JP2007298292A - Method of measuring eddy-current type nonmagnetic metal film thickness, and apparatus for measuring eddy-current type nonmagnetic metal film thickness for performing the method - Google Patents

Method of measuring eddy-current type nonmagnetic metal film thickness, and apparatus for measuring eddy-current type nonmagnetic metal film thickness for performing the method Download PDF

Info

Publication number
JP2007298292A
JP2007298292A JP2006124132A JP2006124132A JP2007298292A JP 2007298292 A JP2007298292 A JP 2007298292A JP 2006124132 A JP2006124132 A JP 2006124132A JP 2006124132 A JP2006124132 A JP 2006124132A JP 2007298292 A JP2007298292 A JP 2007298292A
Authority
JP
Japan
Prior art keywords
film thickness
eddy current
phase angle
frequency
magnetic metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006124132A
Other languages
Japanese (ja)
Inventor
Yutaka Suzuki
豊 鈴木
Masahiro Koike
正浩 小池
Yasushi Shimazaki
裕史 島崎
Akira Nishimizu
亮 西水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006124132A priority Critical patent/JP2007298292A/en
Publication of JP2007298292A publication Critical patent/JP2007298292A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring an eddy-current type nonmagnetic metal film thickness which can improve the accuracy of measuring a plate thickness in the case of lift-off, and to provide an apparatus for measuring the same for performing the method. <P>SOLUTION: The method includes a step of installing an eddy-current measuring sensor 4 on a calibration test piece having the same specifications as those of nonmagnetic metal and selecting the frequency of an exciting current to be supplied to the eddy-current measuring sensor 4 to be a value suitable for each calibration test piece, a step of adjusting the phase angle of the exciting current on the basis of the selected frequency and selecting a phase angle providing smaller rate of fluctuation in the imaginary part output from the eddy-current measuring sensor 4 installed on the calibration test piece, and a step of measuring the film thickness of the nonmagnetic metal on the basis of the frequency and phase angle determined by these steps. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は渦電流式非磁性金属膜厚測定方法及びそれを実施するための渦電流式非磁性金属膜厚測定装置に係り、特に、磁性金属上の非磁性金属の膜厚の測定に好適な渦電流式非磁性金属膜厚測定方法及びそれを実施するための渦電流式非磁性金属膜厚測定装置に関する。   The present invention relates to an eddy current type nonmagnetic metal film thickness measuring method and an eddy current type nonmagnetic metal film thickness measuring apparatus for carrying out the method, and particularly suitable for measuring the film thickness of a nonmagnetic metal on a magnetic metal. The present invention relates to an eddy current type nonmagnetic metal film thickness measuring method and an eddy current type nonmagnetic metal film thickness measuring apparatus for carrying out the method.

例えば、ガスタービンのタービン動翼(磁性金属)は、運転中に進展する動翼表面の金属腐食を軽減するために、動翼表面に高硬度のステライト板(非磁性金属)を被覆して使用している。そしてステライト板が0.3mm以下の厚さになった時点で新しいステライト板を被覆し直すようにしている。   For example, a turbine blade (magnetic metal) of a gas turbine is used by coating the surface of the blade with a high-hardness stellite plate (non-magnetic metal) in order to reduce metal corrosion on the blade surface that develops during operation. is doing. Then, when the stellite plate becomes 0.3 mm or less in thickness, a new stellite plate is covered again.

そこで、このステライト板の厚さを計測するために、金属板上に設置した励磁コイルを励磁し、この金属板に生じる渦電流による誘導磁場の変化を検出コイルで検出して板厚を測定する、例えば特許文献1に記載のような金属膜厚測定装置を用いている。   Therefore, in order to measure the thickness of the stellite plate, an excitation coil installed on the metal plate is excited, and a change in the induced magnetic field due to the eddy current generated in the metal plate is detected by the detection coil to measure the plate thickness. For example, a metal film thickness measuring apparatus as described in Patent Document 1 is used.

しかしながら、このような測定装置においては、励磁コイル及び検出コイルの金属板上からの浮き上がり(以下、リフトオフ)があると、測定値が変化するので板厚の測定に誤差が生じる問題がある。これら測定誤差を低減するために、位相角を調整して検出コイルによって検出されたX出力(検出コイルの抵抗の実数分)とY出力(検出コイルの抵抗の虚数分)のうち、Y出力の変動率が最も少なくなるような位相角を選定し、この変動率が少ないY出力を厚さの測定信号として用いることが、例えば特許文献2に示すように、既に提案されている。   However, in such a measuring apparatus, if the excitation coil and the detection coil are lifted from the metal plate (hereinafter referred to as lift-off), the measurement value changes, so that there is a problem that an error occurs in the measurement of the plate thickness. In order to reduce these measurement errors, out of the X output (for the real number of the resistance of the detection coil) and the Y output (for the imaginary number of the resistance of the detection coil) detected by the detection coil by adjusting the phase angle, the Y output As shown in Patent Document 2, for example, it has already been proposed to select a phase angle that minimizes the variation rate and use a Y output with a small variation rate as a thickness measurement signal.

特開2003−270214号公報JP 2003-270214 A 特開2003−232776号公報Japanese Patent Laid-Open No. 2003-232776

上記従来の技術によれば、リフトオフ時の検出誤差をある程度低減することはできるが、十分とは云えず、リフトオフ時の板厚のさらなる測定精度の向上が望まれている。   According to the above-described conventional technique, the detection error at the time of lift-off can be reduced to some extent, but it is not sufficient, and further improvement in the measurement accuracy of the plate thickness at the time of lift-off is desired.

本発明の目的は、リフトオフ時の板厚の測定精度をさらに向上することができる渦電流式非磁性金属膜厚測定方法及びそれを実施するための渦電流式非磁性金属膜厚測定装置を提供することにある。   An object of the present invention is to provide an eddy current type nonmagnetic metal film thickness measuring method and an eddy current type nonmagnetic metal film thickness measuring apparatus capable of further improving the plate thickness measurement accuracy at lift-off. There is to do.

本発明は上記目的を達成するために、励磁コイルを励磁し磁性金属上の非磁性金属に生じる渦電流による誘導磁場を検出コイルにより検出して前記非磁性金属の膜厚を測定する渦電流式膜厚測定手段を用いた渦電流式非磁性金属膜厚測定方法において、前記励磁コイルと検出コイルを前記非磁性金属と同じ仕様の較正試験体上に設置して前記励磁コイルへ供給する励磁電流の周波数を各較正試験体に適する値に選定する工程と、選定された周波数に基づいて前記励磁電流の位相角を調整して前記較正試験体上に設置された前記検出コイルから出力される虚数部分(Y出力)の変動率が小さくなる位相角を選定する工程と、これら工程によって決められた周波数と位相角に基づいて前記渦電流式膜厚測定手段により前記非磁性金属の膜厚を測定する工程とを備えたことを特徴とするものである。   In order to achieve the above object, the present invention provides an eddy current type in which an excitation coil is excited and an induced magnetic field caused by an eddy current generated in a nonmagnetic metal on a magnetic metal is detected by a detection coil to measure the film thickness of the nonmagnetic metal. In the eddy current type nonmagnetic metal film thickness measuring method using film thickness measuring means, the excitation coil and the detection coil are installed on a calibration specimen having the same specifications as the nonmagnetic metal and supplied to the excitation coil. The imaginary number output from the detection coil installed on the calibration specimen by adjusting the phase angle of the excitation current based on the selected frequency and adjusting the phase angle of the excitation current based on the selected frequency The step of selecting the phase angle at which the variation rate of the portion (Y output) becomes small, and the film thickness of the nonmagnetic metal is measured by the eddy current film thickness measuring means based on the frequency and phase angle determined by these steps. It is characterized in that a that step.

即ち、位相角を制御してY出力の変動率を低減させていたが、このように位相角を制御しても、励磁コイルへ供給する励磁電流の周波数が測定対象物である非磁性金属材料に合っていなければ、Y出力の変動率を必ずしも低減させることができないことが実験により確認された。そこで、励磁コイルへ供給する励磁電流の周波数を非磁性金属と同じ仕様の較正試験体に適する値に選定すると共に、選定された周波数に基づいて前記励磁電流の位相角を調整して前記較正試験体上に設置された検出コイルから出力されるY出力の変動率が小さくなる位相角を選定した上で、前記非磁性金属の膜厚を測定するようにすることで、Y出力の変動率をさらに低減することで測定精度の向上を実現したのである。   That is, the phase angle is controlled to reduce the fluctuation rate of the Y output. Even if the phase angle is controlled in this way, the frequency of the excitation current supplied to the excitation coil is the non-magnetic metal material that is the measurement object. If it does not match, it has been confirmed by experiments that the fluctuation rate of the Y output cannot always be reduced. Therefore, the frequency of the excitation current supplied to the excitation coil is selected to a value suitable for a calibration test body having the same specifications as the non-magnetic metal, and the calibration test is performed by adjusting the phase angle of the excitation current based on the selected frequency. By selecting the phase angle at which the fluctuation rate of the Y output outputted from the detection coil installed on the body is small, the film thickness of the nonmagnetic metal is measured, so that the fluctuation rate of the Y output is reduced. By further reducing, the measurement accuracy was improved.

以上説明したように本発明によれば、リフトオフ時の板厚の測定精度をさらに向上することができる渦電流式非磁性金属膜厚測定方法及びそれを実施するための渦電流式非磁性金属膜厚測定装置を得ることができる。   As described above, according to the present invention, the eddy current type nonmagnetic metal film thickness measuring method capable of further improving the plate thickness measurement accuracy at the lift-off and the eddy current type nonmagnetic metal film for implementing the method. A thickness measuring device can be obtained.

以下本発明による渦電流式非磁性金属膜厚測定方法の第1の実施の形態を図1〜図4に示す渦電流式非磁性金属膜厚測定装置に基づいて説明する。   A first embodiment of an eddy current type nonmagnetic metal film thickness measuring method according to the present invention will be described below based on an eddy current type nonmagnetic metal film thickness measuring apparatus shown in FIGS.

渦電流式非磁性金属膜厚測定装置1は、大きく分けて、パーソナルコンピュータ(以下、パソコンと称する)2と、このパソコン2と信号線S1によって信号の授受を行う渦電流式膜厚測定手段3と、この渦電流式膜厚測定手段3と信号線S2によって信号の授受を行う渦電流測定センサ4と、この渦電流測定センサ4を駆動するアクチュエータ5と、このアクチュエータ5に信号線S3を介して駆動信号を授受するアクチュエータドライバ6と、このアクチュエータドライバ6と前記パソコン2と間に信号の授受を行う信号線S4とによって構成されている。   The eddy current type nonmagnetic metal film thickness measuring apparatus 1 is roughly divided into a personal computer (hereinafter referred to as a personal computer) 2 and an eddy current type film thickness measuring means 3 for transmitting and receiving signals by the personal computer 2 and a signal line S1. An eddy current measurement sensor 4 that transmits and receives signals by the eddy current film thickness measuring means 3 and the signal line S2, an actuator 5 that drives the eddy current measurement sensor 4, and a signal line S3 connected to the actuator 5 via the signal line S3. The actuator driver 6 transmits and receives drive signals, and the signal line S4 transmits and receives signals between the actuator driver 6 and the personal computer 2.

前記渦電流測定センサ4は、フェライトからなるコア7と、このコア7に巻回され信号線S2を引き出したコイル8と、このコイル8の外周を覆う銅,銀,アルミニュウム,パーマロイのうち1つ以上の材料から構成されたシールド材9とで形成され、全体を非導電性の接着剤で固定している。尚、コイル8は励磁コイルと検出コイルとを兼用したものであるが、励磁コイルと検出コイルを別個に備えたものでもよい。   The eddy current measuring sensor 4 includes a core 7 made of ferrite, a coil 8 wound around the core 7 to draw out a signal line S2, and one of copper, silver, aluminum, and permalloy covering the outer periphery of the coil 8. The shield material 9 is made of the above material, and the whole is fixed with a non-conductive adhesive. The coil 8 serves as both an excitation coil and a detection coil. However, the coil 8 may include an excitation coil and a detection coil separately.

前記アクチュエータ5は、基台10Aと、この基台10Aによって駆動される第1移動台10Bと、この第1移動台10Bによって駆動される第2移動台10Cとより構成されている。前記基台10Aは、モータ11Aを備えており、このモータ11Aによって駆動されるねじ棒12Aと、このねじ棒12Aに移動可能にねじ込まれた移動駒13Aとを有している。前記第1移動台10Bは前記移動駒13Aに連結されており、基台10Aのねじ棒12Aと直行する方向に延在するねじ棒12Bと、このねじ棒12Bを駆動するモータ11Bと、前記ねじ棒12Bに移動可能にねじ込まれた移動駒13Bとを有している。さらに、前記第2移動台10Cは前記移動駒13Bに連結されており、基台10Aのねじ棒12A及び第2移動台10Bのねじ棒12Bと夫々直行する方向に延在するねじ棒12Cと、このねじ棒12Cを駆動するモータ11Cと、前記ねじ棒12Cに移動可能にねじ込まれた移動駒13Cとを有している。そして第2移動台10Cの移動駒13Cに前記渦電流測定センサ4が固定されており、この渦電流測定センサ4は前記モータ11A〜11Cを駆動することで、基台10Aを基準としてX,Y,Z方向に移動することができるのである。   The actuator 5 includes a base 10A, a first moving base 10B driven by the base 10A, and a second moving base 10C driven by the first moving base 10B. The base 10A includes a motor 11A, and includes a screw rod 12A driven by the motor 11A and a moving piece 13A screwed into the screw rod 12A so as to be movable. The first moving base 10B is connected to the moving piece 13A, a screw bar 12B extending in a direction perpendicular to the screw rod 12A of the base 10A, a motor 11B for driving the screw rod 12B, and the screw And a moving piece 13B screwed to the rod 12B so as to be movable. Furthermore, the second moving table 10C is connected to the moving piece 13B, and the screw rod 12C extending in the direction orthogonal to the screw rod 12A of the base 10A and the screw rod 12B of the second moving table 10B, A motor 11C that drives the screw rod 12C and a moving piece 13C that is movably screwed into the screw rod 12C are provided. The eddy current measuring sensor 4 is fixed to the moving piece 13C of the second moving table 10C, and this eddy current measuring sensor 4 drives the motors 11A to 11C, so that X, Y with reference to the base 10A. , Z direction.

また、前記パソコン2は、演算部21と、HDD22と、RAM23と、ROM24と、I/Oポート25と、キーボード26と、記録メディア27と、モニタ28を備えている。   The personal computer 2 includes a calculation unit 21, an HDD 22, a RAM 23, a ROM 24, an I / O port 25, a keyboard 26, a recording medium 27, and a monitor 28.

前記渦電流式膜厚測定手段3は、演算部31と、ハードディスク(HDD)32と、ランダムアクセスメモリ(RAM)33と、リードオンメモリ(ROM)34と、I/Oポート35と、D/Aコンバータ36と、A/Dコンバータ37とを有している。   The eddy current film thickness measuring means 3 includes a calculation unit 31, a hard disk (HDD) 32, a random access memory (RAM) 33, a read-on memory (ROM) 34, an I / O port 35, a D / O An A converter 36 and an A / D converter 37 are provided.

前記アクチュエータドライバ6は、前記渦電流式膜厚測定手段3と同様に、演算部61と、HDD62と、RAM63と、ROM64と、I/Oポート65と、D/Aコンバータ66と、A/Dコンバータ67とを有している。   Similar to the eddy current film thickness measuring means 3, the actuator driver 6 includes a calculation unit 61, HDD 62, RAM 63, ROM 64, I / O port 65, D / A converter 66, A / D Converter 67.

そして、信号線S1は、パソコン2のI/Oポート25と渦電流式膜厚測定手段3のI/Oポート35とを接続し、信号線S2は、渦電流測定センサ4と渦電流式膜厚測定手段3のD/Aコンバータ36及びA/Dコンバータ37とを接続し、信号線S3は、アクチュエータ5のモータ11A〜11Cとアクチュエータドライバ6のD/Aコンバータ66及びA/Dコンバータ67とを接続している。   The signal line S1 connects the I / O port 25 of the personal computer 2 and the I / O port 35 of the eddy current film thickness measuring means 3, and the signal line S2 is connected to the eddy current measurement sensor 4 and the eddy current film. The D / A converter 36 and the A / D converter 37 of the thickness measuring means 3 are connected, and the signal line S3 is connected to the motors 11A to 11C of the actuator 5 and the D / A converter 66 and the A / D converter 67 of the actuator driver 6. Is connected.

上記構成において、パソコン2と渦電流式膜厚測定手段3と渦電流測定センサ4とアクチュエータ5とアクチュエータドライバ6とが渦電流式非磁性金属膜厚測定装置1を構成し、パソコン2の操作によって、これらが周波数選定手段となり位相角選定手段となり膜厚測定手段となるのである。   In the above configuration, the personal computer 2, the eddy current type film thickness measuring means 3, the eddy current measurement sensor 4, the actuator 5, and the actuator driver 6 constitute the eddy current type non-magnetic metal film thickness measuring device 1. These are the frequency selecting means and the phase angle selecting means and the film thickness measuring means.

次に、上記構成の渦電流式非磁性金属膜厚測定装置1を用いて磁性金属上の非磁性金属の膜厚を測定する手順を説明する。
〔ステップ1〕
渦電流測定センサ4を較正試験体上に乗置する。
〔ステップ2〕
パソコン2のキーボード26及び記録メディア27等、1つ以上のデータ入力手段を用いて磁性金属上の非磁性金属である測定対象物と同じ導電率や透磁率及び較正試験体の厚さ、渦電流測定センサ4と較正試験体との相対位置をI/Oポート25に入力する。入力されたデータは演算部21に伝達され、演算部21でHDD22,RAM23,ROM24のいずれかに収納した図5に示され式1で近似される較正試験体の厚さ測定誤差が小さくなる周波数の非磁性金属厚さ依存性の評価結果を用いて、初期周波数f(Hz)を演算する。
f=t÷(2πσμ) …式1
ここで、tは較正試験体(非磁性金属)の厚さ(m)、σは導電率(Ω/m)、μは透磁率(H/m)を表す。
〔ステップ3〕
ステップ2で演算された初期周波数f(Hz)は、I/Oポート25及び渦電流式膜厚測定手段3のI/Oポート35を経由して渦電流式膜厚測定手段3の演算部31に伝達される。演算部31からは、周波数f(Hz)で位相角0度でI/Oポート35及びD/Aコンバータ36を介して渦電流測定センサ4に交流電圧を印加する。そして渦電流測定センサ4で検出されたX出力とY出力は、渦電流式膜厚測定手段3のA/Dコンバータ37及びI/Oポート35,演算部31を介してHDD32,RAM33,ROM34等のいずれか1つ以上のデータ入力手段に記録される。同時に、渦電流測定センサ4の測定値をI/Oポート35を介してパソコン2の演算部21に伝達する。
Next, a procedure for measuring the film thickness of the nonmagnetic metal on the magnetic metal using the eddy current type nonmagnetic metal film thickness measuring apparatus 1 having the above configuration will be described.
[Step 1]
The eddy current measurement sensor 4 is placed on the calibration specimen.
[Step 2]
The same conductivity and permeability as the measurement object that is a non-magnetic metal on the magnetic metal using one or more data input means such as the keyboard 26 of the personal computer 2 and the recording medium 27, the thickness of the calibration specimen, and the eddy current The relative position between the measurement sensor 4 and the calibration specimen is input to the I / O port 25. The input data is transmitted to the calculation unit 21, and the frequency at which the thickness measurement error of the calibration specimen approximated by Equation 1 shown in FIG. 5 and stored in any of the HDD 22, RAM 23, and ROM 24 is reduced by the calculation unit 21. The initial frequency f (Hz) is calculated using the evaluation result of the nonmagnetic metal thickness dependency.
f = t 2 ÷ (2πσμ) Equation 1
Here, t represents the thickness (m) of the calibration specimen (nonmagnetic metal), σ represents the conductivity (Ω / m), and μ represents the permeability (H / m).
[Step 3]
The initial frequency f (Hz) calculated in step 2 is calculated through the I / O port 25 and the I / O port 35 of the eddy current film thickness measuring means 3 and the calculation unit 31 of the eddy current film thickness measuring means 3. Is transmitted to. The arithmetic unit 31 applies an AC voltage to the eddy current measurement sensor 4 via the I / O port 35 and the D / A converter 36 at a frequency f (Hz) and a phase angle of 0 degree. The X output and Y output detected by the eddy current measuring sensor 4 are sent to the HDD 32, RAM 33, ROM 34, etc. via the A / D converter 37 and I / O port 35 of the eddy current film thickness measuring means 3, and the arithmetic unit 31. Are recorded in one or more data input means. At the same time, the measurement value of the eddy current measurement sensor 4 is transmitted to the computing unit 21 of the personal computer 2 via the I / O port 35.

パソコン2では、渦電流測定センサ4の測定値を記録すると共に、I/Oポート25を介してアクチュエータドライバ6に、渦電流測定センサ4のリフトオフ量を変更するように指示する。   The personal computer 2 records the measurement value of the eddy current measurement sensor 4 and instructs the actuator driver 6 to change the lift-off amount of the eddy current measurement sensor 4 via the I / O port 25.

アクチュエータドライバ6は、I/Oポート65を介して演算部61にリフトオフ量を伝達し、演算部61は、HDD62,RAM63,ROM64等のいずれか1つ以上のデータ入力手段に記録されている第1及び第2移動台10B,10Cの移動量と、供給電圧値及び供給電流値、印加電圧時間の関係から各モータ11A〜11Cへの電力供給条件を決定する。この電力供給条件に基づいてI/Oポート65及びD/Aコンバータ66を介して各モータ11A〜11Cへの電力を供給する。   The actuator driver 6 transmits the lift-off amount to the calculation unit 61 via the I / O port 65, and the calculation unit 61 is recorded in any one or more data input means such as the HDD 62, RAM 63, ROM 64 and the like. The power supply condition to each of the motors 11A to 11C is determined from the relationship between the movement amount of the first and second moving bases 10B and 10C, the supply voltage value, the supply current value, and the applied voltage time. Based on the power supply conditions, power is supplied to the motors 11A to 11C via the I / O port 65 and the D / A converter 66.

電力供給中に、印加された電圧値と印加時間及び電流値はA/Dコンバータ67及びI/Oポート65を介して演算部61に伝達され、演算部61で実際の移動量を演算して前記各モータ11A〜11Cの回転数を調整し、目標のリフトオフ量まで渦電流測定センサ4を移動させる。   During power supply, the applied voltage value, application time, and current value are transmitted to the calculation unit 61 via the A / D converter 67 and the I / O port 65, and the calculation unit 61 calculates the actual movement amount. The rotational speed of each of the motors 11A to 11C is adjusted, and the eddy current measurement sensor 4 is moved to the target lift-off amount.

渦電流測定センサ4の移動が完了したことをI/Oポート65を介してパソコン2の演算部21に伝え、HDD22,RAM23,ROM24等のいずれか1つ以上のデータ入力手段に記録すると共に、モニタ28に表示する。
〔ステップ4〕
周波数を2f(Hz)で位相角を0度及び周波数をf/2(Hz)で位相角を0度として、夫々ステップ3と同じようなフローでリフトオフさせたときのX−Y出力曲線を評価する。
〔ステップ5〕
パソコン2の演算部21で、HDD22,RAM23,ROM24等のいずれか1つ以上のデータ入力手段に記録された式2と式3を解析するプログラムを用いて、各周波数f/2(Hz),f(Hz),2f(Hz)での位相角変更時のY出力の偏差を計算する。
dy(θ)=dx0|sinθ|+dy0|cosθ| …式2
偏差=〔(位相角θ度でのY出力)−(位相角0度でのY出力)〕÷〔(位相角0度でのY出力)×100(%)〕 …式3
ここで、θは位相角、dx0は位相角0度でのX出力の偏差、dy0は位相角0度でのY出力の偏差、dy(θ)は位相角θ度でのY出力の偏差を表す。
〔ステップ6〕
パソコン2の演算部21で、ステップ5で求めた図6に示す偏差の位相角依存性から、各周波数f/2(Hz),f(Hz),2f(Hz)での偏差の最小値における位相角を求める。因みに、図6において、実線は周波数f(Hz)を、1点鎖線は周波数f/2(Hz)を、破線は周波数2f(Hz)を示す。
〔ステップ7〕
ステップ6で求めた図7に示す最小の偏差の周波数依存性が極小点を持つ場合には、パソコン2の演算部21でその周波数、例えば280k(Hz)を測定周波数と決定する。
The completion of the movement of the eddy current measuring sensor 4 is transmitted to the computing unit 21 of the personal computer 2 via the I / O port 65 and recorded in any one or more data input means such as the HDD 22, RAM 23, ROM 24, etc. It is displayed on the monitor 28.
[Step 4]
Evaluate the XY output curves when the frequency is 2f (Hz) and the phase angle is 0 degrees, the frequency is f / 2 (Hz) and the phase angle is 0 degrees, and lifted off in the same flow as step 3. To do.
[Step 5]
Each frequency f / 2 (Hz), using a program for analyzing Formula 2 and Formula 3 recorded in any one or more data input means such as HDD 22, RAM 23, ROM 24, etc. in the computing unit 21 of the personal computer 2 The deviation of the Y output when the phase angle is changed at f (Hz) and 2 f (Hz) is calculated.
dy (θ) = dx0 | sin θ | + dy0 | cos θ |
Deviation = [(Y output at phase angle θ degree) − (Y output at phase angle 0 degree)] ÷ [(Y output at phase angle 0 degree) × 100 (%)]
Here, θ is the phase angle, dx0 is the deviation of the X output at the phase angle of 0 °, dy0 is the deviation of the Y output at the phase angle of 0 °, and dy (θ) is the deviation of the Y output at the phase angle of θ °. To express.
[Step 6]
Based on the phase angle dependency of the deviation shown in FIG. 6 obtained in step 5 by the computing unit 21 of the personal computer 2, the minimum deviation of each frequency f / 2 (Hz), f (Hz), 2f (Hz) is obtained. Find the phase angle. In FIG. 6, the solid line indicates the frequency f (Hz), the one-dot chain line indicates the frequency f / 2 (Hz), and the broken line indicates the frequency 2f (Hz).
[Step 7]
When the frequency dependence of the minimum deviation shown in FIG. 7 obtained in step 6 has a minimum point, the calculation unit 21 of the personal computer 2 determines the frequency, for example, 280 k (Hz) as the measurement frequency.

しかし、極小点を持たず、最小の偏差を与える周波数が2f(Hz)の場合には、較正試験体の推定厚さを0.7倍してステップ2〜6の手順を繰り返す。ここで、推定厚さを0,7倍とすると、周波数の変更範囲が2f〜4f(Hz)となるために、連続した周波数範囲で極小点を評価できることになる。他方、極小点を持たず、最小の偏差を与える周波数がf/2(Hz)の場合には、推定厚さを1.4倍にしてステップ2〜6の手順を繰り返す。推定厚さを1.4倍にすることで、周波数範囲がf/2〜f/4(Hz)となるために、連続した周波数範囲で極小点を評価できることになる。
〔ステップ8〕
パソコン2のキーボード26あるいは記録メディア27から、磁性金属M1上の測定対象物である非磁性金属M2の形状と渦電流測定センサ4の位置情報を入力し、非磁性金属の膜厚測定の開始を指示する。
However, when the frequency that does not have the minimum point and gives the minimum deviation is 2f (Hz), the estimated thickness of the calibration specimen is multiplied by 0.7, and the procedures of steps 2 to 6 are repeated. Here, when the estimated thickness is set to 0.7 times, the frequency change range is 2f to 4f (Hz), so that the minimum point can be evaluated in the continuous frequency range. On the other hand, when the frequency that does not have the minimum point and gives the minimum deviation is f / 2 (Hz), the estimated thickness is increased by 1.4 times and the procedures of steps 2 to 6 are repeated. Since the frequency range is f / 2 to f / 4 (Hz) by increasing the estimated thickness by 1.4 times, the minimum point can be evaluated in the continuous frequency range.
[Step 8]
From the keyboard 26 of the personal computer 2 or the recording medium 27, the shape of the nonmagnetic metal M2 that is the object to be measured on the magnetic metal M1 and the position information of the eddy current measuring sensor 4 are input, and the film thickness measurement of the nonmagnetic metal is started. Instruct.

非磁性金属M2の形状は、パソコン2のI/Oポート25を介してHDD22,RAM23,ROM24等のいずれか1つ以上のデータ入力手段に記録する。非磁性金属M2の形状の入力後、ステップ7で決定したY出力の偏差が小さくなる周波数と位相角を演算部21から渦電流式膜厚測定手段3の演算部31に伝達し、この演算部31からI/Oポート35及びD/Aコンバータ36を介して渦電流測定センサ4に交流電圧を印加する。   The shape of the nonmagnetic metal M2 is recorded in any one or more data input means such as the HDD 22, RAM 23, ROM 24, etc. via the I / O port 25 of the personal computer 2. After the input of the shape of the nonmagnetic metal M2, the frequency and phase angle at which the deviation of the Y output determined in step 7 is reduced are transmitted from the calculation unit 21 to the calculation unit 31 of the eddy current film thickness measuring means 3, and this calculation unit An AC voltage is applied from 31 to the eddy current measurement sensor 4 via the I / O port 35 and the D / A converter 36.

渦電流測定センサ4で測定されたX出力とY出力は、渦電流式膜厚測定手段3のA/Dコンバータ37,I/Oポート35,演算部31を介してHDD32,RAM33,ROM34等のいずれか1つ以上のデータ入力手段に記録する。これらへの記録と同時に、I/Oポート35を介して渦電流式膜厚測定手段3の測定値をパソコン2の演算部21に伝達し、HDD22,RAM23,ROM24等のいずれか1つ以上のデータ入力手段に測定結果を記録する。   The X output and Y output measured by the eddy current measurement sensor 4 are sent to the HDD 32, RAM 33, ROM 34, etc. via the A / D converter 37, the I / O port 35, and the arithmetic unit 31 of the eddy current film thickness measuring means 3. Record in any one or more data input means. Simultaneously with these recordings, the measurement value of the eddy current film thickness measurement means 3 is transmitted to the computing unit 21 of the personal computer 2 via the I / O port 35, and any one or more of the HDD 22, RAM 23, ROM 24, etc. Record the measurement results in the data input means.

さらに、渦電流式膜厚測定手段3は、測定値と共に入力された非磁性金属M2の形状データをI/Oポート35を介してアクチュエータドライバ6の演算部61に伝達する。アクチュエータドライバ6の演算部61では、非磁性金属M2の形状に渦電流測定センサ4が沿うように、HDD62,RAM63,ROM64等のいずれか1つ以上のデータ入力手段に記録した基台10A,第1移動台10B,第2移動台10Cの移動量、供給電圧値、供給電流値、電圧印加時間の関係から各モータ11A〜11Cへの電力供給条件を決定する。この電力供給条件に基づいてアクチュエータドライバ6は、I/Oポート65及びD/Aコンバータ67を介してアクチュエータ5に電力を供給する。アクチュエータ5への電力供給中に、印加電圧値と印加時間、流れた電流値は、A/Dコンバータ66,I/Oポート65を介して演算部61に伝達され、演算部61で実際の移動量計算してアクチュエータ5のモータ11A〜11Cの回転数を調整し、渦電流測定センサ4を非磁性金属M2の上で移動させる。この渦電流測定センサ4の移動量は、アクチュエータドライバ6のA/Dコンバータ66,I/Oポート65を介してパソコン2の演算部21に伝達され、HDD22,RAM23,ROM24等のいずれか1つ以上のデータ入力手段に記録される。   Further, the eddy current film thickness measuring means 3 transmits the shape data of the nonmagnetic metal M2 input together with the measured value to the calculation unit 61 of the actuator driver 6 via the I / O port 35. In the calculation unit 61 of the actuator driver 6, the base 10 </ b> A recorded in one or more data input means such as the HDD 62, the RAM 63, the ROM 64, and the like so that the eddy current measurement sensor 4 follows the shape of the nonmagnetic metal M <b> 2. The power supply condition to each of the motors 11A to 11C is determined from the relationship between the moving amount of the first moving table 10B and the second moving table 10C, the supply voltage value, the supply current value, and the voltage application time. Based on this power supply condition, the actuator driver 6 supplies power to the actuator 5 via the I / O port 65 and the D / A converter 67. During the power supply to the actuator 5, the applied voltage value, the application time, and the flowing current value are transmitted to the computing unit 61 via the A / D converter 66 and the I / O port 65, and the computing unit 61 performs actual movement. The amount is calculated to adjust the rotation speed of the motors 11A to 11C of the actuator 5, and the eddy current measurement sensor 4 is moved on the nonmagnetic metal M2. The amount of movement of the eddy current measuring sensor 4 is transmitted to the computing unit 21 of the personal computer 2 via the A / D converter 66 and the I / O port 65 of the actuator driver 6, and any one of the HDD 22, RAM 23, ROM 24, etc. It is recorded in the above data input means.

以上説明したように、本実施の形態によれば、周波数と位相角の両方を制御することで、測定すべき非磁性金属におけるリフトオフ時の測定誤差を最小とすることができ、測定精度をより向上させることができる。   As described above, according to the present embodiment, by controlling both the frequency and the phase angle, it is possible to minimize the measurement error at the time of lift-off in the nonmagnetic metal to be measured, and to improve the measurement accuracy. Can be improved.

ところで以上の説明は、非磁性金属と同じ仕様の較正試験体を用いて周波数と位相角を制御して、最適な周波数と位相角を求めるものであるが、各仕様の較正試験体を複数種用意しておき、各較正試験体に最適な周波数と位相角を予め求めておけば、いかなる非磁性金属に対しても、即、適切な周波数と位相角を求めることができる。   By the way, the above explanation is to obtain the optimum frequency and phase angle by controlling the frequency and phase angle using a calibration test specimen having the same specifications as the non-magnetic metal. If the optimum frequency and phase angle are determined in advance for each calibration specimen, an appropriate frequency and phase angle can be immediately determined for any nonmagnetic metal.

さらに、上記実施の形態は、渦電流測定センサ4として、一つのセンサを用いたが、その変形例として図8及び図9に示すように、複数のセンサ4a,4b…4nを直列あるいは特定方向に並設した渦電流測定マルチセンサ4Aとすることも可能である。このように渦電流測定マルチセンサ4Aにすれば、上記実施の形態に較べて、アクチュエータの駆動方向を減らすことができ、その分、アクチュエータの構成を単純化できると共に、検査時間を短縮することが可能である。   Further, in the above embodiment, one sensor is used as the eddy current measuring sensor 4, but as a modification thereof, as shown in FIGS. 8 and 9, a plurality of sensors 4a, 4b,. It is also possible to provide an eddy current measuring multi-sensor 4A arranged side by side. In this way, if the eddy current measuring multisensor 4A is used, the driving direction of the actuator can be reduced as compared with the above embodiment, and accordingly, the configuration of the actuator can be simplified and the inspection time can be shortened. Is possible.

次に、本発明による渦電流式非磁性金属膜厚測定方法の第2の実施の形態を図10及び図11に示す渦電流式非磁性金属膜厚測定装置1Aに基づいて説明する。尚、図1〜図4と同一符号は同一部品を示すので、再度の詳細な説明は省略する。   Next, a second embodiment of the eddy current type nonmagnetic metal film thickness measuring method according to the present invention will be described based on the eddy current type nonmagnetic metal film thickness measuring apparatus 1A shown in FIGS. The same reference numerals as those in FIGS. 1 to 4 denote the same components, and thus detailed description thereof is omitted.

本実施の形態は、非磁性金属の交換時の膜厚を基準として、この基準膜厚よりも非磁性金属の膜厚が厚いか薄いかを判定する方法を示すものである。   The present embodiment shows a method for determining whether the film thickness of the nonmagnetic metal is thicker or thinner than the reference film thickness on the basis of the film thickness at the time of replacement of the nonmagnetic metal.

図10において図1と異なる構成は、図1のアクチュエータドライバ6の代わりに、エンコーダ14を設け、このエンコーダ14の巻取りコード15の先端を渦電流測定センサ4に連結して渦電流測定センサ4を手動で移動させるようにした点である。また、図4と図11と異なる点は、図11においてA/Dコンバータ29をパソコン2に設けた点と、図11における渦電流式膜厚測定手段3Aが図4における渦電流式膜厚測定手段3の演算部31とHDD32とRAM33とROM34とを撤去している点である。   10 differs from FIG. 1 in that an encoder 14 is provided in place of the actuator driver 6 in FIG. 1, and the tip of the winding cord 15 of the encoder 14 is connected to the eddy current measuring sensor 4 so that the eddy current measuring sensor 4 is connected. This is the point that is moved manually. 4 differs from FIG. 11 in that the A / D converter 29 is provided in the personal computer 2 in FIG. 11 and the eddy current film thickness measuring means 3A in FIG. 11 measures the eddy current film thickness in FIG. The operation part 31, HDD 32, RAM 33, and ROM 34 of the means 3 are removed.

次に、上記構成の渦電流式非磁性金属膜厚測定装置1Aを用いて磁性金属上の非磁性金属の膜厚を測定する手順を説明する。
〔ステップ21〕
パソコン2のキーボード26あるいは記録メディア27のうち、1つ以上の入力装置を用いて磁性金属M1上の測定対象物である非磁性金属M2の誘電率と透磁率及び非磁性金属M2の交換時の基準膜厚を入力し、I/Oポート25を介して演算部21に伝達する。演算部21では、HDD22,RAM23,ROM24等のいずれか1つ以上のデータ入力手段に記憶させていた式1を計算するプログラムを用いて周波数を演算する。
〔ステップ22〕
ステップ21の演算結果は、I/Oポート25を介して渦電流式膜厚測定手段3AのI/Oポート35に伝達され、そこからD/Aコンバータ36を介して渦電流測定センサ4に交流電圧を印加する。そして渦電流測定センサ4で測定された誘導磁場のX出力とY出力は、渦電流式膜厚測定手段3AのA/Dコンバータ37及びI/Oポート35を介してパソコン2のI/Oポート25に伝達され、演算部21を介してHDD22,RAM23,ROM24等のいずれか1つ以上のデータ入力手段に記録する。
Next, a procedure for measuring the film thickness of the nonmagnetic metal on the magnetic metal using the eddy current type nonmagnetic metal film thickness measuring apparatus 1A having the above configuration will be described.
[Step 21]
Using the one or more input devices of the keyboard 26 or the recording medium 27 of the personal computer 2, the dielectric constant and permeability of the nonmagnetic metal M2, which is the measurement object on the magnetic metal M1, and the nonmagnetic metal M2 are exchanged. A reference film thickness is input and transmitted to the calculation unit 21 via the I / O port 25. The computing unit 21 computes the frequency using a program for calculating Equation 1 stored in any one or more data input means such as the HDD 22, RAM 23, ROM 24, and the like.
[Step 22]
The calculation result of step 21 is transmitted to the I / O port 35 of the eddy current film thickness measuring means 3A via the I / O port 25, and from there to the eddy current measuring sensor 4 via the D / A converter 36. Apply voltage. The X and Y outputs of the induced magnetic field measured by the eddy current measuring sensor 4 are sent to the I / O port of the personal computer 2 via the A / D converter 37 and the I / O port 35 of the eddy current film thickness measuring means 3A. 25, and is recorded in any one or more data input means such as HDD 22, RAM 23, ROM 24, etc. via the arithmetic unit 21.

この渦電流測定センサ4での測定の間、渦電流測定センサ4を手でリフトオフさせ、そのときの渦電流測定センサ4からの検出信号を取得する。
〔ステップ23〕
パソコン2の演算部21で、HDD22,RAM23,ROM24等のいずれか1つ以上のデータ入力手段に記録した式2及び式3を計算するプログラムを用いてY出力の偏差の位相角依存性を計算し、Y出力の偏差が最小になる位相角を求める。
〔ステップ24〕
ステップ23での計算結果は、I/Oポート25を介して渦電流式膜厚測定手段3Aに伝達し、周波数をステップ21の計算値、位相角をステップ23の評価結果として、D/Aコンバータ36を介して渦電流測定センサ4に交流電圧を印加する。
During the measurement by the eddy current measurement sensor 4, the eddy current measurement sensor 4 is lifted off by hand, and the detection signal from the eddy current measurement sensor 4 at that time is acquired.
[Step 23]
The calculation unit 21 of the personal computer 2 calculates the phase angle dependency of the deviation of the Y output using a program for calculating Equations 2 and 3 recorded in any one or more data input means such as the HDD 22, RAM 23, ROM 24, etc. Then, the phase angle that minimizes the deviation of the Y output is obtained.
[Step 24]
The calculation result in step 23 is transmitted to the eddy current type film thickness measurement means 3A via the I / O port 25, and the D / A converter uses the frequency as the calculation value in step 21 and the phase angle as the evaluation result in step 23. An AC voltage is applied to the eddy current measurement sensor 4 via 36.

渦電流測定センサ4で測定されたX出力とY出力は、A/Dコンバータ37及びI/Oポート35を介してパソコン2のI/Oポート25に伝達され、演算部21を介してHDD22,RAM23,ROM24等のいずれか1つ以上のデータ入力手段に記録される。   The X output and Y output measured by the eddy current measurement sensor 4 are transmitted to the I / O port 25 of the personal computer 2 via the A / D converter 37 and the I / O port 35, and the HDD 22, The data is recorded in any one or more data input means such as the RAM 23 and the ROM 24.

そして、測定対象物である非磁性金属M2上にエンコーダ14を固定し、渦電流測定センサ4を非磁性金属M2に沿って手動によって移動させることで、エンコーダ14の巻取りコード15が移動量に応じて引き出され、その巻取りコード15の引き出し量をエンコーダ14で測定して渦電流測定センサ4の位置を測定する。その測定結果はパソコン2のA/Dコンバータ29及びI/Oポート25を介して演算部21に伝達され、渦電流測定センサ4の位置情報をHDD22,RAM23,ROM24等のいずれか1つ以上のデータ入力手段に記録すると共に、モニタ28に渦電流測定センサ4の出力と位置情報を表示する。
〔ステップ25〕
モニタ28に表示された渦電流測定センサ4の出力を非磁性金属の交換時の膜厚基準と比較して、測定対象物である非磁性金属M2が交換時期に達しているか否かを判定する。
Then, the encoder 14 is fixed on the nonmagnetic metal M2 that is the measurement object, and the eddy current measurement sensor 4 is manually moved along the nonmagnetic metal M2, so that the take-up cord 15 of the encoder 14 is moved to a moving amount. The position of the eddy current measuring sensor 4 is measured by drawing out the winding cord 15 with the encoder 14. The measurement result is transmitted to the calculation unit 21 via the A / D converter 29 and the I / O port 25 of the personal computer 2, and the position information of the eddy current measurement sensor 4 is stored in one or more of the HDD 22, RAM 23, ROM 24, etc. While recording in the data input means, the output and position information of the eddy current measurement sensor 4 are displayed on the monitor 28.
[Step 25]
The output of the eddy current measurement sensor 4 displayed on the monitor 28 is compared with the film thickness reference at the time of replacement of the nonmagnetic metal, and it is determined whether or not the nonmagnetic metal M2 as the measurement object has reached the replacement time. .

以上説明したように本実施の形態によれば、周波数と位相角をある範囲に設定できるので、第1の実施の形態に較べて非磁性金属の膜圧の測定が簡便化され、測定時間の短縮が図ることができる。   As described above, according to the present embodiment, since the frequency and the phase angle can be set within a certain range, the measurement of the film pressure of the nonmagnetic metal is simplified as compared with the first embodiment, and the measurement time is reduced. Shortening can be achieved.

本発明による渦電流式非磁性金属膜厚測定方法の第1の実施の形態を実施するための渦電流式非磁性金属膜厚測定装置を示すブロック図。The block diagram which shows the eddy current type nonmagnetic metal film thickness measuring apparatus for enforcing 1st Embodiment of the eddy current type nonmagnetic metal film thickness measuring method by this invention. 図1に示す渦電流式非磁性金属膜厚測定装置に用いられる渦電流測定センサを示す斜視図。The perspective view which shows the eddy current measurement sensor used for the eddy current type nonmagnetic metal film thickness measuring apparatus shown in FIG. 図1に示す渦電流式非磁性金属膜厚測定装置に用いられるアクチュエータを示す斜視図。The perspective view which shows the actuator used for the eddy current type nonmagnetic metal film thickness measuring apparatus shown in FIG. 図1に示す渦電流式非磁性金属膜厚測定装置の信号伝達図。The signal transmission figure of the eddy current type nonmagnetic metal film thickness measuring apparatus shown in FIG. 周波数の非磁性金属厚さ依存性を示すグラフ。The graph which shows the nonmagnetic metal thickness dependence of a frequency. Y出力変動率と位相角の依存性を示すグラフ。Graph showing the dependence of Y output fluctuation rate and phase angle. Y出力変動率と周波数の依存性を示すグラフ。A graph showing the dependence of Y output fluctuation rate and frequency. 図1に示す渦電流式非磁性金属膜厚測定装置に用いられる渦電流測定センサの変形例を示す模式側面図。The schematic side view which shows the modification of the eddy current measurement sensor used for the eddy current type nonmagnetic metal film thickness measuring apparatus shown in FIG. 図8のA−A線に沿う横断平面図。FIG. 9 is a cross-sectional plan view taken along line AA in FIG. 8. 本発明による渦電流式非磁性金属膜厚測定方法の第2の実施の形態を実施するための渦電流式非磁性金属膜厚測定装置を示すブロック図。The block diagram which shows the eddy current type nonmagnetic metal film thickness measuring apparatus for enforcing 2nd Embodiment of the eddy current type nonmagnetic metal film thickness measuring method by this invention. 図10に示す渦電流式非磁性金属膜厚測定装置の信号伝達図。The signal transmission figure of the eddy current type nonmagnetic metal film thickness measuring apparatus shown in FIG.

符号の説明Explanation of symbols

1…渦電流式非磁性金属膜厚測定装置、2…パーソナルコンピュータ、3…渦電流式膜厚測定手段、4…渦電流測定センサ、4A…渦電流測定マルチセンサ、5…アクチュエータ、6…アクチュエータドライバ、7…コア、8…コイル、9…シールド材、10A…基台、10B…第1移動台、10C…第2移動台10C、11A〜11C…モータ、12A〜12C…ねじ棒、13A〜13C…移動駒、14…エンコーダ、15…巻取りコード。   DESCRIPTION OF SYMBOLS 1 ... Eddy current type nonmagnetic metal film thickness measuring apparatus, 2 ... Personal computer, 3 ... Eddy current type film thickness measuring means, 4 ... Eddy current measuring sensor, 4A ... Eddy current measuring multi-sensor, 5 ... Actuator, 6 ... Actuator Driver, 7 ... Core, 8 ... Coil, 9 ... Shield material, 10A ... Base, 10B ... First moving table, 10C ... Second moving table 10C, 11A-11C ... Motor, 12A-12C ... Screw rod, 13A- 13C: moving piece, 14 ... encoder, 15 ... winding code.

Claims (6)

励磁コイルを励磁し磁性金属上の非磁性金属に生じる渦電流による誘導磁場を検出コイルにより検出して前記非磁性金属の膜厚を測定する渦電流式膜厚測定手段を用いた渦電流式非磁性金属膜厚測定方法において、前記励磁コイルと検出コイルを前記非磁性金属と同じ仕様の較正試験体上に設置して前記励磁コイルへ供給する励磁電流の周波数を各較正試験体に適する値に選定する工程と、選定された周波数に基づいて前記励磁電流の位相角を調整して前記較正試験体上に設置された前記検出コイルから出力される虚数部分の変動率が小さくなる位相角を選定する工程と、これら工程によって決められた周波数と位相角に基づいて前記渦電流式膜厚測定手段により前記非磁性金属の膜厚を測定する工程とを備えたことを特徴とする渦電流式非磁性金属膜厚測定方法。   An eddy current type non-magnetic eddy using a eddy current type film thickness measuring means for detecting the induced magnetic field caused by the eddy current generated in the non-magnetic metal on the magnetic metal by the exciting coil and measuring the film thickness of the non-magnetic metal. In the magnetic metal film thickness measurement method, the excitation coil and the detection coil are installed on a calibration test specimen having the same specifications as the non-magnetic metal, and the frequency of the excitation current supplied to the excitation coil is set to a value suitable for each calibration test specimen. The phase angle of the excitation current is adjusted based on the selected frequency and the phase angle of the excitation current that is output from the detection coil installed on the calibration specimen is selected to reduce the variation rate of the imaginary part. And measuring the film thickness of the non-magnetic metal by the eddy current film thickness measuring means based on the frequency and phase angle determined by these processes. Gender metal film thickness measurement method. 励磁コイルを励磁し磁性金属上の非磁性金属に生じる渦電流による誘導磁場を検出コイルにより検出して前記非磁性金属の膜厚を測定する渦電流式膜厚測定手段を用いた渦電流式非磁性金属膜厚測定方法において、予め複数の仕様に形成された複数の較正試験体上に前記励磁コイルと検出コイルを設置して前記励磁コイルへ供給する励磁電流の周波数を各較正試験体の仕様に適する値に夫々選定する工程と、選定された周波数に基づいて前記励磁電流の位相角を調整して前記各較正試験体に応じて前記検出コイルから出力される虚数部分の変動率が小さくなる位相角を夫々選定する工程と、これら工程によって決められた周波数と位相角を前記非磁性金属に応じて選択して前記渦電流式膜厚測定手段により前記非磁性金属の膜厚を測定する工程とを備えたことを特徴とする渦電流式非磁性金属膜厚測定方法。   An eddy current type non-magnetic eddy using a eddy current type film thickness measuring means for detecting the induced magnetic field caused by the eddy current generated in the non-magnetic metal on the magnetic metal by the exciting coil and measuring the film thickness of the non-magnetic metal. In the magnetic metal film thickness measurement method, the frequency of the excitation current to be supplied to the excitation coil by installing the excitation coil and the detection coil on a plurality of calibration test bodies formed in advance in a plurality of specifications is specified for each calibration test specimen. And adjusting the phase angle of the excitation current based on the selected frequency to reduce the variation rate of the imaginary part output from the detection coil in accordance with each calibration specimen. A step of selecting a phase angle, and a step of selecting a frequency and a phase angle determined by these steps according to the nonmagnetic metal and measuring the film thickness of the nonmagnetic metal by the eddy current film thickness measuring means. Eddy current type magnetic metal film thickness measuring method characterized by comprising and. 励磁コイルを励磁し磁性金属上の非磁性金属に生じる渦電流による誘導磁場を検出コイルにより検出して前記非磁性金属の膜厚を測定する渦電流式膜厚測定手段を用いた渦電流式非磁性金属膜厚測定方法において、前記励磁コイルと検出コイルを前記非磁性金属と同じ導電率、透磁率及び前記非磁性金属の交換時の膜厚に形成した較正試験体上に設置して前記励磁コイルへ供給する励磁電流の周波数を各較正試験体に適する値に選定する工程と、選定された周波数に基づいて前記励磁電流の位相角を調整して前記較正試験体上に設置された前記検出コイルから出力される虚数部分の変動率が小さくなる位相角を選定する工程と、これら工程によって決められた周波数と位相角に基づいて前記渦電流式膜厚測定手段により前記非磁性金属の膜厚を測定する工程とを備えたことを特徴とする渦電流式非磁性金属膜厚測定方法。   An eddy current type non-magnetic eddy using a eddy current type film thickness measuring means for detecting the induced magnetic field caused by the eddy current generated in the non-magnetic metal on the magnetic metal by the exciting coil and measuring the film thickness of the non-magnetic metal. In the magnetic metal film thickness measurement method, the excitation coil and the detection coil are installed on a calibration specimen formed to have the same conductivity, permeability and non-magnetic metal film thickness as the non-magnetic metal, and the excitation The step of selecting the frequency of the excitation current to be supplied to the coil to a value suitable for each calibration specimen, and the detection that is installed on the calibration specimen by adjusting the phase angle of the excitation current based on the selected frequency The step of selecting a phase angle at which the fluctuation rate of the imaginary part output from the coil is small, and the film thickness of the nonmagnetic metal by the eddy current film thickness measuring means based on the frequency and phase angle determined by these steps Eddy current type magnetic metal film thickness measuring method characterized by comprising the step of measuring. 渦電流測定センサを非磁性金属と同じ仕様の較正試験体上に設置し渦電流測定センサへ供給する励磁電流の周波数を各較正試験体に適する値に選定する工程と、選定された周波数に基づいて励磁電流の位相角を調整して較正試験体上に設置された渦電流測定センサから出力される虚数部分の変動率が小さくなる位相角を選定する工程と、これら工程によって決められた周波数と位相角に基づいて非磁性金属の膜厚を測定する工程とを有する渦電流式非磁性金属膜厚測定方法。   Install the eddy current measurement sensor on a calibration specimen with the same specifications as the non-magnetic metal, select the frequency of the excitation current supplied to the eddy current measurement sensor to a value suitable for each calibration specimen, and based on the selected frequency Adjusting the phase angle of the excitation current to select the phase angle at which the fluctuation rate of the imaginary part output from the eddy current measurement sensor installed on the calibration specimen is reduced, and the frequency determined by these steps An eddy current type nonmagnetic metal film thickness measuring method including a step of measuring a film thickness of a nonmagnetic metal based on a phase angle. 前記励磁電流の周波数を選定する工程は、
(周波数)=(厚さ)÷(2×π×導電率×透磁率)
の式で基準となる周波数を算出する工程を有し、前記位相角を選定する工程は、
偏差=〔(検出コイルの浮き上がり発生時の渦電流式膜厚測定手段の虚数部分の出力)−(検出コイルの浮き上がりがないときの渦電流式膜厚測定手段の虚数部分の出力)〕÷(検出コイルの浮き上がりがないときの渦電流式膜厚測定手段の虚数部分の出力)
で定義される偏差の位相角依存性を、
(位相角0度での渦電流式膜厚測定手段出力の虚数部分の偏差)×sin(位相角)+(位相角0度での渦電流式膜厚測定手段出力の実数部分の偏差)×cos(位相角)
の式で算出し、誤差が小さくなる位相角を決定する工程を有することを特徴とする請求項1,2,3又は4記載の渦電流式非磁性金属膜厚測定方法。
The step of selecting the frequency of the excitation current includes:
(Frequency) = (Thickness) 2 ÷ (2 × π × Conductivity × Permeability)
A step of calculating a reference frequency by the formula of, and the step of selecting the phase angle,
Deviation = [(output of imaginary part of eddy current type film thickness measuring means when detection coil is lifted) − (output of imaginary part of eddy current type film thickness measuring means when detection coil is not lifted)] ÷ ( The output of the imaginary part of the eddy current film thickness measuring means when the detection coil is not lifted)
The phase angle dependence of the deviation defined by
(Deviation of imaginary part of eddy current film thickness measuring means output at phase angle 0 degree) × sin (phase angle) + (deviation of real part of eddy current film thickness measuring means output at phase angle 0) × cos (phase angle)
5. The eddy current type nonmagnetic metal film thickness measuring method according to claim 1, further comprising a step of determining a phase angle in which an error is reduced by calculating the following equation.
励磁コイルを励磁し磁性金属上の非磁性金属に生じる渦電流による誘導磁場を検出コイルにより検出して前記非磁性金属の膜厚を測定する渦電流式膜厚測定手段を用いた渦電流式非磁性金属膜厚測定装置において、前記励磁コイルと検出コイルを前記非磁性金属と同じ仕様の較正試験体上に設置して前記励磁コイルへ供給する励磁電流の周波数を各較正試験体に適する値に選定する周波数選定手段と、選定された周波数に基づいて前記励磁電流の位相角を調整して前記較正試験体上に設置された前記検出コイルから出力される虚数部分の変動率が小さくなる位相角を選定する位相角選定手段と、周波数選定手段と位相角選定手段によって決められた周波数と位相角に基づいて前記渦電流式膜厚測定手段により前記非磁性金属の膜厚を測定する膜厚測定手段とを備えたことを特徴とする渦電流式非磁性金属膜厚測定装置。   An eddy current type non-magnetic eddy using a eddy current type film thickness measuring means for detecting the induced magnetic field caused by the eddy current generated in the non-magnetic metal on the magnetic metal by the exciting coil and measuring the film thickness of the non-magnetic metal. In the magnetic metal film thickness measuring device, the excitation coil and the detection coil are installed on a calibration test specimen having the same specifications as the non-magnetic metal, and the frequency of the excitation current supplied to the excitation coil is set to a value suitable for each calibration test specimen. A frequency selection means to select, and a phase angle that adjusts the phase angle of the excitation current based on the selected frequency and reduces the variation rate of the imaginary part output from the detection coil installed on the calibration specimen. The non-magnetic metal film thickness is measured by the eddy current film thickness measuring means based on the phase angle selecting means for selecting the frequency and the frequency and phase angle determined by the frequency selecting means and the phase angle selecting means. Thickness measuring means and the eddy current type magnetic metal film thickness measuring apparatus comprising the.
JP2006124132A 2006-04-27 2006-04-27 Method of measuring eddy-current type nonmagnetic metal film thickness, and apparatus for measuring eddy-current type nonmagnetic metal film thickness for performing the method Pending JP2007298292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006124132A JP2007298292A (en) 2006-04-27 2006-04-27 Method of measuring eddy-current type nonmagnetic metal film thickness, and apparatus for measuring eddy-current type nonmagnetic metal film thickness for performing the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006124132A JP2007298292A (en) 2006-04-27 2006-04-27 Method of measuring eddy-current type nonmagnetic metal film thickness, and apparatus for measuring eddy-current type nonmagnetic metal film thickness for performing the method

Publications (1)

Publication Number Publication Date
JP2007298292A true JP2007298292A (en) 2007-11-15

Family

ID=38767911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006124132A Pending JP2007298292A (en) 2006-04-27 2006-04-27 Method of measuring eddy-current type nonmagnetic metal film thickness, and apparatus for measuring eddy-current type nonmagnetic metal film thickness for performing the method

Country Status (1)

Country Link
JP (1) JP2007298292A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223938A (en) * 2009-02-27 2010-10-07 Sekisui Chem Co Ltd Flaw sensor for water pipe and device for diagnosing degree of decrepitude of water pipe
US8988668B2 (en) 2011-08-30 2015-03-24 Mitsubishi Hitachi Power Systems, Ltd. Film thickness measurement apparatus and film thickness measurement method
JP2020139745A (en) * 2019-02-26 2020-09-03 Jfeスチール株式会社 Non-magnetic metal wall thickness measuring method and wall thickness measuring device
JP6994282B1 (en) * 2021-07-21 2022-01-14 株式会社ウィズソル Wall thickness measurement method
CN114577894A (en) * 2022-01-14 2022-06-03 湖南凌扬电子科技有限公司 Method and system for identifying metal-containing interlayer between magnetic metal substrate and non-conductive coating

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223938A (en) * 2009-02-27 2010-10-07 Sekisui Chem Co Ltd Flaw sensor for water pipe and device for diagnosing degree of decrepitude of water pipe
US8988668B2 (en) 2011-08-30 2015-03-24 Mitsubishi Hitachi Power Systems, Ltd. Film thickness measurement apparatus and film thickness measurement method
JP2020139745A (en) * 2019-02-26 2020-09-03 Jfeスチール株式会社 Non-magnetic metal wall thickness measuring method and wall thickness measuring device
JP6994282B1 (en) * 2021-07-21 2022-01-14 株式会社ウィズソル Wall thickness measurement method
CN114577894A (en) * 2022-01-14 2022-06-03 湖南凌扬电子科技有限公司 Method and system for identifying metal-containing interlayer between magnetic metal substrate and non-conductive coating

Similar Documents

Publication Publication Date Title
JP2010054254A (en) Magnetic measuring method and device
JP2007298292A (en) Method of measuring eddy-current type nonmagnetic metal film thickness, and apparatus for measuring eddy-current type nonmagnetic metal film thickness for performing the method
JP5149562B2 (en) Nondestructive measuring method and nondestructive measuring device
CN209656185U (en) Magneto strictive sensor
JP2005158195A (en) Apparatus and method for magnetic head inspection, and disk drive
JP6469388B2 (en) Electric field strength calculation program, electric field strength calculation device, and electric field strength calculation method
US20050001612A1 (en) Measurement with a magnetic field
JP4803839B2 (en) Head slider flying height control method and information storage device
JP6378554B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
JP2018001296A (en) Polishing device, polishing method, and polishing control program
US20150111468A1 (en) Lapping Head with a Sensor Device on the Rotating Lapping Head
JP4559436B2 (en) Method and device for electromagnetic measurement of thickness and electrical conductivity
JP2013185902A (en) Method and device for measuring crystal orientation
JP2012112868A (en) Internal defective measuring method and internal defective measuring device
JP4879518B2 (en) Measurement test method for machining depth using eddy current and measurement test apparatus using the same
JPH01269049A (en) Method of inspecting deterioration of metallic material
JP2005315732A (en) Instrument for measuring displacement of ferromagnetic body
JP2006058154A (en) Thickness measuring method and system for metal body
JP3204073B2 (en) Stress measuring method and apparatus utilizing magnetostriction effect
JP2005069883A (en) Corrosion detecting apparatus
JP2019128161A (en) Analysis method, analysis program, and analysis apparatus
JP7454165B2 (en) Magnetic material measurement probe and magnetic material measurement device
JP2008256575A (en) Method for measuring depth of cured layer
JP4470720B2 (en) Tire surface rubber thickness measuring device
JP2004130362A (en) Method for coiling thin sheet metal strip, method for coiling thin sheet metal strip, computer program, and computer-readable recording medium