

Similar Documents

Publication Publication Date Title
JPH0688720A (en) Method for checking thickness and coupling state of double-tube interface and device for executing method thereof
JPH0226721B2 (en)
JPH07280975A (en) System and method for determining thickness of metal liner or film
Zhao et al. A novel ACFM probe with flexible sensor array for pipe cracks inspection
JPS6196401A (en) Method for measuring thickness of liner on the basis of two frequency
CN113640369B (en) Alternating current electromagnetic field lift-off effect compensation method suitable for metal surface cracks
JP4681770B2 (en) Eddy current testing equipment
JPS62235505A (en) Measurement of thickness of lined pipe
JPS62142258A (en) Non-destructive measuring method for zirconium alloy material
JPH0560522B2 (en)
JPS62225947A (en) Probe for measuring vortex
JPH10206394A (en) Method and device for non-destructive test of zirconium alloy member
JP2012112868A (en) Internal defective measuring method and internal defective measuring device
JPH01297546A (en) Method of diagnosing deterioration of conductive material
JPH068722B2 (en) Thickness measurement method for lining pipes
JPS6221004A (en) Thickness measurement of lining tube
JPS6193901A (en) Method for measuring liner thickness
JPS6221003A (en) Thickness measurement of lining pipe
JPS6138404A (en) Measuring method of thickness of liner layer and thickness of zircalloy of liner coated pipe
JPH075408Y2 (en) Metal flaw detection probe
Brown et al. Evaluation of the eddy-current method for the inspection of steam generator tubing: denting.[PWR]
JPH0117535B2 (en)
Lysenko et al. Analysis of formation processes of informative features in eddy current probes with pulsed excitation mode
Yoo et al. Prediction and evaluation of rotating pancake coil probe signals simulated from steam generator tubes
Babadzhanov et al. Expanding the capabilities of eddy-current inspection of pipes with a wide range of diameters and grades of steel