JP2008111738A - Thickness measurement apparatus and program - Google Patents

Thickness measurement apparatus and program Download PDF

Info

Publication number
JP2008111738A
JP2008111738A JP2006295315A JP2006295315A JP2008111738A JP 2008111738 A JP2008111738 A JP 2008111738A JP 2006295315 A JP2006295315 A JP 2006295315A JP 2006295315 A JP2006295315 A JP 2006295315A JP 2008111738 A JP2008111738 A JP 2008111738A
Authority
JP
Japan
Prior art keywords
phase
thickness
eddy current
detection
current signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006295315A
Other languages
Japanese (ja)
Other versions
JP4802081B2 (en
Inventor
Yusuke Sato
勇輔 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2006295315A priority Critical patent/JP4802081B2/en
Publication of JP2008111738A publication Critical patent/JP2008111738A/en
Application granted granted Critical
Publication of JP4802081B2 publication Critical patent/JP4802081B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thickness measurement apparatus and a thickness measurement program for inexpensively and simply measuring a thickness of an object to be measured. <P>SOLUTION: If an excitation current flows from a reference signal generating section 2 and an eddy current flows in the object to be measured, an eddy current detecting section 3 outputs an induction output corresponding to the eddy current to a phase detecting section 6. A phase shifting section 5 generates a shift signal as a shift signal generated by a shift signal generating section 4 and shifted by a predetermined detection phase (e.g. 90°). The phase detecting section 6 detects a phase of an eddy current signal outputted from an eddy current detecting section 3 based on the shift signal outputted from the phase shifting section 5. A phase delay detecting section 7a detects a phase delay of the eddy current signal when the eddy current signal is detected at the predetermined detection phase (e.g. 90°). A thickness measuring section 7f measures the thickness of the object to be measured based on the phase delay of the eddy current detected by the phase delay information detecting section and correlation relationship information stores in a correlation relationship information storing section 7e. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、測定対象物の厚さを測定する厚さ測定装置及び厚さ測定プログラムに関する。   The present invention relates to a thickness measuring apparatus and a thickness measuring program for measuring the thickness of a measurement object.

従来の厚さ測定装置は、鋼材の上面にレーザ光を照射しこの上面からの反射光を受光して鋼材の上面までの距離を測定する第1の反射型レーザ変位計と、鋼材の下面にレーザ光を照射しこの下面からの反射光を受光して鋼材の下面までの距離を測定する第2の反射型レーザ変位計と、第1の反射型レーザ変位計を上部で支持し第2の反射型レーザ変位計を下部で支持するC形フレームと、第1及び第2の反射型レーザ変位計の測定結果に基づいて鋼材の厚さを演算する演算処理装置などを備えている(例えば、特許文献1参照)。このような従来の厚さ測定装置では、C形フレームの上部と下部との間の間隙部に鋼材が位置するようにこのC形フレームを移動させて、第1及び第2の反射型レーザ計からレーザ光を鋼材の上面と下面とにそれぞれ照射し、第1及び第2の反射型レーザ計の出力信号に基づいて演算処理装置が鋼材の厚さを測定している。   The conventional thickness measuring apparatus includes a first reflective laser displacement meter that irradiates a laser beam on the upper surface of the steel material, receives reflected light from the upper surface, and measures the distance to the upper surface of the steel material, and a lower surface of the steel material. A second reflection type laser displacement meter that irradiates laser light, receives reflected light from the lower surface, and measures the distance to the lower surface of the steel material; A C-shaped frame that supports the reflective laser displacement meter at the bottom, and an arithmetic processing unit that calculates the thickness of the steel material based on the measurement results of the first and second reflective laser displacement meters (for example, Patent Document 1). In such a conventional thickness measuring apparatus, the first and second reflective laser meters are moved by moving the C-shaped frame so that the steel material is positioned in the gap between the upper and lower portions of the C-shaped frame. Are irradiated on the upper surface and the lower surface of the steel material, respectively, and the arithmetic processing unit measures the thickness of the steel material based on the output signals of the first and second reflection type laser meters.

特開平8-233538号公報JP-A-8-233538

従来の厚さ測定装置では、第1及び第2の反射型レーザ計を鋼材に対して位置決めするためにC形フレームを駆動する駆動装置が必要になり、装置が大型化し複雑になってしまう問題点がある。また、従来の厚さ測定装置では、鋼材に対して第1及び第2の反射型レーザ計を正確に位置決めすることが困難であり、鋼材の厚さを高精度に測定することができない問題点がある。さらに、従来の厚さ測定装置では、一対の反射型レーザ計を使用して鋼材の厚さを測定する必要があり、装置が高価になってしまう問題点がある。   In the conventional thickness measuring device, a driving device for driving the C-shaped frame is required to position the first and second reflective laser meters with respect to the steel material, and the device becomes large and complicated. There is a point. Further, in the conventional thickness measuring apparatus, it is difficult to accurately position the first and second reflective laser meters with respect to the steel material, and the thickness of the steel material cannot be measured with high accuracy. There is. Furthermore, in the conventional thickness measuring apparatus, it is necessary to measure the thickness of a steel material using a pair of reflection type laser meters, and there is a problem that the apparatus becomes expensive.

この発明の課題は、安価で簡単に測定対象物の厚さを測定することができる厚さ測定装置及び厚さ測定プログラムを提供することである。   An object of the present invention is to provide a thickness measuring apparatus and a thickness measuring program that can measure the thickness of an object to be measured easily and inexpensively.

この発明は、以下に記載するような解決手段により、前記課題を解決する。
なお、この発明の実施形態に対応する符号を付して説明するが、この実施形態に限定するものではない。
請求項1の発明は、測定対象物(S1,…,SN)の厚さ(t0,…,tn)を測定する厚さ測定装置であって、前記測定対象物に渦電流を発生させたときに、この渦電流の時間変化を表す渦電流信号の位相遅れ(φ0,…,φn)を検出する位相遅れ検出部(7a)と、前記位相遅れ検出部の検出結果に基づいて前記測定対象物の厚さを測定する厚さ測定部(7f)とを備える厚さ測定装置(1)である。
The present invention solves the above-mentioned problems by the solving means described below.
In addition, although the code | symbol corresponding to embodiment of this invention is attached | subjected and demonstrated, it is not limited to this embodiment.
The invention according to claim 1, the measuring object (S 1, ..., S N ) thickness (t 0, ..., t n ) A thickness measuring apparatus for measuring, an eddy current in the object to be measured A phase lag detector (7a) for detecting the phase lag (φ 0 ,..., Φ n ) of the eddy current signal representing the time change of the eddy current when generated, and the detection result of the phase lag detector It is a thickness measuring device (1) provided with the thickness measurement part (7f) which measures the thickness of the said measurement object based on it.

請求項2の発明は、請求項1に記載の厚さ測定装置において、前記位相遅れ検出部は、前記渦電流信号を所定の検波位相で検波したときのこの渦電流信号の位相遅れを検出することを特徴とする厚さ測定装置である。   According to a second aspect of the present invention, in the thickness measuring apparatus according to the first aspect, the phase lag detecting unit detects a phase lag of the eddy current signal when the eddy current signal is detected at a predetermined detection phase. This is a thickness measuring device.

請求項3の発明は、請求項2に記載の厚さ測定装置において、前記位相遅れ検出部は、前記渦電流信号を90°近傍の検波位相で検波したときのこの渦電流信号の位相遅れを検出することを特徴とする厚さ測定装置である。   According to a third aspect of the present invention, in the thickness measurement apparatus according to the second aspect, the phase lag detector detects a phase lag of the eddy current signal when the eddy current signal is detected at a detection phase near 90 °. It is a thickness measuring device characterized by detecting.

請求項4の発明は、請求項1から請求項3までのいずれか1項に記載の厚さ測定装置において、前記位相遅れ検出部は、前記測定対象物(S1,…,SN)毎に対応する検波位相で前記渦電流信号を検波したときのこの渦電流信号の位相遅れ(φ0,…,φn)を検出することを特徴とする厚さ測定装置である。 According to a fourth aspect of the present invention, there is provided the thickness measuring apparatus according to any one of the first to third aspects, wherein the phase lag detecting unit is provided for each measurement object (S 1 ,..., S N ). Is a thickness measuring device that detects a phase delay (φ 0 ,..., Φ n ) of the eddy current signal when the eddy current signal is detected at a detection phase corresponding to.

請求項5の発明は、請求項1から請求項4までのいずれか1項に記載の厚さ測定装置において、前記厚さ測定部は、前記渦電流信号の位相遅れ(φ0,…,φn)と前記測定対象物(S1,…,SN)の厚さ(t0,…,tn)との相関関係と、前記位相遅れ検出部が検出した前記渦電流信号の位相遅れ(φ0,…,φn)とに基づいて、前記測定対象物の厚さ(t0,…,tn)を測定することを特徴とする厚さ測定装置である。 According to a fifth aspect of the present invention, in the thickness measurement apparatus according to any one of the first to fourth aspects, the thickness measurement unit includes a phase delay (φ 0 ,..., Φ of the eddy current signal. n ) and the thickness (t 0 ,..., t n ) of the measurement objects (S 1 ,..., S N ) and the phase lag of the eddy current signal detected by the phase lag detector ( phi 0, ..., based on the phi n), the thickness (t 0 of the measuring object, ..., the thickness measuring device and measuring the t n).

請求項6の発明は、測定対象物(S1,…,SN)の厚さ(t0,…,tn)を測定するための厚さ測定プログラムであって、前記測定対象物に渦電流を発生させたときに、この渦電流の時間変化を表す渦電流信号の位相遅れ(φ0,…,φn)を検出する位相遅れ検出手順(S500)と、前記位相遅れ検出手順における検出結果に基づいて前記測定対象物の厚さを測定する厚さ測定手順(S600)とをコンピュータに実行させる厚さ測定プログラムである。 The invention of claim 6 is a thickness measurement program for measuring the thickness (t 0 ,..., T n ) of the measurement object (S 1 ,..., S N ), A phase lag detection procedure (S500) for detecting a phase lag (φ 0 ,..., Φ n ) of an eddy current signal representing a time change of the eddy current when a current is generated, and detection in the phase lag detection procedure A thickness measurement program for causing a computer to execute a thickness measurement procedure (S600) for measuring the thickness of the measurement object based on a result.

請求項7の発明は、請求項6に記載の厚さ測定プログラムにおいて、前記位相遅れ検出手順は、前記渦電流信号を所定の検波位相で検波したときのこの渦電流信号の位相遅れを検出する手順を含むことを特徴とする厚さ測定プログラムである。   According to a seventh aspect of the present invention, in the thickness measurement program according to the sixth aspect, the phase lag detection procedure detects a phase lag of the eddy current signal when the eddy current signal is detected at a predetermined detection phase. A thickness measurement program including a procedure.

請求項8の発明は、請求項7に記載の厚さ測定プログラムにおいて、前記位相遅れ検出手順は、前記渦電流信号を90°近傍の検波位相で検波したときのこの渦電流信号の位相遅れを検出する手順を含むことを特徴とする厚さ測定プログラムである。   According to an eighth aspect of the present invention, in the thickness measurement program according to the seventh aspect of the invention, the phase lag detection procedure is configured to detect a phase lag of the eddy current signal when the eddy current signal is detected at a detection phase near 90 °. It is a thickness measurement program characterized by including the procedure to detect.

請求項9の発明は、請求項6から請求項8までのいずれか1項に記載の厚さ測定プログラムにおいて、前記位相遅れ検出手順は、前記測定対象物(S1,…,SN)毎に対応する検波位相で前記渦電流信号を検波したときのこの渦電流信号の位相遅れ(φ0,…,φn)を検出する手順を含むことを特徴とする厚さ測定プログラムである。 The invention of claim 9 is the thickness measurement program according to any one of claims 6 to 8, wherein the phase delay detection procedure is performed for each of the measurement objects (S 1 ,..., S N ). Is a thickness measurement program including a procedure for detecting a phase delay (φ 0 ,..., Φ n ) of the eddy current signal when the eddy current signal is detected at a detection phase corresponding to.

請求項10の発明は、請求項6から請求項9までのいずれか1項に記載の厚さ測定プログラムにおいて、前記厚さ測定手順は、前記渦電流信号の位相遅れ(φ0,…,φn)と前記測定対象物(S1,…,SN)の厚さ(t0,…,tn)との相関関係と、前記位相遅れ検出手順において検出した前記渦電流信号の位相遅れ(φ0,…,φn)とに基づいて、前記測定対象物の厚さ(t0,…,tn)を測定する手順を含むことを特徴とする厚さ測定プログラムである。 The invention of claim 10 is the thickness measurement program according to any one of claims 6 to 9, wherein the thickness measurement procedure includes a phase delay (φ 0 ,..., Φ of the eddy current signal. n ) and the thickness (t 0 ,..., t n ) of the objects to be measured (S 1 ,..., S N ) and the phase lag of the eddy current signal detected in the phase lag detection procedure ( A thickness measurement program including a procedure of measuring the thickness (t 0 ,..., t n ) of the measurement object based on (φ 0 ,..., φ n ).

この発明によると、安価で簡単に測定対象物の厚さを測定することができる。   According to the present invention, the thickness of the measurement object can be measured easily and inexpensively.

以下、図面を参照して、この発明の実施形態について詳しく説明する。
図1は、この発明の実施形態に係る厚さ測定装置を概略的に示す構成図である。図2は、この発明の実施形態に係る厚さ測定装置の渦電流検出部を概略的に示す回路図である。図3は、この発明の実施形態に係る厚さ測定装置の位相検波部の信号処理を模式的に示す波形図であり、図3(A)は基準信号発生部が出力する基準信号の波形を示し、図3(B)は移相用信号発生部が出力する移相用信号の波形を示し、図3(C)は移相部が出力する移相用信号の波形を示す。ここで、図3に示す縦軸は、出力電圧(V)であり、横軸は時間(sec)である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a configuration diagram schematically showing a thickness measuring apparatus according to an embodiment of the present invention. FIG. 2 is a circuit diagram schematically showing an eddy current detector of the thickness measuring apparatus according to the embodiment of the present invention. FIG. 3 is a waveform diagram schematically showing signal processing of the phase detector of the thickness measuring apparatus according to the embodiment of the present invention. FIG. 3A shows the waveform of the reference signal output by the reference signal generator. 3B shows the waveform of the phase shift signal output from the phase shift signal generator, and FIG. 3C shows the waveform of the phase shift signal output from the phase shift unit. Here, the vertical axis shown in FIG. 3 is the output voltage (V), and the horizontal axis is the time (sec).

図1に示す測定対象物Sは、厚さ測定装置1によって厚さが測定される対象物である。測定対象物Sは、例えば、山形鋼、H形鋼などの形鋼の一種である鋼材などを組み立てて電車線路の支持物を構成する鉄柱などである。   A measuring object S shown in FIG. 1 is an object whose thickness is measured by the thickness measuring apparatus 1. The measuring object S is, for example, an iron pillar that constitutes a support for a train track by assembling a steel material that is a kind of section steel such as angle steel or H-section steel.

厚さ測定装置1は、測定対象物Sの厚さを測定する装置である。厚さ測定装置1は、測定対象物Sに渦電流を発生させて渦電流信号の位相遅れを検出し、この渦電流信号の位相遅れに基づいて測定対象物Sの厚さを測定する。厚さ測定装置1は、図1に示すように、基準信号発生部2と、渦電流検出部3と、移相用信号発生部4と、移相部5と、位相検波部6と、演算処理部7などを備えている。   The thickness measuring device 1 is a device that measures the thickness of the measuring object S. The thickness measuring device 1 generates an eddy current in the measuring object S to detect a phase delay of the eddy current signal, and measures the thickness of the measuring object S based on the phase delay of the eddy current signal. As shown in FIG. 1, the thickness measuring apparatus 1 includes a reference signal generation unit 2, an eddy current detection unit 3, a phase shift signal generation unit 4, a phase shift unit 5, and a phase detection unit 6. A processing unit 7 and the like are provided.

基準信号発生部2は、基準信号を発生する手段である。基準信号発生部2は、例えば、図3(A)に示すように、所定の周波数の交流信号(基準信号)を発生し、この交流信号を入力信号として渦電流検出部3に入力させる交流発振器などの発振部である。基準信号発生部2は、渦電流検出部3が渦電流を正確に検出可能なように、図3(A)に示すような変動しない連続波の交流信号を渦電流検出部3に出力する。   The reference signal generator 2 is a means for generating a reference signal. For example, as shown in FIG. 3A, the reference signal generator 2 generates an AC signal (reference signal) having a predetermined frequency and inputs the AC signal as an input signal to the eddy current detector 3. And so on. The reference signal generator 2 outputs a continuous wave AC signal that does not vary as shown in FIG. 3A to the eddy current detector 3 so that the eddy current detector 3 can accurately detect the eddy current.

図1に示す渦電流検出部3は、測定対象物Sに発生する渦電流を検出する手段であり、測定対象物Sに発生させた渦電流を検出する相互誘導型コイルを使用した検出コイルなどである。渦電流検出部3は、図2に示すように、励磁コイル3a,3bと、誘導コイル3c,3dと、可変抵抗器3e,3fと、出力端子3g,3hなどを備えている。励磁コイル3a,3bは、測定対象物Sに渦電流が発生するように磁界を発生させるコイルであり、励磁コイル3aは測定対象物Sに対向して配置されており、励磁コイル3bは励磁コイル3aと直列に接続されて空心状態で使用される。誘導コイル3c,3dは、測定対象物Sに渦電流が発生したときに電磁誘導作用によって起電力を発生するコイルであり、可変抵抗器3e,3fにブリッジ接続されている。誘導コイル3cは、測定対象物Sに対向して配置されており、誘導コイル3dは空心状態で使用される。誘導コイル3c,3dには、基準信号発生部2が出力する交流電流(励磁電流)が流れる。可変抵抗器3e,3fは、抵抗値を調整可能な抵抗器であり、測定対象物Sに励磁コイル3a及び誘導コイル3cが対向していないときに、ブリッジの出力がゼロになるように零点調整される。出力端子3g,3hは、測定対象物Sに発生する渦電流に対応する誘導起電力を出力する端子であり、出力端子3g,3h間には誘導出力の差分が出力される。渦電流検出部3は、励磁コイル3a,3bに基準信号発生部2から励磁電流を流すと、励磁コイル3a,3bが誘導磁界を発生して測定対象物Sに渦電流が流れ、この渦電流に対応する誘導出力を出力端子3g,3hから位相検波部6に出力する。   The eddy current detection unit 3 shown in FIG. 1 is a means for detecting eddy currents generated in the measurement object S, such as a detection coil using a mutual induction type coil that detects eddy currents generated in the measurement object S. It is. As shown in FIG. 2, the eddy current detection unit 3 includes exciting coils 3a and 3b, induction coils 3c and 3d, variable resistors 3e and 3f, output terminals 3g and 3h, and the like. The excitation coils 3a and 3b are coils that generate a magnetic field so that an eddy current is generated in the measurement object S. The excitation coil 3a is disposed to face the measurement object S, and the excitation coil 3b is an excitation coil. It is connected in series with 3a and used in an air-core state. The induction coils 3c and 3d are coils that generate an electromotive force by electromagnetic induction when an eddy current is generated in the measurement object S, and are bridge-connected to the variable resistors 3e and 3f. The induction coil 3c is disposed to face the measuring object S, and the induction coil 3d is used in an air-core state. An alternating current (excitation current) output from the reference signal generator 2 flows through the induction coils 3c and 3d. The variable resistors 3e and 3f are resistors whose resistance values can be adjusted, and zero adjustment is performed so that the output of the bridge becomes zero when the exciting coil 3a and the induction coil 3c are not opposed to the measuring object S. Is done. The output terminals 3g and 3h are terminals for outputting an induced electromotive force corresponding to the eddy current generated in the measuring object S, and a difference between the induced outputs is output between the output terminals 3g and 3h. When the eddy current detection unit 3 causes an excitation current to flow from the reference signal generation unit 2 to the excitation coils 3a and 3b, the excitation coils 3a and 3b generate an induced magnetic field and an eddy current flows to the measurement object S. Are output from the output terminals 3g and 3h to the phase detector 6.

図1に示す移相用信号発生部4は、移相用信号を発生する手段である。移相用信号発生部4は、例えば、図3(B)に示すように基準信号発生部2が発生する交流信号に同期した所定のパルス幅のパルス信号を発生し、このパルス信号を入力信号として移相部5に入力させる発振部である。移相用信号発生部4は、基準信号発生部2が出力する交流信号が正であるときには移相用信号を発生し、基準信号発生部2が出力する交流信号が負であるときには移相用信号を発生しない。   The phase shift signal generator 4 shown in FIG. 1 is means for generating a phase shift signal. The phase shift signal generator 4 generates a pulse signal having a predetermined pulse width synchronized with the AC signal generated by the reference signal generator 2 as shown in FIG. As shown in FIG. The phase shift signal generator 4 generates a phase shift signal when the AC signal output from the reference signal generator 2 is positive, and outputs a phase shift signal when the AC signal output from the reference signal generator 2 is negative. Does not generate a signal.

図1に示す移相部5は、移相用信号発生部4が発生する移相用信号の位相をずらす手段である。移相部5は、例えば、図3(C)に示すように、移相用信号発生部4が発生する移相用信号の位相を所定の検波位相(例えば90°)ずらした移相用信号を発生し、この移相用信号を参照信号として位相検波部6に入力させる移相器などである。移相部5は、図3(C)に示すように、基準信号発生部2が出力する基準信号に同期してゲートを開閉する。   The phase shifter 5 shown in FIG. 1 is means for shifting the phase of the phase shift signal generated by the phase shift signal generator 4. For example, as shown in FIG. 3C, the phase shift unit 5 shifts the phase of the phase shift signal generated by the phase shift signal generation unit 4 by a predetermined detection phase (for example, 90 °). And a phase shifter for inputting the phase shift signal to the phase detector 6 as a reference signal. As shown in FIG. 3C, the phase shifter 5 opens and closes the gate in synchronization with the reference signal output from the reference signal generator 2.

図1に示す位相検波部6は、渦電流検出部3が出力する渦電流信号を位相検波する手段である。位相検波部6は、例えば、移相部5が出力する移相用信号に基づいて、渦電流検出部3が出力する渦電流信号(誘導コイル3c,3dの発生する誘導出力の差分)を位相検波し、位相検波信号(直流信号)に変換して出力する。位相検波部6は、図3(C)に示すように、移相部5がゲートを開けている時間(ゲート開時間)だけ、渦電流検出部3が出力する渦電流信号を位相遅れ検出部7aに出力する。位相検波部6は、渦電流信号の発生変化を捉えやすいように検波位相0°のときに最大出力が得られ、余弦波に比例した信号を位相遅れ検出部7aに出力する。   The phase detector 6 shown in FIG. 1 is means for phase-detecting the eddy current signal output from the eddy current detector 3. For example, the phase detector 6 is configured to phase the eddy current signal output from the eddy current detector 3 (difference between the induction outputs generated by the induction coils 3c and 3d) based on the phase shift signal output from the phase shift unit 5. It detects and converts into a phase detection signal (DC signal) and outputs it. As shown in FIG. 3C, the phase detection unit 6 outputs the eddy current signal output from the eddy current detection unit 3 for the time during which the phase shift unit 5 opens the gate (gate open time). To 7a. The phase detection unit 6 obtains a maximum output when the detection phase is 0 ° so that changes in the generation of eddy current signals can be easily detected, and outputs a signal proportional to the cosine wave to the phase lag detection unit 7a.

図1に示す演算処理部7は、位相検波部6が出力する渦電流信号を所定の演算処理する手段である。演算処理部7は、例えば、位相検波部6が出力する渦電流信号の位相遅れを検出し、この位相遅れに基づいて測定対象物Sの厚さを測定する。演算処理部7は、測定対象物Sの厚さを測定するための厚さ測定プログラムに従って所定の処理を実行するパーソナルコンピュータなどである。演算処理部7は、位相遅れ検出部7aと、位相遅れ情報記憶部7bと、検波位相情報記憶部7cと、検波位相設定部7dと、相関関係情報記憶部7eと、厚さ測定部7fと、測定結果記憶部7gと、測定結果出力部7hと、プログラム記憶部7iと、制御部7jなどを備えている。   The arithmetic processing unit 7 shown in FIG. 1 is means for performing predetermined arithmetic processing on the eddy current signal output from the phase detection unit 6. For example, the arithmetic processing unit 7 detects the phase lag of the eddy current signal output from the phase detection unit 6 and measures the thickness of the measuring object S based on the phase lag. The arithmetic processing unit 7 is a personal computer or the like that executes a predetermined process in accordance with a thickness measurement program for measuring the thickness of the measurement object S. The arithmetic processing unit 7 includes a phase lag detection unit 7a, a phase lag information storage unit 7b, a detection phase information storage unit 7c, a detection phase setting unit 7d, a correlation information storage unit 7e, and a thickness measurement unit 7f. , A measurement result storage unit 7g, a measurement result output unit 7h, a program storage unit 7i, a control unit 7j, and the like.

位相遅れ検出部7aは、測定対象物Sに渦電流を発生させたときに、この渦電流の時間変化を表す渦電流信号の位相遅れを検出する手段である。位相遅れ検出部7aは、位相検波部6が出力する位相検波信号(渦電流信号)の位相遅れを検出する。位相遅れ検出部7aは、渦電流信号を所定の検波位相(例えば90°近傍の検波位相)で検波したときのこの渦電流信号の位相遅れを検出し、この位相遅れを位相遅れ情報として制御部7jに出力する。位相遅れ検出部7aは、鋼材の材質のような種類の異なる複数の測定対象物Sの厚さを測定する場合には、これらの測定対象物S毎に対応する検波位相で渦電流信号を検波したときのこの渦電流信号の位相遅れを検出する。   The phase lag detector 7a is a means for detecting the phase lag of the eddy current signal representing the time change of the eddy current when an eddy current is generated in the measuring object S. The phase lag detector 7 a detects the phase lag of the phase detection signal (eddy current signal) output from the phase detector 6. The phase lag detection unit 7a detects a phase lag of the eddy current signal when the eddy current signal is detected at a predetermined detection phase (for example, a detection phase in the vicinity of 90 °), and the control unit uses the phase lag as phase lag information. Output to 7j. When measuring the thicknesses of a plurality of different types of measurement objects S such as steel materials, the phase lag detection unit 7a detects eddy current signals at a detection phase corresponding to each measurement object S. The phase lag of this eddy current signal is detected.

図4は、この発明の実施形態に係る厚さ測定装置の位相遅れ検出部の出力する位相検波信号を模式的に示す波形図である。
図4に示す縦軸は、渦電流信号の出力電圧(V)であり、横軸は角度(°)である。図4に示す実線の波形W0,…,W3は、それぞれ測定対象物Sが厚さt0,…,t3(t0<t1<t2<t3)である場合に、検波位相90°で検波したときのときの出力電圧を示し、二点鎖線の波形W1,…,W3はそれぞれ測定対象物Sが厚さt1,…,t3である場合に、検波位相0°で検波したときの出力電圧を示す。φ0,…,φ3(φ0123)は、それぞれ測定対象物Sが厚さt0,…,t3である場合に、検波位相90°で検波したときの出力電圧の位相遅れを示す。図4に示すように、検波位相0°で渦電流信号を検波したときには、図中二点鎖線で示すように厚さt0,…,t3が厚くなるほど出力電圧の信号レベルが低くなっているが出力電圧に位相遅れはない。一方、検波位相90°で渦電流信号を検波したときには、図中実線で示すように厚さt0,…,t3が厚くなるほど出力信号の信号レベルが低くなるとともに位相遅れφ0,…,φ3が大きくなっており、厚さt0,…,t3に応じて位相遅れφ0,…,φ3が生じている。このため、検波位相90°近傍で検波したときには、測定対象物Sの厚さt0,…,t3に応じて出力電圧の信号レベルと位相とが変化しており、検波位相90°近傍で検波した渦電流信号の位相遅れφ0,…,φ3を検出することによって、測定対象物Sの厚さt0,…,t3を測定可能である。
FIG. 4 is a waveform diagram schematically showing a phase detection signal output from the phase lag detector of the thickness measuring apparatus according to the embodiment of the present invention.
The vertical axis shown in FIG. 4 is the output voltage (V) of the eddy current signal, and the horizontal axis is the angle (°). The solid line waveforms W 0 ,..., W 3 shown in FIG. 4 are detected when the measurement object S has thicknesses t 0 ,..., T 3 (t 0 <t 1 <t 2 <t 3 ), respectively. shows the output voltage when at the time of detection by the phase 90 °, the waveform W 1 of a two-dot chain line, ..., W 3 is the measuring object S is the thickness t 1 respectively, ..., in the case of t 3, the detection phase The output voltage when detecting at 0 ° is shown. φ 0, ..., φ 3 ( φ 0 <φ 1 <φ 2 <φ 3) are respectively the measuring object S is the thickness t 0, ..., in the case of t 3, when detected by the detection phase 90 ° Shows the phase lag of the output voltage. As shown in FIG. 4, when detecting the eddy current signal by the detection phase 0 °, the thickness t 0 as shown by the two-dot chain line, ..., the signal level of the higher output voltage t 3 is increased is lowered However, there is no phase lag in the output voltage. On the other hand, when an eddy current signal is detected at a detection phase of 90 °, as the thickness t 0 ,..., T 3 increases, the signal level of the output signal decreases and the phase delay φ 0 ,. φ 3 has become large, the thickness t 0, ..., phase delay φ 0 in response to t 3, ..., φ 3 has occurred. For this reason, when detection is performed in the vicinity of the detection phase of 90 °, the signal level and phase of the output voltage change according to the thickness t 0 ,..., T 3 of the measurement object S, and in the vicinity of the detection phase of 90 °. phase delay phi 0 of detection and eddy current signals, ..., by detecting phi 3, the thickness t 0 of the measuring object S, ..., it is possible to measure the t 3.

図5は、この発明の実施形態に係る厚さ測定装置において検波位相0°及び検波位相70°のときの鋼材厚さと出力電圧との関係を示すグラフである。図6は、この発明の実施形態に係る厚さ測定装置において検波位相90°付近のときの鋼材厚さと出力電圧との関係を示すグラフである。図7は、この発明の実施形態に係る厚さ測定装置の渦電流検出部周辺における磁束密度の測定結果を示すグラフである。   FIG. 5 is a graph showing the relationship between the steel material thickness and the output voltage when the detection phase is 0 ° and the detection phase is 70 ° in the thickness measuring apparatus according to the embodiment of the present invention. FIG. 6 is a graph showing the relationship between the steel material thickness and the output voltage when the detection phase is around 90 ° in the thickness measuring apparatus according to the embodiment of the present invention. FIG. 7 is a graph showing the measurement results of the magnetic flux density around the eddy current detection unit of the thickness measuring apparatus according to the embodiment of the present invention.

図5及び図6に示す縦軸は、渦電流信号の出力電圧 (V)であり、横軸は測定対象物Sの鋼材厚さ(mm)であり、測定対象物Sとして使用した鋼材は一般構造用圧延鋼の山形鋼である。図7に示す縦軸は、磁束密度比であり、渦電流検出部3の誘導コイル(検出コイル)3c,3dの直近の磁束密度を基準としたときの誘導コイル3c,3dの周辺の磁束密度の比率である。横軸は、渦電流検出部3の誘導コイル3c,3dからの距離(mm)である。図5に示すグラフは、励磁周波数6Hz、位相検波0°及び位相検波70°のときの鋼材厚さと出力電圧との関係を表している。図5に示すように、位相検波0°のときには鋼材厚さと出力電圧との間に相関関係は認められないが、位相検波70°のときには鋼材厚さ8mmまで鋼材厚さと出力電圧との間に僅かに相関関係が認められる。   The vertical axis shown in FIGS. 5 and 6 is the output voltage (V) of the eddy current signal, the horizontal axis is the steel thickness (mm) of the measuring object S, and the steel used as the measuring object S is generally used. It is an angle steel of structural rolled steel. The vertical axis shown in FIG. 7 is the magnetic flux density ratio, and the magnetic flux density around the induction coils 3c and 3d when the magnetic flux density closest to the induction coils (detection coils) 3c and 3d of the eddy current detector 3 is used as a reference. Is the ratio. The horizontal axis represents the distance (mm) from the induction coils 3c and 3d of the eddy current detector 3. The graph shown in FIG. 5 represents the relationship between the steel material thickness and the output voltage when the excitation frequency is 6 Hz, the phase detection is 0 °, and the phase detection is 70 °. As shown in FIG. 5, there is no correlation between the steel thickness and the output voltage when the phase detection is 0 °, but when the phase detection is 70 °, the steel thickness is up to 8 mm between the steel thickness and the output voltage. There is a slight correlation.

図6に示すグラフは、検波位相90°付近で出力電圧がゼロに近い領域で検波し、鋼材厚さに対応して位相遅れ分のみを出力した結果を表している。図6に示すように、位相検波90°のときには、鋼材厚さが厚くなるに従って出力電圧が低下しており、鋼材厚さと出力電圧との間に明確に相関関係が認められる。このため、検波位相70°〜90°のときには鋼材厚さを測定可能であり、特に検波位相90°のときには鋼材厚さを正確に測定可能であると考えられる。   The graph shown in FIG. 6 represents the result of detecting in the region where the output voltage is near zero near the detection phase of 90 ° and outputting only the phase delay corresponding to the steel thickness. As shown in FIG. 6, when the phase detection is 90 °, the output voltage decreases as the steel thickness increases, and a clear correlation is recognized between the steel thickness and the output voltage. For this reason, it is considered that the steel material thickness can be measured when the detection phase is 70 ° to 90 °, and in particular, the steel material thickness can be accurately measured when the detection phase is 90 °.

図7に示すグラフは、渦電流検出部3の誘導コイル3c,3dの周辺の磁束密度をガウスメータで測定した結果を示すグラフである。図7に示すように、誘導コイル3c,3dから15mm離れると誘導コイル3c,3dによる磁束密度の影響がなくなることから、誘導コイル3c,3dから15mm離れた部位では鋼材の形状が測定に影響しないと考えられる。   The graph shown in FIG. 7 is a graph showing the result of measuring the magnetic flux density around the induction coils 3c and 3d of the eddy current detector 3 with a gauss meter. As shown in FIG. 7, the magnetic flux density due to the induction coils 3c and 3d is not affected by being away from the induction coils 3c and 3d by 15 mm. Therefore, the shape of the steel material does not affect the measurement at a position 15 mm away from the induction coils 3c and 3d. it is conceivable that.

図1に示す位相遅れ情報記憶部7bは、位相遅れ検出部7aの検出結果を記憶する手段である。位相遅れ情報記憶部7bは、例えば、図4に示すように測定対象物S毎の位相遅れφ0,…,φ3を位相遅れ情報として記憶するメモリなどである。 The phase lag information storage unit 7b shown in FIG. 1 is means for storing the detection result of the phase lag detection unit 7a. The phase delay information storage unit 7b is, for example, a memory that stores the phase delays φ 0 ,..., Φ 3 for each measurement object S as phase delay information as shown in FIG.

検波位相情報記憶部7cは、各測定対象物Sに対応する検波位相を記憶する手段である。検波位相情報記憶部7cは、例えば、測定対象物Sが鋼材であるときに各鋼材の種類に対応する最適な検波位相を検波位相情報として記憶するメモリなどである。   The detection phase information storage unit 7c is means for storing the detection phase corresponding to each measurement object S. The detection phase information storage unit 7c is, for example, a memory that stores, as detection phase information, an optimal detection phase corresponding to the type of each steel material when the measurement object S is a steel material.

検波位相設定部7dは、渦電流信号を検波するときの検波位相を測定対象物Sに応じて設定する手段である。検波位相設定部7dは、例えば、測定対象物Sが鋼材であるときに、この鋼材の種類に応じて検波位相を設定し、鋼材毎の検波位相を検波位相情報として制御部7jに出力する。検波位相設定部7dは、図示しない入力部によって測定対象物Sの種類などが入力されるとこの測定対象物Sの種類を検索キーとして検波位相情報記憶部7cを検索し、この測定対象物Sに対応する検波位相を選択する。   The detection phase setting unit 7d is a means for setting the detection phase when detecting the eddy current signal according to the measurement object S. For example, when the measurement object S is a steel material, the detection phase setting unit 7d sets a detection phase according to the type of the steel material, and outputs the detection phase for each steel material to the control unit 7j as detection phase information. The detection phase setting unit 7d searches the detection phase information storage unit 7c using the type of the measurement object S as a search key when the type of the measurement object S is input from an input unit (not shown). The detection phase corresponding to is selected.

図8は、この発明の実施形態に係る厚さ測定装置の相関関係情報記憶部のデータ構造を模式的に示す図である。
相関関係情報記憶部7eは、渦電流信号の位相遅れφ0,…,φnと測定対象物S1,…,SNの厚さt0,…,tnとの相関関係を記憶する手段である。相関関係情報記憶部7eは、例えば、図8に示すように、測定対象物S1,…,SN毎に位相遅れφ0,…,φnと厚さt0,…,tnとの相関関係を相関関係情報として記憶している。
FIG. 8 is a diagram schematically showing the data structure of the correlation information storage unit of the thickness measuring apparatus according to the embodiment of the present invention.
The correlation information storage portion 7e, a phase lag phi 0 of eddy current signals, ..., φ n and the measurement object S 1, ..., the thickness of the S N t 0, ..., means for storing the correlation between the t n It is. The correlation information storage portion 7e, for example, as shown in FIG. 8, the measuring object S 1, ..., a phase lag phi 0 for each S N, ..., φ n and the thickness t 0, ..., and t n The correlation is stored as correlation information.

図1に示す厚さ測定部7fは、位相遅れ検出部7aの検出結果に基づいて測定対象物S1,…,SNの厚さt0,…,tnを測定する手段である。厚さ測定部7fは、位相遅れ情報検出部が検出した渦電流信号の位相遅れφ0,…,φnと、相関関係情報記憶部7eが記憶する相関関係情報とに基づいて、測定対象物S1,…,SNの厚さt0,…,tnを測定し、この測定結果を厚さ測定情報として制御部7jに出力する。 1 is a means for measuring the thicknesses t 0 ,..., T n of the measuring objects S 1 ,..., S N based on the detection result of the phase lag detection unit 7a. The thickness measurement unit 7f measures the object based on the phase lags φ 0 ,..., Φ n of the eddy current signal detected by the phase lag information detection unit and the correlation information stored in the correlation information storage unit 7e. The thicknesses t 0 ,..., T n of S 1 ,..., S N are measured, and the measurement results are output to the control unit 7j as thickness measurement information.

測定結果記憶部7gは、厚さ測定部7fの測定結果を記憶する手段である。測定結果記憶部7gは、例えば、厚さ測定部7fが測定した測定対象物S1,…,SN毎の厚さt0,…,tnを記憶するメモリなどである。 The measurement result storage unit 7g is means for storing the measurement result of the thickness measurement unit 7f. Measurement result storage unit 7g is, for example, measuring the thickness measuring part 7f is the measuring object S 1, ..., the thickness t 0 of each S N, ..., and the like memory for storing t n.

測定結果出力部7hは、厚さ測定部7fの測定結果を出力する手段である。測定結果出力部7hは、厚さ測定装置1と外部装置を接続してこれらの間で種々の情報を入出力させるインタフェース(I/O)回路などである。測定結果出力部7hは、厚さ測定部7fが測定した測定対象物S1,…,SN毎の厚さt0,…,tnを表示装置又は印刷装置などの外部装置に出力する。 The measurement result output unit 7h is means for outputting the measurement result of the thickness measurement unit 7f. The measurement result output unit 7h is an interface (I / O) circuit or the like that connects the thickness measuring device 1 and an external device and inputs / outputs various information between them. The measurement result output unit 7h outputs the thicknesses t 0 ,..., T n for the measurement objects S 1 ,..., S N measured by the thickness measurement unit 7f to an external device such as a display device or a printing device.

プログラム記憶部7iは、測定対象物S1,…,SNの厚さt0,…,tnを測定するための厚さ測定プログラムを記憶する手段である。プログラム記憶部7iは、情報記録媒体から読み取った厚さ測定プログラムや、電気通信回線を通じて取り込まれた厚さ測定プログラムなどを記憶するメモリである。 The program storage unit 7i is the measuring object S 1, ..., the thickness t 0 of the S N, ..., a means for storing the thickness measurement program for measuring t n. The program storage unit 7i is a memory that stores a thickness measurement program read from an information recording medium, a thickness measurement program taken in through a telecommunication line, and the like.

制御部7jは、厚さ測定装置1の種々の動作を制御する手段(中央処理部(CPU))である。制御部7jは、プログラム記憶部7iから厚さ測定プログラムを読み出して厚さ測定装置1に所定の処理を指令し実行させる。制御部7jは、例えば、基準信号発生部2に基準信号を発生させたり、移相用信号発生部4に移相用信号を発生させたり、移相部5に所定の検波位相ずらした移相用信号を発生させたり、位相遅れ情報記憶部7bに位相遅れ情報の記憶を指令したり、検波位相情報記憶部7cから検波位相情報を読み出して検波位相設定部7dに出力したり、検波位相設定部7dが出力する検波位相情報を移相部5に出力したり、相関関係情報記憶部7eから相関関係情報を読み出して厚さ測定部7fに出力したり、厚さ測定部7fに測定対象物S1,…,SNの厚さt0,…,tnの測定を指令したり、測定結果記憶部7gに厚さ測定情報を記憶させたり、測定結果出力部7hに厚さ測定情報を出力させたりする。制御部7jには、図1に示すように、基準信号発生部2、移相用信号発生部4、移相部5、位相遅れ検出部7a、位相遅れ情報記憶部7b、検波位相情報記憶部7c、検波位相設定部7d、相関関係情報記憶部7e、厚さ測定部7f、測定結果記憶部7g、測定結果出力部7h及びプログラム記憶部7iなどが相互に通信可能なようにバスなどの通信手段によって接続されている。 The control unit 7j is means (central processing unit (CPU)) for controlling various operations of the thickness measuring apparatus 1. The control unit 7j reads out the thickness measurement program from the program storage unit 7i and instructs the thickness measurement device 1 to execute a predetermined process. For example, the control unit 7j generates a reference signal in the reference signal generation unit 2, generates a phase shift signal in the phase shift signal generation unit 4, or shifts the phase shift unit 5 by a predetermined detection phase. Generating a signal for use, instructing the phase lag information storage unit 7b to store the phase lag information, reading out the detection phase information from the detection phase information storage unit 7c and outputting it to the detection phase setting unit 7d, or setting the detection phase The detection phase information output from the unit 7d is output to the phase shift unit 5, the correlation information is read from the correlation information storage unit 7e and output to the thickness measurement unit 7f, or the measurement object is input to the thickness measurement unit 7f. S 1, ..., S n having a thickness of t 0, ..., or command the measurement of t n, or stores the thickness measurement information in the measurement result storage unit 7 g, the thickness measurement information to the measurement result output section 7h Or output. As shown in FIG. 1, the control unit 7j includes a reference signal generation unit 2, a phase shift signal generation unit 4, a phase shift unit 5, a phase delay detection unit 7a, a phase delay information storage unit 7b, and a detection phase information storage unit. 7c, detection phase setting unit 7d, correlation information storage unit 7e, thickness measurement unit 7f, measurement result storage unit 7g, measurement result output unit 7h, program storage unit 7i, etc. Connected by means.

次に、この発明の実施形態に係る厚さ測定装置の動作を説明する。
図9は、この発明の実施形態に係る厚さ測定装置の動作を説明するためのフローチャートである。以下では、制御部7jの動作を中心として説明する。
図9に示すステップ(以下、Sという)100において、図1に示す制御部7jが厚さ測定プログラムを読み込む。図示しない電源スイッチがONすると厚さ測定装置1に電力が供給されて、プログラム記憶部7iから厚さ測定プログラムを制御部7jが読み込み演算処理部7に一連の処理を開始させる。
Next, the operation of the thickness measuring apparatus according to the embodiment of the present invention will be described.
FIG. 9 is a flowchart for explaining the operation of the thickness measuring apparatus according to the embodiment of the present invention. Below, it demonstrates centering around operation | movement of the control part 7j.
In step (hereinafter referred to as S) 100 shown in FIG. 9, the control unit 7j shown in FIG. 1 reads the thickness measurement program. When a power switch (not shown) is turned on, power is supplied to the thickness measuring device 1, and the control unit 7j reads the thickness measurement program from the program storage unit 7i and causes the arithmetic processing unit 7 to start a series of processes.

S200において、検波位相が設定されているか否かを制御部7jが判断する。図8に示す測定対象物S1,…,SNの種類などが図示しない入力部から制御部7jに入力されると、この測定対象物S1,…,SNに対応する検波位相を検波位相情報記憶部7cから検波位相設定部7dが抽出して、この検波位相を検波位相情報として設定して制御部7jに出力する。検波位相設定部7dから検波位相情報が入力したと制御部7jが判断したときにはS300に進む。一方、検波位相設定部7dから検波位相情報が入力しなかったと制御部7jが判断したときには、例えば図示しない表示装置に検波位相を設定するように注意を喚起するための表示を、測定結果出力部7hを通じて制御部7jが指令し、検波位相設定部7dから検波位相情報が入力するまで制御部7jが判断を繰り返す。 In S200, the control unit 7j determines whether or not the detection phase is set. The measuring object S 1 shown in FIG. 8, ..., the kind of S N is input to the control unit 7j from the input unit, not shown, the measuring object S 1, ..., detects the detection phase corresponding to S N The detection phase setting unit 7d extracts from the phase information storage unit 7c, sets this detection phase as detection phase information, and outputs it to the control unit 7j. When the control unit 7j determines that the detection phase information is input from the detection phase setting unit 7d, the process proceeds to S300. On the other hand, when the control unit 7j determines that the detection phase information is not input from the detection phase setting unit 7d, for example, a display for calling attention to set the detection phase on a display device (not shown) is displayed on the measurement result output unit. The control unit 7j instructs through 7h, and the control unit 7j repeats the determination until detection phase information is input from the detection phase setting unit 7d.

S300において、基準信号の発生を基準信号発生部2に制御部7jが指令する。その結果、図3(A)に示すような基準信号を基準信号発生部2が渦電流検出部3に出力し、図2に示す励磁コイル3a,3bに基準信号が流れて測定対象物Sに渦電流が発生する。測定対象物Sに渦電流が発生すると誘導コイル3c,3dに起電力が発生し、渦電流検出部3から位相検波部6に渦電流信号が入力する。   In S300, the control unit 7j instructs the reference signal generation unit 2 to generate the reference signal. As a result, the reference signal as shown in FIG. 3A is output from the reference signal generator 2 to the eddy current detector 3, and the reference signal flows through the exciting coils 3a and 3b shown in FIG. Eddy current is generated. When an eddy current is generated in the measuring object S, an electromotive force is generated in the induction coils 3 c and 3 d, and an eddy current signal is input from the eddy current detection unit 3 to the phase detection unit 6.

S400において、移相用信号の発生を移相用信号発生部4に制御部7jが指令する。その結果、図3(B)に示すような移相用信号を移相用信号発生部4が移相部5に出力し、図3(C)に示すように検波位相設定部7dが設定した検波位相(例えば90°)ずらした移相用信号を移相部5が位相検波部6に出力する。その結果、移相部5が出力する移相用信号に基づいて、渦電流検出部3が出力する渦電流信号を位相検波部6が位相検波し、移相部5がゲートを開けているゲート開時間だけ、渦電流検出部3が出力する渦電流信号を位相検波部6が位相遅れ検出部7aに出力させる。   In S400, the control unit 7j instructs the phase shift signal generation unit 4 to generate the phase shift signal. As a result, the phase shift signal as shown in FIG. 3 (B) is output to the phase shifter 5 by the phase shift signal generator 4 and set by the detection phase setting unit 7d as shown in FIG. 3 (C). The phase shift unit 5 outputs the phase shift signal shifted in the detection phase (for example, 90 °) to the phase detection unit 6. As a result, the phase detector 6 detects the phase of the eddy current signal output from the eddy current detector 3 based on the phase shift signal output from the phase shifter 5, and the phase shifter 5 opens the gate. The phase detector 6 causes the phase lag detector 7a to output the eddy current signal output from the eddy current detector 3 only during the open time.

S500において、位相遅れφ0,…,φnの検出を位相遅れ検出部7aに制御部7jが指令する。例えば、図4に示すように、検波位相90°で渦電流信号を検波すると、図中実線で示す波形W0,…,W3で示すように厚さt0,…,t3に応じて位相遅れφ0,…,φ3が生じる。その結果、測定対象物Sの厚さt0,…,t3を測定するために、位相検波部6が出力する渦電流信号の位相遅れφ0,…,φ3を位相遅れ検出部7aが検出して、この位相遅れφ0,…,φ3を位相遅れ情報として制御部7jに出力し、この位相遅れ情報が位相遅れ情報記憶部7bに記録される。 In S500, the phase lag φ 0, ..., the control unit 7j to command the detection of phi n to the phase lag detection unit 7a. For instance, as shown in FIG. 4, when detecting the eddy current signal by the detection phase 90 °, the waveform W 0 shown by the solid line in the figure, ..., the thickness t 0 as shown by W 3, ..., depending on t 3 Phase delays φ 0 ,..., Φ 3 occur. As a result, the thickness t 0 of the measuring object S, ..., in order to measure the t 3, the phase delay phi 0 of eddy current signals phase detection unit 6 outputs, ..., a phi 3 is a phase lag detection section 7a Then, the phase delays φ 0 ,..., Φ 3 are output to the control unit 7j as phase delay information, and the phase delay information is recorded in the phase delay information storage unit 7b.

S600において、測定対象物S1,…,SNの厚さt0,…,tnの測定を厚さ測定部7fに制御部7jが指令する。図2に示す測定対象物S1,…,SNの種類などが図示しない入力部から制御部7jに入力されると、この測定対象物S1,…,SNに対応する相関関係情報を相関関係情報記憶部7eから制御部7jが読み出して厚さ測定部7fに出力する。また、位相遅れ情報記憶部7bから位相遅れ情報を制御部7jが読み出して厚さ測定部7fに出力する。その結果、位相遅れ情報と相関関係情報とを厚さ測定部7fが参照して測定対象物S1,…,SNの厚さt0,…,tnを測定し、この測定結果が厚さ測定情報として制御部7jに出力され、この厚さ測定情報が測定結果記憶部7gに記録される。 In S600, the measuring object S 1, ..., S N having a thickness of t 0, ..., the control unit 7j to command the thickness measurement unit 7f measurements t n. The measuring object S 1 shown in FIG. 2, ..., the kind of S N is input to the control unit 7j from the input unit, not shown, the measuring object S 1, ..., a correlation information corresponding to S N The control unit 7j reads out from the correlation information storage unit 7e and outputs it to the thickness measurement unit 7f. Further, the control unit 7j reads out the phase lag information from the phase lag information storage unit 7b and outputs it to the thickness measurement unit 7f. As a result, the measuring object S 1 with reference to the correlation information as the phase lag information thickness measuring unit 7f, ..., S N having a thickness of t 0, ..., measured t n, the measurement result is thick The thickness measurement information is output to the control unit 7j, and the thickness measurement information is recorded in the measurement result storage unit 7g.

この発明の実施形態に係る厚さ測定装置及び厚さ測定プログラムには、以下に記載するような効果がある。
(1) この実施形態では、測定対象物S1,…,SNに渦電流を発生させたときに、この渦電流の時間変化を表す渦電流信号の位相遅れφ0,…,φnを位相遅れ検出部7aが検出し、この位相遅れ検出部7aの検出結果に基づいて測定対象物S1,…,SNの厚さt0,…,tnを厚さ測定部7fが測定する。このため、簡単な構成の厚さ測定装置1によって測定対象物S1,…,SNの厚さt0,…,tnを容易に測定することができる。
The thickness measuring apparatus and the thickness measuring program according to the embodiment of the present invention have the following effects.
(1) In this embodiment, the measuring object S 1, ..., when caused the eddy current to S N, the phase delay phi 0 of eddy current signals indicating the time change of the eddy current, ..., a phi n The thickness measurement unit 7f detects the thicknesses t 0 ,..., T n of the measurement objects S 1 ,..., S N based on the detection result of the phase delay detection unit 7a. . Therefore, the thicknesses t 0 ,..., T n of the measuring objects S 1 ,..., S N can be easily measured by the thickness measuring device 1 having a simple configuration.

(2) この実施形態では、渦電流信号を所定の検波位相で検波したときのこの渦電流信号の位相遅れφ0,…,φnを位相遅れ検出部7aが検出する。このため、渦電流信号の信号レベルがゼロに近くなる領域で渦電流信号を検波して、測定対象物S1,…,SNの厚さt0,…,tnに対応して位相遅れ分みを出力させ、測定対象物S1,…,SNの厚さt0,…,tnを精度よく測定することができる。特に、渦電流信号を検波位相90°で検波したときには、図4に示すように渦電流信号の位相遅れφ0,…,φ3と測定対象物Sの厚さt0,…,t3との相関関係が明確になって、測定対象物Sの厚さt0,…,t3を精度よく測定することができる。 (2) In this embodiment, the phase delay detector 7a detects the phase delays φ 0 ,..., Φ n of the eddy current signal when the eddy current signal is detected at a predetermined detection phase. Therefore, by detecting the eddy current signal in the region where the signal level of the eddy current signal is close to zero, the measuring object S 1, ..., the thickness t 0 of the S N, ..., phase delay corresponding to t n to output a divided body, the measuring object S 1, ..., S n having a thickness of t 0, ..., a t n can be accurately measured. In particular, when the detection of the eddy current signal by the detection phase 90 °, the phase delay phi 0 of eddy current signals, as shown in FIG. 4, ..., phi 3 and the thickness t 0 of the measuring object S, ..., and t 3 , And the thicknesses t 0 ,..., T 3 of the measuring object S can be measured with high accuracy.

(3) この実施形態では、測定対象物S1,…,SN毎に対応する検波位相で渦電流信号を検波したときのこの渦電流信号の位相遅れφ0,…,φnを位相遅れ検出部7aが検出する。このため、例えば、測定対象物S1,…,SNに応じて検波位相を切り替えることによって、測定対象物S1,…,SNの材質などに応じて適切な検波位相で渦電流信号を検波し、測定対象物S1,…,SN毎に厚さt0,…,tnを精度よく測定することができる。 (3) In this embodiment, the measuring object S 1, ..., S phase delay of the eddy current signal when detecting the eddy current signal by the detection phase N corresponding to each phi 0, ..., phase delay to phi n The detection part 7a detects. Thus, for example, the measuring object S 1, ..., by switching the detection phase according to S N, the measuring object S 1, ..., an eddy current signal at the appropriate detection phase depending on the material of the S N detection, and the measuring object S 1, ..., S n thickness for each t 0, ..., a t n can be accurately measured.

(4) この実施形態では、渦電流信号の位相遅れφ0,…,φnと測定対象物S1,…,SNの厚さt0,…,tnとの相関関係と、位相遅れ検出部7aが検出した渦電流信号の位相遅れφ0,…,φnとに基づいて、測定対象物S1,…,SNの厚さt0,…,tnを厚さ測定部7fが測定する。このため、測定対象物S1,…,SNの厚さt0,…,tnを短時間に簡単に測定することができる。 (4) In this embodiment, the phase delay phi 0 of eddy current signals, ..., phi n the measuring object S 1, ..., the thickness t 0 of the S N, ..., and the correlation between the t n, phase delay phase delay phi 0 of eddy current signals detector 7a detects, ..., based on the phi n, the measuring object S 1, ..., S n having a thickness of t 0, ..., a t n thickness measuring unit 7f Measure. Accordingly, the measuring object S 1, ..., S N having a thickness of t 0, ..., can be easily measured in a short time t n.

この発明は、以上説明した実施形態に限定するものではなく、以下に記載するように種々の変形又は変更が可能であり、これらもこの発明の範囲内である。
例えば、この実施形態では、測定対象物Sとして山形鋼などの鋼材を例に挙げて説明したが、鉄道車両が走行するレールのレール頭部とレール底部とを繋ぐレール腹部などについてもこの発明を適用することができる。また、この実施形態では、渦電流信号を所定の検波位相で検波したときのこの渦電流信号の位相遅れφ0,…,φnに基づいて測定対象物S1,…,SNの厚さt0,…,tnを測定しているが、この渦電流信号の信号レベルと位相遅れφ0,…,φ3とに基づいて測定対象物Sの厚さt0,…,t3を測定することもできる。この場合には、渦電流信号の信号レベル又は位相遅れφ0,…,φ3の少なくとも一方を任意に選定する選択部を厚さ測定装置1が備えるように構成することができる。さらに、この実施形態では、基準信号発生部2と移相用信号発生部4とを厚さ測定装置1がそれぞれ別個に備えているが、基準信号発生部2が発生する基準信号を移相用信号発生部4に入力させて、この基準信号に基づいて移相用信号発生部4が移相用信号を発生するように構成することもできる。
The present invention is not limited to the embodiment described above, and various modifications or changes can be made as described below, and these are also within the scope of the present invention.
For example, in this embodiment, a steel material such as angle steel is described as an example of the measurement object S, but the present invention is also applied to a rail abdomen that connects a rail head portion and a rail bottom portion of a rail on which a railway vehicle travels. Can be applied. Further, in this embodiment, the thickness of the measurement objects S 1 ,..., S N based on the phase delays φ 0 ,..., Φ n of the eddy current signal when the eddy current signal is detected at a predetermined detection phase. t 0, ..., but measures the t n, the signal level and the phase delay phi 0 of the eddy current signal, ..., phi 3 and the thickness t 0 of the measuring object S on the basis of, ..., a t 3 It can also be measured. In this case, the signal level or the phase delay phi 0 of eddy current signals, ..., may be configured such that the thickness measuring device 1 a selection unit for arbitrarily selecting at least one of phi 3 is provided. Further, in this embodiment, the thickness measuring device 1 includes the reference signal generator 2 and the phase shift signal generator 4 separately. However, the reference signal generated by the reference signal generator 2 is used for phase shift. It can also be configured such that the signal generation unit 4 inputs the signal and the phase shift signal generation unit 4 generates the phase shift signal based on the reference signal.

この発明の実施形態に係る厚さ測定装置を概略的に示す構成図である。It is a lineblock diagram showing roughly the thickness measuring device concerning the embodiment of this invention. この発明の実施形態に係る厚さ測定装置の渦電流検出部を概略的に示す回路図である。It is a circuit diagram which shows roughly the eddy current detection part of the thickness measuring apparatus which concerns on embodiment of this invention. この発明の実施形態に係る厚さ測定装置の位相検波部の信号処理を模式的に示す波形図であり、(A)は基準信号発生部が出力する基準信号の波形を示し、(B)は移相用信号発生部が出力する移相用信号の波形を示し、(C)は移相部が出力する移相用信号の波形を示す。It is a waveform diagram which shows typically the signal processing of the phase detection part of the thickness measuring apparatus which concerns on embodiment of this invention, (A) shows the waveform of the reference signal which a reference signal generation part outputs, (B) is The waveform of the phase shift signal output from the phase shift signal generator is shown, and (C) shows the waveform of the phase shift signal output from the phase shift unit. この発明の実施形態に係る厚さ測定装置の位相遅れ検出部の出力する位相検波信号を模式的に示す波形図である。It is a wave form diagram showing typically the phase detection signal which the phase lag detection part of the thickness measuring device concerning this embodiment outputs. この発明の実施形態に係る厚さ測定装置において検波位相0°及び検波位相70°のときの鋼材厚さと出力電圧との関係を示すグラフである。It is a graph which shows the relationship between the steel material thickness and output voltage in the case of a detection phase 0 degree and a detection phase 70 degree in the thickness measuring apparatus which concerns on embodiment of this invention. この発明の実施形態に係る厚さ測定装置において検波位相90°付近のときの鋼材厚さと出力電圧との関係を示すグラフである。It is a graph which shows the relationship between the steel material thickness and output voltage when the detection phase is around 90 ° in the thickness measuring apparatus according to the embodiment of the present invention. この発明の実施形態に係る厚さ測定装置の渦電流検出部周辺における磁束密度の測定結果を示すグラフである。It is a graph which shows the measurement result of the magnetic flux density in the eddy current detection part periphery of the thickness measuring apparatus which concerns on embodiment of this invention. この発明の実施形態に係る厚さ測定装置の相関関係情報記憶部のデータ構造を模式的に示す図である。It is a figure which shows typically the data structure of the correlation information storage part of the thickness measuring apparatus which concerns on embodiment of this invention. この発明の実施形態に係る厚さ測定装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the thickness measuring apparatus which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 厚さ測定装置
2 基準信号発生部
3 渦電流検出部
3a,3b 励磁コイル
3c,3d 誘導コイル
3g,3h 出力端子
4 移相用信号発生部
5 移相部
6 位相検波部
7 演算処理部
7a 位相遅れ検出部
7b 位相遅れ情報記憶部
7c 検波位相情報記憶部
7d 検波位相設定部
7e 相関関係情報記憶部
7f 厚さ測定部
7g 測定結果記憶部
7h 測定結果出力部
7i プログラム記憶部
7j 制御部
S,S1,…,SN 測定対象物
0,…,tn 厚さ
φ0,…,φn 位相遅れ
0,…,W3 波形
DESCRIPTION OF SYMBOLS 1 Thickness measuring apparatus 2 Reference signal generation part 3 Eddy current detection part 3a, 3b Excitation coil 3c, 3d Induction coil 3g, 3h Output terminal 4 Phase shift signal generation part 5 Phase shift part 6 Phase detection part 7 Arithmetic processing part 7a Phase delay detection unit 7b Phase delay information storage unit 7c Detection phase information storage unit 7d Detection phase setting unit 7e Correlation information storage unit 7f Thickness measurement unit 7g Measurement result storage unit 7h Measurement result output unit 7i Program storage unit 7j Control unit S , S 1, ..., S n measurement object t 0, ..., t n thickness φ 0, ..., φ n phase lag W 0, ..., W 3 waveform

Claims (10)

測定対象物の厚さを測定する厚さ測定装置であって、
前記測定対象物に渦電流を発生させたときに、この渦電流の時間変化を表す渦電流信号の位相遅れを検出する位相遅れ検出部と、
前記位相遅れ検出部の検出結果に基づいて前記測定対象物の厚さを測定する厚さ測定部と、
を備える厚さ測定装置。
A thickness measuring device for measuring the thickness of a measurement object,
A phase lag detection unit for detecting a phase lag of an eddy current signal representing a time change of the eddy current when an eddy current is generated in the measurement object;
A thickness measurement unit that measures the thickness of the measurement object based on the detection result of the phase lag detection unit;
A thickness measuring device comprising:
請求項1に記載の厚さ測定装置において、
前記位相遅れ検出部は、前記渦電流信号を所定の検波位相で検波したときのこの渦電流信号の位相遅れを検出すること、
を特徴とする厚さ測定装置。
In the thickness measuring device according to claim 1,
The phase lag detector detects a phase lag of the eddy current signal when the eddy current signal is detected at a predetermined detection phase;
Thickness measuring device characterized by.
請求項2に記載の厚さ測定装置において、
前記位相遅れ検出部は、前記渦電流信号を90°近傍の検波位相で検波したときのこの渦電流信号の位相遅れを検出すること、
を特徴とする厚さ測定装置。
In the thickness measuring device according to claim 2,
The phase lag detector detects a phase lag of the eddy current signal when the eddy current signal is detected at a detection phase near 90 °;
Thickness measuring device characterized by.
請求項1から請求項3までのいずれか1項に記載の厚さ測定装置において、
前記位相遅れ検出部は、前記測定対象物毎に対応する検波位相で前記渦電流信号を検波したときのこの渦電流信号の位相遅れを検出すること、
を特徴とする厚さ測定装置。
In the thickness measuring device according to any one of claims 1 to 3,
The phase lag detection unit detects a phase lag of the eddy current signal when the eddy current signal is detected at a detection phase corresponding to each measurement object;
Thickness measuring device characterized by.
請求項1から請求項4までのいずれか1項に記載の厚さ測定装置において、
前記厚さ測定部は、前記渦電流信号の位相遅れと前記測定対象物の厚さとの相関関係と、前記位相遅れ検出部が検出した前記渦電流信号の位相遅れとに基づいて、前記測定対象物の厚さを測定すること、
を特徴とする厚さ測定装置。
In the thickness measuring device according to any one of claims 1 to 4,
The thickness measuring unit is based on the correlation between the phase lag of the eddy current signal and the thickness of the measurement object, and the phase lag of the eddy current signal detected by the phase lag detection unit. Measuring the thickness of objects,
Thickness measuring device characterized by.
測定対象物の厚さを測定するための厚さ測定プログラムであって、
前記測定対象物に渦電流を発生させたときに、この渦電流の時間変化を表す渦電流信号の位相遅れを検出する位相遅れ検出手順と、
前記位相遅れ検出手順における検出結果に基づいて前記測定対象物の厚さを測定する厚さ測定手順と、
をコンピュータに実行させる厚さ測定プログラム。
A thickness measurement program for measuring the thickness of a measurement object,
A phase lag detection procedure for detecting a phase lag of an eddy current signal representing a time change of the eddy current when an eddy current is generated in the measurement object;
A thickness measurement procedure for measuring the thickness of the measurement object based on a detection result in the phase lag detection procedure;
A thickness measurement program that causes a computer to execute.
請求項6に記載の厚さ測定プログラムにおいて、
前記位相遅れ検出手順は、前記渦電流信号を所定の検波位相で検波したときのこの渦電流信号の位相遅れを検出する手順を含むこと、
を特徴とする厚さ測定プログラム。
In the thickness measurement program according to claim 6,
The phase lag detection procedure includes a procedure of detecting a phase lag of the eddy current signal when the eddy current signal is detected at a predetermined detection phase;
Thickness measurement program characterized by
請求項7に記載の厚さ測定プログラムにおいて、
前記位相遅れ検出手順は、前記渦電流信号を90°近傍の検波位相で検波したときのこの渦電流信号の位相遅れを検出する手順を含むこと、
を特徴とする厚さ測定プログラム。
In the thickness measurement program according to claim 7,
The phase lag detection procedure includes a procedure of detecting a phase lag of the eddy current signal when the eddy current signal is detected at a detection phase near 90 °.
Thickness measurement program characterized by
請求項6から請求項8までのいずれか1項に記載の厚さ測定プログラムにおいて、
前記位相遅れ検出手順は、前記測定対象物毎に対応する検波位相で前記渦電流信号を検波したときのこの渦電流信号の位相遅れを検出する手順を含むこと、
を特徴とする厚さ測定プログラム。
In the thickness measurement program according to any one of claims 6 to 8,
The phase lag detection procedure includes a procedure of detecting a phase lag of the eddy current signal when the eddy current signal is detected at a detection phase corresponding to each measurement object.
Thickness measurement program characterized by
請求項6から請求項9までのいずれか1項に記載の厚さ測定プログラムにおいて、
前記厚さ測定手順は、前記渦電流信号の位相遅れと前記測定対象物の厚さとの相関関係と、前記位相遅れ検出手順において検出した前記渦電流信号の位相遅れとに基づいて、前記測定対象物の厚さを測定する手順を含むこと、
を特徴とする厚さ測定プログラム。
In the thickness measurement program according to any one of claims 6 to 9,
The thickness measurement procedure is based on the correlation between the phase lag of the eddy current signal and the thickness of the measurement object, and the phase lag of the eddy current signal detected in the phase lag detection procedure. Including a procedure for measuring the thickness of the object,
Thickness measurement program characterized by
JP2006295315A 2006-10-31 2006-10-31 Thickness measuring device and thickness measuring program Expired - Fee Related JP4802081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006295315A JP4802081B2 (en) 2006-10-31 2006-10-31 Thickness measuring device and thickness measuring program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006295315A JP4802081B2 (en) 2006-10-31 2006-10-31 Thickness measuring device and thickness measuring program

Publications (2)

Publication Number Publication Date
JP2008111738A true JP2008111738A (en) 2008-05-15
JP4802081B2 JP4802081B2 (en) 2011-10-26

Family

ID=39444322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006295315A Expired - Fee Related JP4802081B2 (en) 2006-10-31 2006-10-31 Thickness measuring device and thickness measuring program

Country Status (1)

Country Link
JP (1) JP4802081B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662943A (en) * 2017-05-26 2020-01-07 阿莱戈微系统有限责任公司 Target for coil-excited position sensor

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145305A (en) * 1980-03-18 1981-11-12 Sumitomo Metal Ind Ltd Detecting device for uneven thickness of covered wire material
JPS5776451A (en) * 1980-10-30 1982-05-13 Shimadzu Corp Measuring circuit for eddy current magnetic field
JPS5782749A (en) * 1980-11-12 1982-05-24 Toyota Central Res & Dev Lab Inc Detector for apparent density
JPS5817354A (en) * 1981-06-12 1983-02-01 Kobe Steel Ltd Inspection of pipe material by multifrequency eddy current flaw detection
JPS5975146A (en) * 1982-10-21 1984-04-27 Chugoku X Sen Kk Vortex flaw detector for metallic pipe
JPS60131404A (en) * 1983-12-20 1985-07-13 Mitsubishi Heavy Ind Ltd Measuring device for film thickness
JPS6196401A (en) * 1984-10-18 1986-05-15 Kobe Steel Ltd Method for measuring thickness of liner on the basis of two frequency
JPS61292230A (en) * 1985-06-19 1986-12-23 Victor Co Of Japan Ltd Actuator of optical head
JPH03189503A (en) * 1989-12-14 1991-08-19 General Electric Co <Ge> Apparatus and method for measuring thick- ness of coating
JPH05231810A (en) * 1992-02-25 1993-09-07 Dowa Mining Co Ltd Method and instrument for measuring thickness of conductor
JPH07218474A (en) * 1994-02-08 1995-08-18 Hitachi Ltd Underwater eddy current tester
JPH08152302A (en) * 1994-11-29 1996-06-11 Ono Sokki Co Ltd Thickness discriminator
JPH08233538A (en) * 1995-02-24 1996-09-13 Nittetsu Hokkaido Seigyo Syst Kk Dimension measuring apparatus
JPH1078336A (en) * 1996-07-30 1998-03-24 Kaman Instrumentation Corp Eddy current measurement system using multiple parameters with parameter compensation
JP2002141339A (en) * 2000-11-07 2002-05-17 Ulvac Japan Ltd Vacuum processor and vacuum processing method
JP2002181508A (en) * 2000-12-19 2002-06-26 Railway Technical Res Inst Method and apparatus for measuring abrasion of arthus streetcar line
JP2002340508A (en) * 2001-05-21 2002-11-27 Railway Technical Res Inst Method and apparatus for measuring wear in althus electric track
JP3384803B2 (en) * 1991-09-28 2003-03-10 アンリツ株式会社 Coin discriminator
JP2003106805A (en) * 2001-07-23 2003-04-09 Ebara Corp Eddy current sensor
US20050024047A1 (en) * 2003-07-31 2005-02-03 Applied Materials, Inc. Eddy current system for in-situ profile measurement
JP2005201778A (en) * 2004-01-16 2005-07-28 Japan Techno Mate Corp Eddy current flaw detector and noise filtering method thereof
JP2006058154A (en) * 2004-08-20 2006-03-02 Railway Technical Res Inst Thickness measuring method and system for metal body
JP2006208312A (en) * 2005-01-31 2006-08-10 Jfe Steel Kk Method and device for measuring internal defect

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145305A (en) * 1980-03-18 1981-11-12 Sumitomo Metal Ind Ltd Detecting device for uneven thickness of covered wire material
JPS5776451A (en) * 1980-10-30 1982-05-13 Shimadzu Corp Measuring circuit for eddy current magnetic field
JPS5782749A (en) * 1980-11-12 1982-05-24 Toyota Central Res & Dev Lab Inc Detector for apparent density
JPS5817354A (en) * 1981-06-12 1983-02-01 Kobe Steel Ltd Inspection of pipe material by multifrequency eddy current flaw detection
JPS5975146A (en) * 1982-10-21 1984-04-27 Chugoku X Sen Kk Vortex flaw detector for metallic pipe
JPS60131404A (en) * 1983-12-20 1985-07-13 Mitsubishi Heavy Ind Ltd Measuring device for film thickness
JPS6196401A (en) * 1984-10-18 1986-05-15 Kobe Steel Ltd Method for measuring thickness of liner on the basis of two frequency
JPS61292230A (en) * 1985-06-19 1986-12-23 Victor Co Of Japan Ltd Actuator of optical head
JPH03189503A (en) * 1989-12-14 1991-08-19 General Electric Co <Ge> Apparatus and method for measuring thick- ness of coating
JP3384803B2 (en) * 1991-09-28 2003-03-10 アンリツ株式会社 Coin discriminator
JPH05231810A (en) * 1992-02-25 1993-09-07 Dowa Mining Co Ltd Method and instrument for measuring thickness of conductor
JPH07218474A (en) * 1994-02-08 1995-08-18 Hitachi Ltd Underwater eddy current tester
JPH08152302A (en) * 1994-11-29 1996-06-11 Ono Sokki Co Ltd Thickness discriminator
JPH08233538A (en) * 1995-02-24 1996-09-13 Nittetsu Hokkaido Seigyo Syst Kk Dimension measuring apparatus
JPH1078336A (en) * 1996-07-30 1998-03-24 Kaman Instrumentation Corp Eddy current measurement system using multiple parameters with parameter compensation
JP2002141339A (en) * 2000-11-07 2002-05-17 Ulvac Japan Ltd Vacuum processor and vacuum processing method
JP2002181508A (en) * 2000-12-19 2002-06-26 Railway Technical Res Inst Method and apparatus for measuring abrasion of arthus streetcar line
JP2002340508A (en) * 2001-05-21 2002-11-27 Railway Technical Res Inst Method and apparatus for measuring wear in althus electric track
JP2003106805A (en) * 2001-07-23 2003-04-09 Ebara Corp Eddy current sensor
JP2004301857A (en) * 2001-07-23 2004-10-28 Ebara Corp Method for detecting film thickness of conductive film
US20050024047A1 (en) * 2003-07-31 2005-02-03 Applied Materials, Inc. Eddy current system for in-situ profile measurement
JP2007501509A (en) * 2003-07-31 2007-01-25 アプライド マテリアルズ インコーポレイテッド Eddy current system for in-situ profile measurement
JP2005201778A (en) * 2004-01-16 2005-07-28 Japan Techno Mate Corp Eddy current flaw detector and noise filtering method thereof
JP2006058154A (en) * 2004-08-20 2006-03-02 Railway Technical Res Inst Thickness measuring method and system for metal body
JP2006208312A (en) * 2005-01-31 2006-08-10 Jfe Steel Kk Method and device for measuring internal defect

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662943A (en) * 2017-05-26 2020-01-07 阿莱戈微系统有限责任公司 Target for coil-excited position sensor
US11320496B2 (en) 2017-05-26 2022-05-03 Allegro Microsystems, Llc Targets for coil actuated position sensors

Also Published As

Publication number Publication date
JP4802081B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
KR100218653B1 (en) Electronic induced type test apparatus
JP2013195202A (en) Eddy current inspection device, eddy current inspection probe, and eddy current inspection method
CN105190250B (en) Linear encoder device and reference position detection method
JP5149562B2 (en) Nondestructive measuring method and nondestructive measuring device
JP2009053056A (en) Magnetic moving body speed detector
US9146279B2 (en) Method for detection of interlaminar sheet short circuits in the stator sheet core of electromachines
JP4747974B2 (en) Object detection apparatus and object detection method
JP4802081B2 (en) Thickness measuring device and thickness measuring program
Buchenau et al. Measurement technique developments for LBE flows
JP5861829B2 (en) Eddy current flaw detection method and apparatus
JP2009186433A (en) Eddy-current type sample measuring method, eddy-current sensor and eddy-current type sample measurement system
JP2013505453A (en) Power optimized fluxgate sensor control
JP2010096703A (en) Measuring device with use of electromagnetic ultrasonic wave method, and measuring method
JP4681770B2 (en) Eddy current testing equipment
JP2007298292A (en) Method of measuring eddy-current type nonmagnetic metal film thickness, and apparatus for measuring eddy-current type nonmagnetic metal film thickness for performing the method
JP5865059B2 (en) Waveform measuring instrument
JP2001041703A (en) Range finder and thickness meter
JP2009168556A (en) Quenching inspection apparatus and quenching inspection method
JP2007152424A (en) Method and device for detecting in-mold molten steel level in continuous casting apparatus
JP3920896B2 (en) Linear position detector
JP2008003041A (en) Position detecting method and imaging device
JPH0599901A (en) Eddy-current flaw detecting apparatus
JP2012184931A (en) Method of measuring fraction of structure in steel plate
JP7455056B2 (en) Eddy current flaw detection system and eddy current flaw detection method
JP2006058154A (en) Thickness measuring method and system for metal body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees