JPS6138404A - Measuring method of thickness of liner layer and thickness of zircalloy of liner coated pipe - Google Patents

Measuring method of thickness of liner layer and thickness of zircalloy of liner coated pipe

Info

Publication number
JPS6138404A
JPS6138404A JP16110084A JP16110084A JPS6138404A JP S6138404 A JPS6138404 A JP S6138404A JP 16110084 A JP16110084 A JP 16110084A JP 16110084 A JP16110084 A JP 16110084A JP S6138404 A JPS6138404 A JP S6138404A
Authority
JP
Japan
Prior art keywords
thickness
liner
liner layer
frequency
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16110084A
Other languages
Japanese (ja)
Inventor
Masayoshi Iwasaki
岩崎 全良
Akio Suzuki
紀生 鈴木
Manabu Kotani
学 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP16110084A priority Critical patent/JPS6138404A/en
Publication of JPS6138404A publication Critical patent/JPS6138404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To improve measuring accuracy, by applying three frequencies to a coil in a pipe, so that the penetrating depth of one frequency is approximately equal to the total thickness of the pipe, that of one frequency is approximately equal to the thickness of a liner layer and that of one frequency is smaller than the thickness of the liner layer, and removing the fluctuation of lift-off and the change in sensitivity from the measured values of said three signals obtained by said application of the three frequencies. CONSTITUTION:A liner coated pipe (a) comprises a base material of zircalloy and a liner layer of pure zirconium. The pipe (a) is rotated by a rotary machine (b). A probe (d) is moved in the axial direction of the pipe by a driving device (c). A frequency is applied to a coil so that the penetrating depth is approximately equal to the total thickness of the pipe (a). A frequency is applied so that the depth is approximately equal to the thickness of the liner layer. A frequency is applied so that the depth is smaller than the thickness of the liner layer. The change in impedance of the coil is converted into voltage change by an eddy current flaw detector (e). The voltage is inputted to an operating device (f). The effects of the lift-off signal and the sensitivity change to the thickness signals are removed by the operating process based on various relationships of the measured values of the specified 3 frequencies. The thickness of the liner layer, the thickness of zircalloy and the total thickness obtained in this way are displayed on a display device (g).

Description

【発明の詳細な説明】 産業上の利用分野 木兄引は、ベレント状の燃羊)を妓411管内に充填し
て原子力動力炉用燃料棒とし被覆管をジルカロイ母材管
の内面に純ジルコニウムをライニングし几2重管として
溝底する場合にライナー層厚お工びジルカロイ!y、を
非M壊的に測定して正確な厚さ値を導く方法に胸する。
Detailed Description of the Invention The industrial field of application is to fill a 411 tube with berent-like molten metal and use it as a fuel rod for a nuclear power reactor. When lining the pipe and using it as a groove bottom, use Zircaloy to create a thick liner layer! I would like to find a way to non-destructively measure y and derive an accurate thickness value.

(従来の技術) 原子力動力炉用の燃料棒は被覆管内に多数のベレット状
燃料を充填して溝底される。被覆管としては耐蝕性、非
反心性、強度、熊伝30等の点から多くの場合ジルカロ
イ管が使用される。
(Prior Art) Fuel rods for nuclear power reactors are groove-bottomed by filling a cladding tube with a large number of fuel pellets. Zircaloy tubes are often used as cladding tubes because of their corrosion resistance, non-rebelliousness, strength, and Kuden 30 rating.

ジルカロイはジルコニウム合金であり、ジルカロイ2(
以下、Zr−2で示すことが心る)は重1百分率でan
、  1.5 ; Fe 、 0.12 ; ni 。
Zircaloy is a zirconium alloy, Zircaloy 2 (
(hereinafter referred to as Zr-2) is an
, 1.5; Fe, 0.12; ni.

0.05 ; Cr −0,10k含む。0.05; Cr-0.10k included.

原子力動力炉の高効率化運転のためには急激な用力上昇
や下降が不可欠である。この急激な出力変動を行うに:
Fi、単一のジルカロイ被a管でilt燃料ペレントの
膨張等により応力N食δJれが懸念される@この工うな
応力腐fi別t′Lを防ぐために、ジルカロイ管の内面
に硬度が低く心力IK fi記九に強いれジルコニウム
(・以下、  Zrで示すことがある)の極薄のライナ
ー層を持つ被覆管が開発され使用される工うになって米
ている。このライナー被82管は強度上等の問題に工っ
てライナー層が所定厚さであることが必要であるととも
に母材部であるジルカロイW、を保証することも必要で
ある。v1覆管の全肉厚が例えば860μmであるのに
対しライナーγは80μmで全肉厚の1096程度であ
る。
Rapid increases and decreases in power are essential for highly efficient operation of nuclear power reactors. To do this rapid output fluctuation:
Fi, in a single Zircaloy-covered tube, there is a concern that stress N corrosion δJ may occur due to the expansion of the fuel pellet. In response to IK fi 9, cladding tubes with an ultra-thin liner layer of zirconium (hereinafter sometimes referred to as Zr) have been developed and are beginning to be used. This liner-covered tube 82 needs to have a liner layer of a predetermined thickness for reasons such as strength issues, and it is also necessary to guarantee the Zircaloy W which is the base material. The total wall thickness of the v1 cladding pipe is, for example, 860 μm, whereas the liner γ is 80 μm, which is about 1096 μm of the total wall thickness.

このライナー岐は管はれジルフニク管にジルカロイ管を
かぶせた2重管を素材とし、冷間加工、焼なましを繰返
してつくられる。従って製造され九管のジルフニワムラ
イナー層の厚さ。
This liner branch is made from a double tube made by covering a flailed Zirfnik tube with a Zircaloy tube, and is made by repeatedly cold working and annealing it. Therefore, nine tubes are manufactured with a thickness of 900 mm liner layer.

ジルカロイの〃さが所定仕様値であるか否かの俺詔は使
用側での重要な管理事項となるだけでなく、製造技術の
gN発向上にとっても重要な事項となる。
The decision as to whether Zircaloy's 〃 is within the specified specification value is not only an important matter for management on the user side, but also an important matter for improving the gN development of manufacturing technology.

ライナーM覆管の二つな2種の企Mからできている複合
材の層の厚さの6一定には破壊的検査と非破壊的検査が
考えられるが、前記ライナー被覆管は長さが4m程度で
あり、破壊的倹イ〔では管の両橋部からI/J*rした
試料の実測によるのでその部分の保証しかできず、管の
全長にわたる測定が不可欠であるライナー被82管の場
合には非破壊的検査が必要である。この非破壊的検査に
は超音波法と詞流法とが考えられる。しかし、管外部か
らの超音波法では前記極薄のライナー層とジルカロイ部
との境赤面のエコーと底面反射エコーとの識別が不可能
でろり適用できない。
Destructive testing and non-destructive testing can be considered to determine the constant thickness of the composite material layer made of two types of liner M cladding, but the length of the liner cladding is 4 m, and destructive saving (I/J*r) is based on the actual measurement of the sample taken from both bridges of the pipe, so only that part can be guaranteed, and it is essential to measure the entire length of the pipe. In some cases non-destructive testing is required. For this non-destructive inspection, an ultrasonic method and a flow method can be considered. However, the ultrasonic method from outside the tube cannot be used because it is impossible to distinguish between the boundary red echo between the extremely thin liner layer and the Zircaloy portion and the bottom surface reflection echo.

管内部からの渦流法11:工ればライナー層とジルカロ
イ部とのJgfIt率の差を利用すればライナー層の〃
さ測定が可能でるg、全肉厚の測定も可能である0鵜流
法は、原理的に、交流電流を流し九コイルを金属表面に
近接させることに=9金属表面Gl:簡電流が流れその
渦電流に工って誘岬m場が誘起され、この誘導磁場に↓
つでコイルのインピーダンスが変化し、このインピーダ
ンス変化口に1って企jt1表面の゛清報を得るもので
ある。ライナー被覆管の工う11:2循の企4からでき
ていてその上部層厚変動によってインピーダンス変化舟
が変り、ま之企用管の全肉厚の変動(Lってもインピー
ダンス変化ωが変るので、これらt F1a 611定
に利用できる@しかしコイルと企FA表面との距離すな
わちリフトオフの変動がインピーダンス変化IIに大き
く影響する。従って上記のようなI渚要囚によるインピ
ーダンス変化が腹合するmめ、単一の周波数では。
Eddy current method from inside the pipe 11: If the difference in JgfIt ratio between the liner layer and the Zircaloy part is used, the liner layer's
The principle of the Uryu method is to flow an alternating current and bring the coil close to the metal surface = 9 metal surface Gl: simple current flows. An induced cape m field is induced by the eddy current, and this induced magnetic field ↓
The impedance of the coil changes at this point, and this impedance change provides information on the surface of the target jt1. The liner cladding pipe is made up of 11:2 circulation, and the impedance changes depending on the change in the thickness of the upper layer, and the impedance change ω changes even if the total wall thickness of the main pipe changes. Therefore, these t F1a 611 can be used at a constant rate.However, the distance between the coil and the surface of the target FA, that is, the variation in lift-off, greatly affects the impedance change II.Therefore, the impedance change due to the above-mentioned impedance is Therefore, at a single frequency.

ライナー層厚と全肉厚の同時測定を行うことは不可能で
めり、す7ト万〕の形#を除去することは非常に困難で
ある。(特開昭59−67405 。
It is impossible to measure the liner layer thickness and the total wall thickness simultaneously, and it is very difficult to remove the 70,000-meter shape. (Unexamined Japanese Patent Publication No. 59-67405.

″r@開昭59〜67406等参照)。″r@kaisho 59-67406, etc.).

(発明が解決しようとする問題点ン 本発明は従来技術の前記諸困難に解決を与え、ライナー
被覆管のライナー層厚とジルカロイ厚t″管内面から同
時に精度よく測定することを可能とする方法を与えるこ
とを目的とする。
(Problems to be Solved by the Invention) The present invention provides a solution to the above-mentioned difficulties of the prior art, and provides a method that makes it possible to simultaneously and accurately measure the liner layer thickness of a liner-clad tube and the Zircaloy thickness t'' from the inner surface of the tube. The purpose is to give

(問題点を解決する丸めの手段お工び作用〕本発明は、
ライナー被覆管の層W−を非破壊的に画定する場合に、
管内ライナー側からMfi法のコイルにエフ測定する印
加周波数としては、浸透深さが全肉厚の近傍、ライナー
局近傍およびライナー層厚エク小さい61![の測定周
波&を使用し、同時+1:得られる6信号測定値を一定
の方式に従い開遅させてり7トオ7変動に起因するす7
トオ7信号の厚さ信号への重nお工び厚さ信号の感度変
化への影響を除去することにより、正確な厚さ4tiを
導くことを可能とするものである。
(Rounding means and action to solve the problem) The present invention has the following features:
When defining the layer W- of the liner cladding in a non-destructive manner,
The frequency applied to the coil of the Mfi method from the inner pipe liner side is 61! when the penetration depth is near the full wall thickness, near the liner station, and when the liner layer thickness is small. Simultaneous +1: Using the measurement frequency &, the obtained 6 signal measurement values are delayed according to a certain method, and the 7 to 7 fluctuations are
By removing the influence of the 7 signal on the thickness signal and the influence of the thickness signal on the sensitivity change, it is possible to derive the accurate thickness 4ti.

以下1本光8Aを、添付図を参照し、詳細に説明する。The single light beam 8A will be explained in detail below with reference to the attached drawings.

第1図はジルカロイ(Zr−2)の母材と純ジルコニウ
ム(む)のライナー層からなるライナー被覆管の複合管
断面を模式的に示すもので、実際の寸法は既述のとおり
でるる。
FIG. 1 schematically shows a cross-section of a composite liner-clad tube consisting of a base material of Zircaloy (Zr-2) and a liner layer of pure zirconium, and the actual dimensions are as described above.

ジルコニウム、ジルカロイの比透磁率μrはともに1で
あるが、固有抵抗ρはZrが40〔μΩ・α〕Zr −
2が70〔μΩ・1〕υ度で、こ九による両者の欅電平
σに1/ρ)の差を利用すれば管内側からの渦流法に工
ってライナー層の厚さ測定、全肉厚の測定も可能である
。しかしこれらの直接6tll定伽it誤差が大きい。
The relative magnetic permeability μr of both zirconium and zircaloy is 1, but the specific resistance ρ of Zr is 40 [μΩ・α]Zr −
2 is 70 [μΩ・1]υ degrees, and by using the difference of 1/ρ) in the Keyaki Denpei σ between the two, it is possible to measure the thickness of the liner layer from the inside of the tube using the eddy current method. It is also possible to measure wall thickness. However, these direct 6tll constant errors are large.

渦流法を適用する場合には、コイルと金属表面との距a
1すなわちす7トオ7eの影響が大きくわられれる。
When applying the eddy current method, the distance a between the coil and the metal surface
1, that is, 7 to 7e, is greatly influenced.

本宛aAにおいては、す7トオ7変動にLる信号と、ラ
イナー層厚変動(よる信号と、全肉厚変動による信号と
について、相互関連する次の3つの性質に名目し、基本
的(これらに立脚して正確を厚さ値七導く↓うにしてい
る。
In this address aA, the following three interrelated properties are named for the signals due to L7 to 7 fluctuations, the signals due to liner layer thickness fluctuations, and the signals due to total thickness fluctuations, and the basic ( Based on these, we are trying to derive the accuracy of the thickness value.

1〕リフトオフは、ライナー厚変動にLる信号と全肉厚
変動による信号との両者の感度に影響する。
1] Lift-off affects the sensitivity of both the signal due to liner thickness variation and the signal due to total wall thickness variation.

2ンリ7トオ7変!VNCJCる信号は、ライナー層厚
変動による(8号と全肉厚変動による信すとに加算的に
合成される。
2 ninri 7 too 7 strange! The VNCJC signal is additively combined with the signal due to the liner layer thickness variation (No. 8) and the signal due to the total thickness variation.

6)す7トオ7変動による信号、ライナー層厚に動によ
る信号、全肉厚変動による信号は、周波数に対する依存
性が異なる〇 これらの性質に基いて、本究明方法の手段としては、先
づ印[11波故を浸透深さとの関連にエリ次の6種の周
波数に選定する。そして6種の周波数の蘭箇法測定の測
定@を同時に得る。
6) Signals due to variations in the liner layer thickness, signals due to changes in the total thickness, and signals due to changes in the total thickness have different dependencies on frequency.Based on these properties, as a means of this investigation method, we first The following six frequencies are selected in relation to the penetration depth. Then, measurements of six types of frequencies are obtained at the same time.

5種J!1技数の測定のη内適用位置お工びそのり7ト
オ7は同じである。
5 types J! The application position within η of the measurement of one skill number is the same.

浸透深さkついて述べると、コイルへの印加周波数によ
って企Nに誘起される渦電流は表皮効果によって金属の
表面側に集中し、表面からの深さが増すに従って指故函
数的に減少する。
Regarding the penetration depth k, the eddy current induced in the coil by the frequency applied to the coil concentrates on the surface side of the metal due to the skin effect, and decreases exponentially as the depth from the surface increases.

ここに、ω:角周波数(々2πf)、f:周波数/’ 
= #rX /J’ s μr :比透m率、μ0:真
空中の透磁率(=4πX10− ’(H/m〕)σ=導
電率(=1/ρ〕、−二固有抵抗〔Ω、m〕 ライナー被覆管の場合、Zr−2に対するZrの導電率
の比お工びZr層厚に工r)補正す九ば、上式が同様に
成立つ〇 本発明においては、ライナー被覆管につき精度の高い厚
さイ:o’t w <前捉として渦流法のコイルに印加
する周波数として次の5種の周波数を選定し、同じ設定
条件で適用して同時にインピーダンス変化としての6つ
の測定値を得る。
Here, ω: angular frequency (2πf), f: frequency/'
= # r m] In the case of a liner-clad tube, the above formula holds similarly if the ratio of electrical conductivity of Zr to Zr-2 is corrected to the thickness of the Zr layer. In the present invention, for a liner-clad tube Highly accurate thickness: o't w < Select the following five frequencies to be applied to the coil of the eddy current method as pre-trapping, apply them under the same setting conditions, and measure six measured values as impedance changes at the same time. get.

1)全肉厚の測定に用いる周#:故f、、3  浸透深
さがライナー被覆管の全肉厚(基準値または公称値ンの
近傍であるll81iI#:故とする。
1) Circumference number used for measuring the total wall thickness: f, 3. The penetration depth is the total wall thickness of the liner cladding (near the reference value or nominal value.

l)ライナー層厚の測定に用いる周波数f、。l) Frequency f, used for measuring the liner layer thickness.

浸透深さがライナー層厚(7i!iIP値または公称値
)の近傍であるVR波政とする。このli!1波数で得
る信号・はzrW−変!1lIII GC対して感度が
高くZr −2彦変動に対して殆んど不感、すなわち無
視小となる。
It is assumed that the VR waveform has a penetration depth close to the liner layer thickness (7i!iIP value or nominal value). This li! The signal obtained with one wave number is zrW-variant! It is highly sensitive to 1lIII GC and is almost insensitive to Zr -2hiko fluctuations, that is, it is ignored.

1 ) IJ 7 )オフδ111定に用いる周波数f
s6  透過深さがライナー層厚(同前)工9小さい周
波数とする。得る信4j−はZr −2厚、  Zr厚
変動に対して不感無視小となる。
1) IJ 7) Frequency f used for off δ111 constant
s6 A frequency where the penetration depth is smaller than the liner layer thickness (same as above). The obtained reliability 4j- is Zr -2 thickness, which is insensitive to Zr thickness fluctuations and is negligible.

つまvf 、< f ! < f a  という関係が
るる。
Tsum vf, < f! There is a relationship: <f a.

以上の范果、得らtしる各イdfは次のインピーダンス
のベクトル式の工うになる。
As a result of the above, each obtained Idf becomes the function of the following impedance vector equation.

flにより得られる信号HE” = Z (Zr −2
,り十 〇(Zr、 υ十i(1ン (Z)・・・・(1) f意にエフ得られる信号; Mt2)= J((zr、
り+:d2)(4拳 ・・・(2) fsにより得られる信号;;、、(3>=″L13)(
4・・・・(3)゛ここで、Zr−2はジルカロイ厚、
Zrはライナー層厚、lはリフトオフである。
The signal HE” obtained by fl = Z (Zr −2
, ri 〇(Zr, υten i(1n(Z)...(1) Signal obtained at f will; Mt2) = J((zr,
ri+:d2) (4 fists...(2) Signal obtained by fs;;,, (3>=''L13)(
4...(3)゛Here, Zr-2 is Zircaloy thickness,
Zr is the liner layer thickness, and l is the lift-off.

ま几この結果を、正規化インピーダンス平面での各ベク
トル成分の変化として示せば第2回のようになる。第2
図の縦軸は測定時のコイルインダクタンスωLを空気中
単独でのmLoで正規化しにωL/ωLOをとり、横軸
は測定時のコイル抵抗Rと空気中単独でのコイル純抵抗
ROとの差を(IILOで正規化し* (R−Ro J
 / mLo fとっである。
If this result is shown as a change in each vector component on the normalized impedance plane, it will be as shown in the second example. Second
The vertical axis of the figure is ωL/ωLO, which is obtained by normalizing the coil inductance ωL at the time of measurement with mLo in air alone, and the horizontal axis is the difference between the coil resistance R at the time of measurement and the coil pure resistance RO in air alone. Normalized with (IILO* (R-Ro J
/ mLof.

前式お工び第2図で各周波数での各ベクトル成分は、 F(Zr −’l・l):ジルカロイ厚さ変動による(
=号であり、す7トオフに工って感 度がy化することを示しているO U[Zr、/)  ニライナー 層厚波動による信号で
ろり。
Using the previous equation, each vector component at each frequency in Figure 2 is: F(Zr −'l・l): Due to Zircaloy thickness variation (
=, which indicates that the sensitivity increases when the sensitivity is changed to y.

す7トオ7によって感度が変化する ことを示している。Sensitivity changes depending on It is shown that.

M(zr、υ:周波Vkft時のG(Zr・j)でるる
M(zr, υ: G(Zr・j) at frequency Vkft.

迎  <t)−(i=1〜5)  :  !/  y 
 )  オ y  9tf+hti  L  る 信E
 でるる。
Welcome <t)-(i=1~5): ! /y
) O y 9tf+hti L ru Shin E
Out.

こtLらの間には、次の諸関係が存在する。The following relationships exist between these tL and others.

(A)す7トオ71とl i、(1)((月との111
1には第6図のよう〕よ関係がある。
(A) Su7to71 and l i, (1) ((111 with the moon)
1 has a strong relationship as shown in Figure 6.

(B)またIn (ZrrlHにはZrg一定としてり
7トオ7と第4図の↓う72 [5’J係があり、また
り7トオ7一定としてライナー厚と可5図のような関係
がある。
(B) Also, In (ZrrlH assumes that Zrg is constant, and there is a relationship between 7 to 7 and 72 [5'J in Figure 4), and a relationship with liner thickness as shown in Figure 5, assuming that 7 to 7 is constant. be.

(0口;(zr −2+t )l、 to(zr、z月
にも(B)と同様7211Q係がある。
(0 mouth; (zr -2+t) l, to (zr, z month also has a 7211Q staff as in (B).

木光切におい゛【は、特定68波政での測定を行うとと
もに、得られ几それらの信号値から前記11関係に基づ
く一定の処理を施して、リフトオフ鍔゛号の厚さfaf
への重畳おLび厚さ信号の感度変化の影響を除去して、
正借なライナー、脅厚お工びジIレカロイIvを求める
。ナなゎち。
The thickness of the lift-off flange is determined by measuring at 68 specific waves and applying certain processing based on the above-mentioned 11 relationships from the obtained signal values.
By removing the influence of the sensitivity change of the superimposed L and thickness signal on
Reiner, who is in debt, asks for a threatening handiwork I Recaroy IV. Nawachi.

1 )σ1り定値IK3)Iエク式(3)にLすIL(
3ン(1戸が欠jられ、第6図工クリ7トオフが求まり
、す7トオ〕から1″L[2) (/小IBυ(1)1
が求まる。
1) σ1 constant value IK3) IL (
3n (1 house is missing, 6th drawing 7th off is found, 7th off) to 1″L[2) (/small IBυ(1)1
is found.

2)す7トオフg化値が求まると、測定fjP’1とl
i、(2) (1月とから式(2)に=りln(Zr・
υ1が求まる。
2) Once the value of 7offg is determined, the measurement fjP'1 and l
i, (2) (from January to equation (2) = ri ln(Zr
Find υ1.

s )IM(Zr、υ1からm 5図によりクイナル層
厚が求まる。
s) IM(Zr, υ1 to m5 The thickness of the quinal layer is determined from the diagram.

4)す7トオ7とライナー層厚からIBυ(1月と1み
(zr、t)lが算出さn2.1ltl定伯IMI)I
ニジ式(1)にL CIF(Zr −2,1)Iが1す
る。
4) IBυ (January and 1 (zr, t)l is calculated from 7 to 7 and liner layer thickness n2.1ltl constant bar IMI) I
LCIF(Zr-2,1)I adds 1 to the formula (1).

5 )IF (Zr −2+1月の値=クジルヵロイ厚
が求まる。
5) IF (Zr-2+January value=Kuzilkaroy thickness is determined.

(実施例) 第6図は本発明方法を実施する場合の装置借成の81要
を示すつ 層J!I−を測定するライナー被ffl管(aJは回転
機(bJによって回転し1駆動装置Cc)にLクプロー
ズ(dJが管内t−軸141力回と平行に移動する。プ
ローグ(d)内11:Vi絶対値型コイルが埋込まれて
おり、コイル径は約1帽である。
(Example) Fig. 6 shows 81 points of equipment borrowed when carrying out the method of the present invention. The liner to be measured is the ffl tube (aJ is rotated by a rotary machine (bJ and 1 drive Cc) to the L cuprose (dJ is moved parallel to the t-axis 141 in the tube. Prologue (d) in 11: A Vi absolute value type coil is embedded, and the coil diameter is approximately 1 mm.

このフィルのインピーダンス業化を渦[探傷器(e) 
c工って電圧に変化して、本発明方法による処理プログ
ラムを組込んだ@算装置(f)に読み込ミ、峙いた結果
のライナーNIIN、、ジルカロイ厚、全肉厚が表示器
(ωに表示さハるLうになっている。f+側周波数はf
r 100 KHz 、f@F3 MHz 。
This fill is becoming an impedance industry [flaw detector (e)]
The voltage is changed to voltage and read into the calculation device (f) incorporating the processing program according to the method of the present invention, and the resulting liner NIIN, Zircaloy thickness, and total wall thickness are displayed on the display (ω The f+ side frequency is f
r 100 KHz, f@F3 MHz.

rs52M112  テh ル。rs52M112 tel.

(発明の効果) 本発明方法によると、原子力動力炉用燃料棒(D’yイ
ナー波便管のライナー層厚、ジルカロイ厚、全肉厚t−
非偵壊的方法の渦流法にエフ同時に高い精度を以って測
定することが可能とな9、そのN果、管の全長、全周に
わたりこれら厚さ値を保証し、使用上の安全性の俺保な
らびに製作技術の向上に寄与することができる等の効果
が得ら)する。
(Effects of the Invention) According to the method of the present invention, fuel rods for nuclear power reactors (liner layer thickness of D'y inner corrugated pipe, Zircaloy thickness, total wall thickness t-
The eddy current method, a non-destructive method, allows measurement with high precision at the same time.9 As a result, these thickness values are guaranteed over the entire length and circumference of the pipe, ensuring safety in use. Effects such as being able to contribute to the improvement of personal security and production technology can be obtained).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はライナー被覆管の断面を模式的に示す図、第2
図は本発明方法による測定を実施する場合の正規化イン
ピーダンス平面での信号の変化を示す図表、第6図は縦
軸のr ト1) +t)+と信畑のり7トオ71との関
係を示す図表、糧S4図はライナー層厚一定の場合に縦
軸のIH(Zr+/月と槽軸のり7トオフlとの関係を
示す図表%第5図はり71− オア一定の場合II:l
it ’4’lllのl’Th(zr、l)lと横軸の
ライナー層厚との関係を示す図表、第6図は本発明方法
を実施する装はの1例の匠賂図である。 (、)・・ライナー被覆管、(b)・・回転(景、 (
c)・・駆動装置、(d)・・プローグ、(eJ・・悶
流深f3器、(f)・・演算装置、(ω・・表示器。
Figure 1 is a diagram schematically showing the cross section of the liner cladding tube, Figure 2
The figure is a chart showing signal changes on the normalized impedance plane when measurements are carried out by the method of the present invention, and Figure 6 shows the relationship between the vertical axis r (t1) +t) + and Shinabata Nori7 to71. The diagram shown, Figure S4, is a diagram showing the relationship between the vertical axis IH (Zr+/month and the tank shaft beam 7 to off l when the liner layer thickness is constant).
A diagram showing the relationship between l'Th(zr,l)l of it '4'lll and liner layer thickness on the horizontal axis, and FIG. 6 is a diagram of an example of a device for carrying out the method of the present invention. . (,)...liner cladding tube, (b)...rotation (view, (
c)...Drive device, (d)...Prologue, (eJ...Grief depth f3 device, (f)...Arithmetic device, (ω...Display device.

Claims (1)

【特許請求の範囲】[Claims] 燃料を収容する被覆管をジルカロイ母材管の内周面に純
ジルコニウムをライニングしたライナー被覆管とする場
合にその層厚を非破壊的に測定するため、ライナー側か
ら渦流法のコイルにより浸透深さが全肉厚の近傍、ライ
ナー層厚近傍およびライナー層厚より小さい3種の測定
周波数を印加して同時に得られる3信号測定値より、リ
フトオフ変動に起因するリフトオフ信号の厚さ信号への
重畳および厚さ信号の感度変化の影響を除去して厚さの
高精度測定を可能とすることを特徴とするライナー被覆
管のライナー層厚・ジルカロイ厚測定法。
When the cladding tube containing fuel is a liner cladding tube in which the inner circumferential surface of a Zircaloy base material tube is lined with pure zirconium, in order to measure the layer thickness non-destructively, the penetration depth is measured from the liner side using an eddy current coil. The three-signal measurement value obtained simultaneously by applying three measurement frequencies near the total wall thickness, near the liner layer thickness, and smaller than the liner layer thickness shows that the lift-off signal caused by lift-off fluctuation is superimposed on the thickness signal. and a method for measuring the liner layer thickness and Zircaloy thickness of liner-clad tubes, which is characterized by eliminating the influence of sensitivity changes in thickness signals and making it possible to measure thickness with high accuracy.
JP16110084A 1984-07-30 1984-07-30 Measuring method of thickness of liner layer and thickness of zircalloy of liner coated pipe Pending JPS6138404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16110084A JPS6138404A (en) 1984-07-30 1984-07-30 Measuring method of thickness of liner layer and thickness of zircalloy of liner coated pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16110084A JPS6138404A (en) 1984-07-30 1984-07-30 Measuring method of thickness of liner layer and thickness of zircalloy of liner coated pipe

Publications (1)

Publication Number Publication Date
JPS6138404A true JPS6138404A (en) 1986-02-24

Family

ID=15728600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16110084A Pending JPS6138404A (en) 1984-07-30 1984-07-30 Measuring method of thickness of liner layer and thickness of zircalloy of liner coated pipe

Country Status (1)

Country Link
JP (1) JPS6138404A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250935A (en) * 2005-03-09 2006-09-21 General Electric Co <Ge> Inspection method and system using multifrequency phase analysis
JP2009186367A (en) * 2008-02-07 2009-08-20 Tokyo Seimitsu Co Ltd Film thickness measurement apparatus and film thickness measurement method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599552A (en) * 1982-07-08 1984-01-18 Sumitomo Metal Ind Ltd Electromagnetic induction tester
JPS5954903A (en) * 1982-09-24 1984-03-29 Toshiba Corp Method and apparatus for measuring thickness of coated pipe without destruction
JPS5967405A (en) * 1982-09-30 1984-04-17 Sumitomo Metal Ind Ltd Method for measuring thickness of liner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599552A (en) * 1982-07-08 1984-01-18 Sumitomo Metal Ind Ltd Electromagnetic induction tester
JPS5954903A (en) * 1982-09-24 1984-03-29 Toshiba Corp Method and apparatus for measuring thickness of coated pipe without destruction
JPS5967405A (en) * 1982-09-30 1984-04-17 Sumitomo Metal Ind Ltd Method for measuring thickness of liner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250935A (en) * 2005-03-09 2006-09-21 General Electric Co <Ge> Inspection method and system using multifrequency phase analysis
JP2009186367A (en) * 2008-02-07 2009-08-20 Tokyo Seimitsu Co Ltd Film thickness measurement apparatus and film thickness measurement method

Similar Documents

Publication Publication Date Title
JPH0226721B2 (en)
US5418823A (en) Combined ultrasonic and eddy-current method and apparatus for non-destructive testing of tubular objects to determine thickness of metallic linings or coatings
Dover et al. The use of AC-held measurem ents for crack detection and sizing in air and underwater
JPS6138404A (en) Measuring method of thickness of liner layer and thickness of zircalloy of liner coated pipe
JPS6196401A (en) Method for measuring thickness of liner on the basis of two frequency
Al-Qadeeb Tubing inspection using multiple NDT techniques
JPH0560522B2 (en)
JPH068723B2 (en) Liner cladding thickness measurement method
JPS6221002A (en) Thickness measurement of linking pipe
JPS6138403A (en) Measuring method of thickness of liner layer and thickness of zircalloy of liner coated pipe
McMaster et al. A basic guide for management's choice of non-destructive tests
JPS6193901A (en) Method for measuring liner thickness
JPS6221003A (en) Thickness measurement of lining pipe
Surin et al. Justification of Scanning Contact Potentiometry Applicability to Test NPP Equipment during Its Manufacture
JPS6221004A (en) Thickness measurement of lining tube
Zhang 1. General and reviews
Vavilov et al. Detecting corrosion in steel products by dynamic infrared thermography
Taylor High temperature testing of pressure vessels
JPS61212701A (en) Measuring method by eddy current
Banks et al. Study of nondestructive techniques for redundancy vertification. NASA Tech Brief 71-10258 (July 1971) lp 1/658
Gueudré et al. Non-Destructive Testing by ultrasound for multi-pass austenitic welds. Influence of the uncertainty of elastic constants on the detection of a defect
JPS61296253A (en) Non-destructive inspection by potential difference method
McClung Needs for development in nondestructive testing for advanced reactor systems
JPS58122404A (en) Measuring method of thickness of copper film on inside surface of clad pipe for nuclear fuel
Pulsifer Investigation of the Soundness of Wrought Zirconium: Final Report for January 5, 1953--August 28, 1953