JP4747974B2 - Object detection apparatus and object detection method - Google Patents

Object detection apparatus and object detection method Download PDF

Info

Publication number
JP4747974B2
JP4747974B2 JP2006192869A JP2006192869A JP4747974B2 JP 4747974 B2 JP4747974 B2 JP 4747974B2 JP 2006192869 A JP2006192869 A JP 2006192869A JP 2006192869 A JP2006192869 A JP 2006192869A JP 4747974 B2 JP4747974 B2 JP 4747974B2
Authority
JP
Japan
Prior art keywords
signal
detected
detection
magnetic field
signal waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006192869A
Other languages
Japanese (ja)
Other versions
JP2008020346A (en
Inventor
昭治 山口
邦廣 高橋
マリオ 布施
保憲 黄田
司 松田
浩良 井上
英三 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2006192869A priority Critical patent/JP4747974B2/en
Publication of JP2008020346A publication Critical patent/JP2008020346A/en
Application granted granted Critical
Publication of JP4747974B2 publication Critical patent/JP4747974B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Description

本発明は、励磁コイルと検知コイルを備えて磁性ワイヤが付与された物体を検知する物体検知装置および物体検知方法に関し、特に、ノイズ源となる金属物等のノイズ波形をあらかじめ記憶し、検知した信号波形と記憶したノイズ波形とを演算することで、高い精度で磁性ワイヤからの信号を検知可能にする物体検知装置および物体検知方法に関する。   The present invention relates to an object detection apparatus and an object detection method that include an excitation coil and a detection coil to detect an object provided with a magnetic wire, and in particular, store and detect a noise waveform of a metal object that becomes a noise source in advance. The present invention relates to an object detection apparatus and an object detection method that can detect a signal from a magnetic wire with high accuracy by calculating a signal waveform and a stored noise waveform.

近年、機密情報や個人情報等の漏洩防止、有価証券等の偽造防止、商品等の盗難防止等、セキュリティ強化を目的とする種々の方法や装置が提供されている。   In recent years, various methods and apparatuses for enhancing security, such as prevention of leakage of confidential information and personal information, prevention of counterfeiting of securities and the like, prevention of theft of goods and the like, have been provided.

例えば、ゲートを通過することを禁止する記録紙等に磁性ワイヤを付与して、その記録紙がゲートに進入すると、ゲートに設けられている励磁コイルによって発生される交番磁界が記録紙に付与された磁性ワイヤに磁化反転を生じさせ、磁化反転に伴う急峻な磁気パルスをゲートの検知コイルによって検知して、ゲートに侵入した記録紙を検知することができる技術が知られている。   For example, when a magnetic wire is applied to recording paper or the like that is prohibited from passing through the gate and the recording paper enters the gate, an alternating magnetic field generated by an excitation coil provided on the gate is applied to the recording paper. A technique is known in which magnetization reversal is caused in a magnetic wire and a steep magnetic pulse accompanying the magnetization reversal is detected by a detection coil of a gate to detect a recording paper that has entered the gate.

また、特許文献1には、物品に埋め込む磁気マーカーに、交番磁界が印加された時に急峻な磁化反転を生じる磁性ワイヤと磁化反転を阻止できるバイアス磁界を発生するオンオフ制御素子とを備え、店舗に物品を入荷する際に磁気マーカーをオン状態にして、支払済みの物品に対しては磁気マーカーをオフ状態に切り換え、物品が出口ゲートを通る際に磁気マーカーの磁化反転が検出されるとその物品を未精算の物品であると判断する物品管理システムが提供されている。   Patent Document 1 also includes a magnetic marker embedded in an article, including a magnetic wire that causes a sharp magnetization reversal when an alternating magnetic field is applied, and an on / off control element that generates a bias magnetic field that can prevent the magnetization reversal. When the article is received, the magnetic marker is turned on, the magnetic marker is switched off for the paid article, and if the magnetization reversal of the magnetic marker is detected when the article passes through the exit gate, the article There is provided an article management system for judging that the item is an unsettled article.

この特許文献1の技術も、物体に付与された磁性ワイヤが交番磁界によって発する急峻な磁気パルスを検知することで、磁性ワイヤが付与された物体が検知される。
特開2003−182847号公報
Also in the technique of Patent Document 1, an object to which a magnetic wire is applied is detected by detecting a steep magnetic pulse generated by an alternating magnetic field from the magnetic wire applied to the object.
JP 2003-182847 A

しかし、このように交番磁界によって磁性ワイヤが発する急峻な磁気パルスを検知する技術では、ゲートの通過者が磁性ワイヤが付与された物体以外に、金属物等を構成部品とするノートPCやスチール缶を同時に所持してゲート内に進入すると、ノートPCやスチール缶がノイズ源となってしまい、これらノートPCやスチール缶からの信号も検知されて、物体に付与された磁性ワイヤからの信号を精度よく検知できないという問題が発生する。   However, in such a technique for detecting a steep magnetic pulse emitted from a magnetic wire by an alternating magnetic field, a notebook PC or steel can whose metal passes through a gate in addition to an object to which a magnetic wire is attached. If a notebook PC or steel can enters the gate while holding the same, the signal from the notebook PC or steel can is detected and the signal from the magnetic wire attached to the object is accurately detected. The problem of not being able to detect well occurs.

そこで、この発明は、ノイズ源となる金属物等のノイズ波形をあらかじめ記憶し、検知した信号波形と記憶したノイズ波形とを演算することで、高い精度で磁性ワイヤからの信号を検知可能にする物体検知装置および物体検知方法を提供することを目的とする。   Therefore, the present invention makes it possible to detect a signal from a magnetic wire with high accuracy by storing a noise waveform of a metal object or the like that is a noise source in advance and calculating the detected signal waveform and the stored noise waveform. An object is to provide an object detection device and an object detection method.

上記目的を達成する為に、請求項1の発明の物体検知手段は、交番磁界を発生させる励磁手段と、前記励磁手段により発生された交番磁界内の該交番磁界以外の信号を検知する検知手段と、前記検知手段で検知した信号に、前記交番磁界内を通過する被検知物体に付与された磁性体の磁化反転によるパルス信号があるかを確認する確認手段と、前記被検知物体に付与された磁性体とは異なる既知の物体が前記交番磁界内を通過したに前記検知手段で検知される信号を予め記憶する記憶手段と、前記確認手段で前記パルス信号が確認されない場合に、前記検知手段で検知した信号から前記記憶手段に記憶した信号を減算する演算を行う演算手段と、前記確認手段による確認又は前記演算手段による演算によって前記パルス信号が確認された場合に、前記交番磁界内を通過する前記被検知物体を検知する物体検知手段を具備するように構成されるTo achieve the above object, the object detecting means of the invention of claim 1, an excitation means for generating an alternating magnetic field, detection means for detecting a signal other than the alternating magnetic field in the alternating magnetic field generated by the excitation means If, applying the to the detected signal by detecting means, a confirmation means for confirming whether a pulse signal according to the magnetization reversal of the applied magnetic substance to be detected object is passing through the said alternating magnetic field, the detection object body A storage means for storing in advance a signal detected by the detection means when a known object different from the magnetic body passed through the alternating magnetic field, and when the pulse signal is not confirmed by the confirmation means, arithmetic means for performing an operation for subtracting the signal stored in the storage means from the detected by the detecting means signal, the field in which the pulse signal is confirmed by the calculation by check or said calculation means by said check means To be configured to include a object detecting means for detecting the detection target object passing through the said alternating magnetic field.

また、請求項2の発明は、請求項1の発明において、前記記憶手段は、複数の既知の物体に発生する複数の信号を予め記憶し、前記演算手段は、前記検知手段で検知した信号から前記記憶手段に記憶した1または複数の信号をそれぞれ減算する演算を行うように構成されるFurther, the invention of claim 2, in the invention of claim 1, wherein the storage means previously stores a plurality of signals generated in a plurality of known objects, the Starring Sante stage, detected by said detecting means constructed and stored from the signal in the memory means one or more signals to perform an operation of subtracting, respectively.

また、請求項3の発明は、請求項1または2の発明において、前記記憶手段は、前記既知の物体の通過向きに対応して前記検知手段で検知される複数の信号を該既知の物体に対応して複数記憶し、前記演算手段は、前記検知手段で検知した信号から前記記憶手段に記憶した1または複数の信号をそれぞれ減算する演算を行うように構成されるAccording to a third aspect of the present invention, in the first or second aspect of the present invention, the storage means outputs, to the known object, a plurality of signals detected by the detecting means corresponding to the passing direction of the known object. corresponding plurality of storage, the Starring Sante stage is configured to perform an operation of subtracting 1 or more signals stored in the storage means from the detected signal by said detecting means, respectively.

また、請求項4の発明は、請求項1から3のいずれかの発明において、前記記憶手段は、前記既知の物体の通過位置に対応して前記検知手段で検知される複数の信号を該既知の物体に対応して複数記憶し、前記演算手段は、前記検知手段で検知した信号から前記記憶手段に記憶した1または複数の信号をそれぞれ減算する演算を行うように構成されるAccording to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the storage means outputs the plurality of signals detected by the detection means corresponding to the passing position of the known object. a plurality of stored corresponding to the object of the Starring Sante stage is configured to perform an operation of subtracting 1 or more signals stored in the storage means from the detected signal by said detecting means, respectively.

また、請求項5の発明は、請求項1から4のいずれかの発明において、前記被検知物体は、前記励磁手段により発生された交番磁界により所定の信号を発生する所定の磁性体が付与された記録紙であるように構成されるAccording to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the detected object is provided with a predetermined magnetic body that generates a predetermined signal by an alternating magnetic field generated by the exciting means. It is configured to be a recording paper.

また、請求項6の発明の物体検知方法は、交番磁界を励磁手段で発生させ、前記励磁手段により発生された交番磁界内の該交番磁界以外の信号を検知手段により検知し、前記検知手段で検知した信号に、前記交番磁界内を通過する被検知物体に付与された磁性体の磁化反転によるパルス信号があるかを確認手段により確認し、前記確認手段で前記パルス信号が確認されない場合に、前記検知手段で検知した信号から、前記被検知物体に付与された磁性体とは異なる既知の物体が前記交番磁界内を通過した時に前記検知手段で検知される信号であって予め記憶する信号を減算する演算を演算手段により行い、前記確認手段による確認又は前記演算手段による演算によって前記パルス信号が確認された場合に、前記交番磁界内を通過する前記被検知物体を検知する。 In the object detection method of the invention of claim 6, an alternating magnetic field is generated by the exciting means, a signal other than the alternating magnetic field in the alternating magnetic field generated by the exciting means is detected by the detecting means, and the detecting means In the detected signal, it is confirmed by the confirmation means whether there is a pulse signal due to the magnetization reversal of the magnetic material applied to the detected object passing through the alternating magnetic field, and when the pulse signal is not confirmed by the confirmation means, From the signal detected by the detection means, a signal that is detected by the detection means when a known object different from the magnetic material applied to the detected object passes through the alternating magnetic field and that is stored in advance a calculation for subtracting performed by Starring Sante stage, when the pulse signal by calculation by check or said calculation means by said confirmation means is confirmed, the test passing through the said alternating magnetic field The object to test knowledge.

この発明によれば、高い精度で磁性ワイヤからの信号を検知可能にすることができるという効果を奏する。 According to the present invention, an effect that in not high precision can allow detection signals from the magnetic wire.

以下、本発明に係わる物体検知装置および物体検知方法の実施例について添付図面を参照して詳細に説明する。   Embodiments of an object detection apparatus and an object detection method according to the present invention will be described below in detail with reference to the accompanying drawings.

図1は、本発明に係わる物体検知装置および物体検知方法を適用した検知ゲート101を示す模式図である。   FIG. 1 is a schematic diagram showing a detection gate 101 to which an object detection apparatus and an object detection method according to the present invention are applied.

検知ゲート101は、ゲート間にある磁性ワイヤ102が付与された記録紙103を検知して、記録紙103の持ち出しを禁止する。   The detection gate 101 detects the recording paper 103 provided with the magnetic wire 102 between the gates, and prohibits the recording paper 103 from being taken out.

磁性ワイヤ102は、Fe−Co系アモルファス材の大バルクハウゼン効果を有する強磁性体であり、記録紙103に漉き込まれる形で付与される。   The magnetic wire 102 is a ferromagnetic material having a large Barkhausen effect of an Fe—Co amorphous material, and is provided in a form to be inserted into the recording paper 103.

検知ゲート101は左右のゲートに設けられた励磁コイルによって左右のゲートの間に交番磁界を発生させ、ゲート間に磁性ワイヤ102が付与された記録紙103が通過すると、ゲート間に発生している交番磁界が印加された記録紙103内の磁性ワイヤ102に磁化反転が生じ急峻な磁気パルスが発生する。   The detection gate 101 generates an alternating magnetic field between the left and right gates by exciting coils provided on the left and right gates, and is generated between the gates when the recording paper 103 provided with the magnetic wire 102 is passed between the gates. Magnetization reversal occurs in the magnetic wire 102 in the recording paper 103 to which an alternating magnetic field is applied, and a steep magnetic pulse is generated.

この磁気パルスは磁性ワイヤ102の持つ大バルクハウゼン効果に伴う磁気パルスである。   This magnetic pulse is a magnetic pulse accompanying the large Barkhausen effect of the magnetic wire 102.

検知ゲート101は、この急峻な磁気パルスを検知して、ゲートを通過しようとする磁性ワイヤ102が付与された記録紙103を検知することができる。   The detection gate 101 can detect the steep magnetic pulse and detect the recording paper 103 provided with the magnetic wire 102 that attempts to pass through the gate.

しかし、磁性ワイヤ102が付与された記録紙103と共にノートPCやスチール缶等の金属物を持って検知ゲート101を通過しようとすると、ノートPCやスチール缶等の金属物がノイズ源となり、磁性ワイヤ102が発する急峻な磁気パルスを検知することが難しくなる。   However, if a metal object such as a notebook PC or a steel can is carried through the detection gate 101 together with the recording paper 103 provided with the magnetic wire 102, the metal object such as the notebook PC or the steel can becomes a noise source, and the magnetic wire It becomes difficult to detect the steep magnetic pulse emitted by 102.

本発明に係わる物体検知装置および物体検知方法は、ノートPCやスチール缶等のノイズ源が共に持ち込まれても磁性ワイヤ102が発する急峻な磁気パルスを検知できるように、あらかじめノイズ源となるノートPCやスチール缶の信号波形を記憶しておき、検知信号からノイズ源の信号波形を差し引く演算処理を行うことで、磁性ワイヤ102が発する急峻な磁気パルスを検知するように構成される。   The object detection apparatus and the object detection method according to the present invention provide a notebook PC that is a noise source in advance so that a steep magnetic pulse emitted from the magnetic wire 102 can be detected even if a noise source such as a notebook PC or a steel can is brought together. The signal waveform of the steel wire can be stored, and the calculation process of subtracting the signal waveform of the noise source from the detection signal is performed to detect a steep magnetic pulse emitted from the magnetic wire 102.

次に、本発明に係わる検知ゲート101の構成について図2を参照して説明を行なう。   Next, the configuration of the detection gate 101 according to the present invention will be described with reference to FIG.

図2は、本発明に係わる検知ゲート101の構成について示したブロック図である。   FIG. 2 is a block diagram showing the configuration of the detection gate 101 according to the present invention.

検知ゲート101は、励磁コイル201、検知コイル202、励磁回路203、検知回路204、波形記憶装置205、信号処理回路206、演算回路207、平均波形算出回路208とで構成される。   The detection gate 101 includes an excitation coil 201, a detection coil 202, an excitation circuit 203, a detection circuit 204, a waveform storage device 205, a signal processing circuit 206, a calculation circuit 207, and an average waveform calculation circuit 208.

検知ゲート101は、励磁コイル201と検知コイル202とで構成されるゲートの片側構成部分が向かい合わせに配置され、その間を通過する磁性ワイヤ102が付与された記録紙103を検知する。   The detection gate 101 detects a recording sheet 103 provided with a magnetic wire 102 passing between the one side components of the gate constituted by the excitation coil 201 and the detection coil 202 facing each other.

励磁コイル201は、励磁回路203と接続され、励磁回路203によって交流電流が導通され交番磁界を発生させる。   The exciting coil 201 is connected to the exciting circuit 203, and an alternating current is conducted by the exciting circuit 203 to generate an alternating magnetic field.

検知コイル202は、検知回路204と接続され、発生する磁界の変化による誘導電流が検知回路204によって検知される。   The detection coil 202 is connected to the detection circuit 204, and an induced current due to a change in the generated magnetic field is detected by the detection circuit 204.

励磁回路203は、励磁コイル201に交流電流を導通させ、励磁コイル201より交番磁界を発生させる。   The excitation circuit 203 conducts an alternating current through the excitation coil 201 and generates an alternating magnetic field from the excitation coil 201.

検知回路204は、ゲート間の磁界の変化によって検知コイル202に流れる誘導電流を検知して、誘導電流より交番磁界成分を除去する。   The detection circuit 204 detects an induced current flowing in the detection coil 202 due to a change in the magnetic field between the gates, and removes an alternating magnetic field component from the induced current.

波形記憶装置205は、メモリで構成され、ノートPCやスチール缶などの、検知ゲート101が磁性ワイヤ102を検知する際にノイズ源となるノイズ源の検知回路204で検知されて交番磁界成分が除去された信号波形を記憶する。   The waveform storage device 205 is configured by a memory and removes an alternating magnetic field component detected by a noise source detection circuit 204 that becomes a noise source when the detection gate 101 detects the magnetic wire 102 such as a notebook PC or a steel can. The signal waveform thus recorded is stored.

信号処理回路206は、検知回路204で処理された信号や演算回路207より演算された信号波形に、磁性ワイヤ102から発せられる急峻な磁気パルスに対応したパルス信号があるか否かを判定する。   The signal processing circuit 206 determines whether or not the signal processed by the detection circuit 204 or the signal waveform calculated by the arithmetic circuit 207 includes a pulse signal corresponding to a steep magnetic pulse emitted from the magnetic wire 102.

演算回路207は、検知回路204で処理された信号波形とあらかじめ波形記憶装置205で記憶されたノイズ源の信号波形とを演算処理して、ノイズ源による影響をなくした信号波形を算出する。   The arithmetic circuit 207 performs arithmetic processing on the signal waveform processed by the detection circuit 204 and the signal waveform of the noise source stored in advance by the waveform storage device 205 to calculate a signal waveform that is free from the influence of the noise source.

平均波形算出回路208は、ノイズ源の波形信号が測定される際に、複数の被測定位置で測定される波形信号の平均の波形信号を算出する処理を行う。   The average waveform calculation circuit 208 performs processing for calculating an average waveform signal of waveform signals measured at a plurality of measurement positions when the waveform signal of the noise source is measured.

このように構成される検知ゲート101の間を、磁性ワイヤ102が付与された記録紙103とノートPC209とを両方一緒に持って通過しようとすると、検知回路204で検知された信号に磁性ワイヤ102に対応するパルス信号がないと、検知回路204で処理された信号から波形記憶装置205に記憶されたノートPC209のノイズ信号波形が減算される処理が演算回路207で行なわれ、演算回路207で処理された信号に磁性ワイヤ102に対応するパルス信号が信号処理回路206で検知されて、検知ゲート101間にある磁性ワイヤ102の存在を精度良く検知することができる。   When the recording paper 103 provided with the magnetic wire 102 and the notebook PC 209 are both passed between the detection gates 101 configured as described above, the signal detected by the detection circuit 204 is converted into the magnetic wire 102. If there is no pulse signal corresponding to, the noise signal waveform of the notebook PC 209 stored in the waveform storage device 205 is subtracted from the signal processed by the detection circuit 204 by the arithmetic circuit 207 and processed by the arithmetic circuit 207. The pulse signal corresponding to the magnetic wire 102 is detected by the signal processing circuit 206 in the received signal, and the presence of the magnetic wire 102 between the detection gates 101 can be detected with high accuracy.

次に、検知回路204によって処理された信号波形が演算回路207で演算処理されて磁性ワイヤ102のパルス信号が得られるまでの信号波形について図3を参照して説明する。   Next, the signal waveform until the signal waveform processed by the detection circuit 204 is arithmetically processed by the arithmetic circuit 207 to obtain the pulse signal of the magnetic wire 102 will be described with reference to FIG.

図3は各種信号波形を示した図であり、図3(a)は検知ゲート101間にノイズ源がなく磁性ワイヤ102が付与された記録紙103だけが存在した場合に検知回路204より得られる信号波形を示す図であり、図3(b)は検知ゲート101間にノイズ源であるノートPC209だけが存在した場合に検知回路204より得られる信号波形を示す図であり、図3(c)は検知ゲート101間に記録紙103とノートPC209とが存在した場合に検知回路204より得られる信号波形を示す図であり、図3(d)は図3(c)に示す記録紙103とノートPC209とを検知した信号波形から図3(b)に示すノートPC209の信号波形を減算する処理が演算回路207で行われた後に得られる信号波形である。   FIG. 3 is a diagram showing various signal waveforms. FIG. 3A is obtained from the detection circuit 204 when there is only a recording paper 103 to which the magnetic wire 102 is applied without a noise source between the detection gates 101. FIG. 3B is a diagram illustrating a signal waveform, and FIG. 3B is a diagram illustrating a signal waveform obtained from the detection circuit 204 when only the notebook PC 209 that is a noise source exists between the detection gates 101. FIG. 3D is a diagram showing a signal waveform obtained from the detection circuit 204 when the recording paper 103 and the notebook PC 209 exist between the detection gates 101, and FIG. 3D shows the recording paper 103 and the notebook shown in FIG. This is a signal waveform obtained after the processing for subtracting the signal waveform of the notebook PC 209 shown in FIG. 3B from the signal waveform detected by the PC 209 is performed by the arithmetic circuit 207.

図3(a)に示すように、検知ゲート101間に磁性ワイヤ102が付与された記録紙103だけ存在する場合には、磁性ワイヤ102に対応する磁気パルスが検知回路204より得られる。   As shown in FIG. 3A, when only the recording paper 103 provided with the magnetic wire 102 exists between the detection gates 101, a magnetic pulse corresponding to the magnetic wire 102 is obtained from the detection circuit 204.

図3(b)に示すように、検知ゲート101間にノートPC209だけが存在する場合には、ノートPC209によるノイズ波形が検知回路204より得られ、このノイズ波形がノートPC209によるノイズ波形として波形記憶部205に記憶される。   As shown in FIG. 3B, when only the notebook PC 209 exists between the detection gates 101, a noise waveform by the notebook PC 209 is obtained from the detection circuit 204, and this noise waveform is stored as a noise waveform by the notebook PC 209. Stored in the unit 205.

また、検知ゲート101間に、記録紙103とノートPC209とが一緒に持ち込まれると、検知回路204より得られる信号波形は、図3(c)に示すような磁性ワイヤ102の信号波形とノートPC209のノイズ波形とが重なったような信号波形が得られる。   When the recording paper 103 and the notebook PC 209 are brought together between the detection gates 101, the signal waveform obtained from the detection circuit 204 is the signal waveform of the magnetic wire 102 and the notebook PC 209 as shown in FIG. A signal waveform that overlaps with the noise waveform is obtained.

検知ゲート101では、ノイズ源の波形を記憶する処理ではなく通常の記録紙103の検知を目的とした使用状況において、図3(c)のような磁性ワイヤ102が検知できない信号波形が検知回路204より得られると、検知回路より得られた信号波形から波形記憶部205で記憶された通過が想定される物体(ここではノートPC209)の信号波形を減算する処理が演算回路207で行われる。   In the detection gate 101, a signal waveform that cannot be detected by the magnetic wire 102, as shown in FIG. 3C, is detected in a detection circuit 204 in a usage situation for the purpose of detecting the normal recording paper 103 instead of processing for storing the waveform of the noise source. If obtained, the arithmetic circuit 207 performs processing for subtracting the signal waveform of the object (here, the notebook PC 209) stored in the waveform storage unit 205 from the signal waveform obtained from the detection circuit.

このように演算回路207で減算処理された信号波形からは、図3(d)に示すように、磁性ワイヤ102に対応するパルス信号が検知され、記録紙103とノートPC209が検知ゲート101に一緒に持ち込まれても記録紙103が検知される。   As shown in FIG. 3D, a pulse signal corresponding to the magnetic wire 102 is detected from the signal waveform subtracted by the arithmetic circuit 207 as described above, and the recording paper 103 and the notebook PC 209 are connected to the detection gate 101 together. The recording paper 103 is detected even if it is brought in.

次に、ノイズ源となるノートPC209やスチール缶等の信号波形があらかじめ測定されて波形記憶装置205に記憶される様子について図4を参照して説明を行なう。   Next, how signal waveforms of a notebook PC 209, a steel can, and the like that are noise sources are measured in advance and stored in the waveform storage device 205 will be described with reference to FIG.

図4は、ノートPC209やスチール缶等のノイズ源の信号波形があらかじめ測定されて記憶される様子について示す図であり、図4(a)は信号波形が記憶される際の検知ゲート101におけるノートPC209の測定される位置を示した模式図であり、図4(b)はノートPC209の信号波形が測定されるときにノートPC209の向きの基準を示すノートPC209につけられた矢印401を示す模式図であり、図4(c)はノートPC209の向きがX軸方向(矢印401がX軸方向)に向いた状態での各被測定位置で測定される信号波形のノイズ成分の磁界強度の大きさを示したグラフであり、図4(d)はノートPC209の向きがY軸方向(矢印401がY軸方向)に向いた状態での各被測定位置で測定される信号波形のノイズ成分の磁界強度の大きさを示したグラフであり、図4(e)はノートPC209の向きがZ軸方向(矢印401がZ軸方向)に向いた状態での各被測定位置で測定される信号波形のノイズ成分の磁界強度の大きさを示したグラフである。   FIG. 4 is a diagram illustrating a state in which a signal waveform of a noise source such as a notebook PC 209 or a steel can is measured and stored in advance, and FIG. 4A is a note in the detection gate 101 when the signal waveform is stored. FIG. 4B is a schematic diagram showing a position where the PC 209 is measured, and FIG. 4B is a schematic diagram showing an arrow 401 attached to the notebook PC 209 indicating a reference direction of the notebook PC 209 when the signal waveform of the notebook PC 209 is measured. FIG. 4C shows the magnitude of the magnetic field strength of the noise component of the signal waveform measured at each measured position when the direction of the notebook PC 209 is in the X-axis direction (the arrow 401 is in the X-axis direction). FIG. 4D is a graph of signal waveforms measured at each measurement position in a state where the orientation of the notebook PC 209 is in the Y-axis direction (the arrow 401 is in the Y-axis direction). 4E is a graph showing the magnitude of the magnetic field strength of the component, and FIG. 4E is measured at each measurement position in a state where the direction of the notebook PC 209 is directed in the Z-axis direction (the arrow 401 is the Z-axis direction). 6 is a graph showing the magnitude of the magnetic field strength of the noise component of the signal waveform.

ノイズ源となるノートPC209の信号波形を波形記憶装置205に記憶させるために、検知ゲート101において、図4(a)に示すようにゲート間の中心点上のX−Z平面に複数の被測定位置が設けられ、その被測定位置でノートPC209の信号波形が測定される。   In order to store the signal waveform of the notebook PC 209 that is a noise source in the waveform storage device 205, the detection gate 101 has a plurality of measured objects on the XZ plane on the center point between the gates as shown in FIG. A position is provided, and the signal waveform of the notebook PC 209 is measured at the position to be measured.

複数の被測定位置を設けることで、ノイズ成分の磁界強度の大きさが最大となると予想されるゲート近傍での値や、ノイズ成分の磁界強度の大きさが最小となると予想されるゲート中央での値を測定することができる。   By providing multiple positions to be measured, the value near the gate where the magnitude of the magnetic field strength of the noise component is expected to be maximum, or at the center of the gate where the magnitude of the magnetic field strength of the noise component is expected to be minimum Can be measured.

また、ノートPC209のノイズ信号波形が各被測定位置で測定されるときにノートPC209が向く方向によってもノートPC209のノイズ信号波形が異なる為、ノートPC209はXYZの各軸方向に向けられて測定され、図4(b)に示す矢印401はその時のノートPC209の向きを明確にするためのものである。   Further, since the noise signal waveform of the notebook PC 209 is different depending on the direction in which the notebook PC 209 faces when the noise signal waveform of the notebook PC 209 is measured at each position to be measured, the notebook PC 209 is measured with being directed in the respective XYZ axis directions. The arrow 401 shown in FIG. 4B is for clarifying the orientation of the notebook PC 209 at that time.

ノートPC209の方向を変えて測定されたノートPC209の信号波形のノイズ成分の磁界強度の大きさを示すグラフが図4(c)、(d)、(e)に示すグラフとなる。   Graphs showing the magnitude of the magnetic field strength of the noise component of the signal waveform of the notebook PC 209 measured by changing the direction of the notebook PC 209 are shown in FIGS. 4C, 4D, and 4E.

図4(c)に示すグラフより、ノートPC209がX軸方向に向けられて測定されたときの、ノイズ成分の磁界強度の大きさの最大値と最小値とが判明し、最大値が測定された測定位置で測定されて検知回路204より得られる信号波形がX軸方向に向けられた最大信号波形として、また、最小値が測定された測定位置で測定されて検知回路204より得られる信号波形がX軸方向に向けられた最小信号波形として波形記憶装置205に記憶される。   From the graph shown in FIG. 4C, the maximum value and the minimum value of the magnetic field strength of the noise component when the notebook PC 209 is measured in the X-axis direction are determined, and the maximum value is measured. The signal waveform measured from the measurement position and obtained from the detection circuit 204 is the maximum signal waveform directed in the X-axis direction, and the signal waveform obtained from the detection circuit 204 is measured at the measurement position where the minimum value is measured. Is stored in the waveform storage device 205 as a minimum signal waveform directed in the X-axis direction.

同様に、図4(d)に示すグラフより、ノートPC209がY軸方向に向けられて測定されたときの、ノイズ成分の磁界強度の大きさの最大値と最小値とが判明するので、最大値が測定された測定位置で測定されて検知回路204より得られる信号波形がY軸方向に向けられた最大信号波形として、また、最小値が測定された測定位置で測定されて検知回路204より得られる信号波形がY軸方向に向けられた最小信号波形として波形記憶装置205に記憶される。   Similarly, the maximum value and the minimum value of the magnetic field strength of the noise component when the notebook PC 209 is measured in the Y-axis direction are determined from the graph shown in FIG. The signal waveform obtained from the detection circuit 204 measured at the measurement position where the value is measured is measured as the maximum signal waveform directed in the Y-axis direction, and is measured at the measurement position where the minimum value is measured. The obtained signal waveform is stored in the waveform storage device 205 as a minimum signal waveform directed in the Y-axis direction.

同様に、図4(e)に示すグラフより、ノートPC209がZ軸方向に向けられて測定されたときの、ノイズ成分の磁界強度の大きさの最大値と最小値とが判明するので、最大値が測定された測定位置で測定されて検知回路204より得られる信号波形がZ軸方向に向けられた最大信号波形として、また、最小値が測定された測定位置で測定されて検知回路204より得られる信号波形がZ軸方向に向けられた最小信号波形として波形記憶装置205に記憶される。   Similarly, the maximum value and the minimum value of the magnetic field strength of the noise component when the notebook PC 209 is measured in the Z-axis direction are determined from the graph shown in FIG. The signal waveform obtained from the detection circuit 204 measured at the measurement position where the value is measured is measured as the maximum signal waveform directed in the Z-axis direction, and is measured at the measurement position where the minimum value is measured. The obtained signal waveform is stored in the waveform storage device 205 as a minimum signal waveform directed in the Z-axis direction.

同様に、図4(c)、(d)、(e)に示すグラフより、ノートPC209が方向に依存しないときの、ノイズ成分の磁界強度の大きさの最大値と最小値とが判明するので、最大値が測定された測定位置で測定されて検知回路204より得られる信号波形が方向に依存しない最大信号波形として、また、最小値が測定された測定位置で測定されて検知回路204より得られる信号波形が方向に依存しない最小信号波形として波形記憶装置205に記憶される。   Similarly, from the graphs shown in FIGS. 4C, 4D, and 4E, the maximum value and the minimum value of the magnitude of the magnetic field strength of the noise component when the notebook PC 209 does not depend on the direction are found. The signal waveform obtained from the detection circuit 204 measured at the measurement position where the maximum value is measured is obtained as the maximum signal waveform independent of the direction, or obtained from the detection circuit 204 as measured at the measurement position where the minimum value is measured. The stored signal waveform is stored in the waveform storage device 205 as a minimum signal waveform independent of the direction.

また、ノートPC209がX軸方向に向けられて各被測定位置で測定されたときの検知回路204より得られる信号波形より平均的な信号波形を求める処理が平均波形算出回路208で行なわれ、平均波形算出回路208で算出された平均信号波形が、ノートPC209がX軸方向に向いたときの平均信号波形として波形記憶装置205に記憶される。   Further, the average waveform calculation circuit 208 performs processing for obtaining an average signal waveform from the signal waveform obtained from the detection circuit 204 when the notebook PC 209 is directed in the X-axis direction and measured at each measurement position. The average signal waveform calculated by the waveform calculation circuit 208 is stored in the waveform storage device 205 as an average signal waveform when the notebook PC 209 faces in the X-axis direction.

また、ノートPC209がY軸方向に向けられて各被測定位置で測定されたときの検知回路204より得られる信号波形より平均的な信号波形を求める処理が平均波形算出回路208で行われ、平均波形算出回路208で算出された平均信号波形が、ノートPC209がY軸方向に向いたときの平均信号波形として波形記憶装置205に記憶される。   Further, the average waveform calculation circuit 208 performs processing for obtaining an average signal waveform from the signal waveform obtained from the detection circuit 204 when the notebook PC 209 is oriented in the Y-axis direction and measured at each measurement position. The average signal waveform calculated by the waveform calculation circuit 208 is stored in the waveform storage device 205 as an average signal waveform when the notebook PC 209 faces in the Y-axis direction.

また、ノートPC209がZ軸方向に向けられて各被測定位置で測定されたときの検知回路204より得られる信号波形より平均的な信号波形を求める処理が平均波形算出回路208で行われ、平均波形算出回路208で算出された平均信号波形が、ノートPC209がZ軸方向にむいたときの平均信号波形として波形記憶装置205に記憶される。   Further, the average waveform calculation circuit 208 performs processing for obtaining an average signal waveform from the signal waveform obtained from the detection circuit 204 when the notebook PC 209 is oriented in the Z-axis direction and measured at each measurement position. The average signal waveform calculated by the waveform calculation circuit 208 is stored in the waveform storage device 205 as an average signal waveform when the notebook PC 209 is peeled in the Z-axis direction.

また、ノートPC209がX軸、Y軸、Z軸方向に向けられて各被測定位置で測定されて検知回路204で得られる信号波形より平均的な信号波形を求める処理が平均波形算出回路208で行なわれ、平均波形算出回路208で算出された平均信号波形が、ノートPC209の方向に依存しない平均信号波形として波形記憶装置205に記憶される。   Further, the average waveform calculation circuit 208 is a process for obtaining an average signal waveform from the signal waveform obtained by the detection circuit 204 by measuring the notebook PC 209 in the X-axis, Y-axis, and Z-axis directions and measuring at each measurement position. The average signal waveform calculated by the average waveform calculation circuit 208 is stored in the waveform storage device 205 as an average signal waveform independent of the direction of the notebook PC 209.

このようにして、ノートPC209の方向に依存しない最小信号波形、最大信号波形、平均信号波形と、ノートPC209のXYZの各方向における最小信号波形、最大信号波形、平均信号波形とが波形記憶装置205に記憶される。   In this way, the minimum signal waveform, maximum signal waveform, and average signal waveform that do not depend on the direction of the notebook PC 209, and the minimum signal waveform, maximum signal waveform, and average signal waveform in each of the XYZ directions of the notebook PC 209 are stored in the waveform storage device 205. Is remembered.

次に、検知ゲート101の検知回路204で信号波形が検知された際に、演算回路207で演算処理されて、磁性ワイヤ102が発する磁気パルスに対応したパルス信号が検知される処理について図5を参照して説明を行なう。   Next, FIG. 5 shows a process for detecting a pulse signal corresponding to a magnetic pulse emitted from the magnetic wire 102 when the signal waveform is detected by the detection circuit 204 of the detection gate 101 and is calculated by the calculation circuit 207. The description will be given with reference to FIG.

図5は、検知回路204で検知された信号波形が演算回路207で演算処理されて、磁性ワイヤ102が発する磁気パルスに対応したパルス信号が検知される処理の処理フローについて示したフローチャートである。   FIG. 5 is a flowchart showing a processing flow of processing in which a signal waveform detected by the detection circuit 204 is subjected to arithmetic processing by the arithmetic circuit 207 and a pulse signal corresponding to a magnetic pulse emitted from the magnetic wire 102 is detected.

物体が検知ゲート101に進入し、検知回路204に交番磁界成分以外の信号波形が検知されると(ステップ501)、検知された信号波形に、検知ゲート101の通過が禁止された記録紙103に付与される磁性ワイヤ102が発する磁気パルスに対応したパルス信号があるか否かが信号処理回路206でチェックされ(ステップ502)、磁性ワイヤ102のパルス信号が検知されない場合は(ステップ502でNO)、検知回路204で検知された信号が波形記憶装置205に記憶されたノイズ源(ノートPC209)の信号波形と演算処理される(ステップ503)。   When an object enters the detection gate 101 and a signal waveform other than the alternating magnetic field component is detected by the detection circuit 204 (step 501), the detected signal waveform is recorded on the recording paper 103 that is prohibited from passing through the detection gate 101. The signal processing circuit 206 checks whether or not there is a pulse signal corresponding to the magnetic pulse emitted by the magnetic wire 102 to be applied (step 502). If the pulse signal of the magnetic wire 102 is not detected (NO in step 502). The signal detected by the detection circuit 204 is arithmetically processed with the signal waveform of the noise source (notebook PC 209) stored in the waveform storage device 205 (step 503).

そして、ステップ503で演算処理された信号波形に、磁性ワイヤ102のパルス信号があるか否かが信号処理回路206でチェックされ(ステップ504)、磁性ワイヤ102のパルス信号が検知されない場合は(ステップ504でNO)、検知回路204で検知された信号が、波形記憶装置205に記憶されたノートPC209とは別のノイズ源(スチール缶)の信号波形と演算処理される(ステップ505)。   Then, the signal processing circuit 206 checks whether or not the signal waveform calculated in step 503 includes the pulse signal of the magnetic wire 102 (step 504), and if the pulse signal of the magnetic wire 102 is not detected (step 504). The signal detected by the detection circuit 204 is arithmetically processed with the signal waveform of a noise source (steel can) different from the notebook PC 209 stored in the waveform storage device 205 (step 505).

そして、ステップ505でスチール缶の信号波形と演算処理された信号波形に、磁性ワイヤ102のパルス信号があるか否かが信号処理回路206でチェックされ(ステップ506)、磁性ワイヤ102のパルス信号が検知されない場合は(ステップ506でNO)、検知回路204で検知された信号が、今度は、ノートPC209の信号波形とスチール缶の信号波形とが加算されて合成された信号波形と演算処理される(ステップ507)。   Then, in step 505, the signal processing circuit 206 checks whether or not the signal waveform of the steel can and the signal waveform obtained by the calculation processing include the pulse signal of the magnetic wire 102 (step 506). If it is not detected (NO in step 506), the signal detected by the detection circuit 204 is now processed into a signal waveform synthesized by adding the signal waveform of the notebook PC 209 and the signal waveform of the steel can. (Step 507).

これは、検知ゲート101を通過しようとする人がノートPC209とスチール缶とを両方所持して検知ゲート101に進入することを想定した演算処理である。   This is a calculation process assuming that a person who intends to pass through the detection gate 101 has both the notebook PC 209 and the steel can and enters the detection gate 101.

ステップ507で演算処理された結果、磁性ワイヤ102のパルス信号が検知されなかったら(ステップ508でNO)、検知ゲート101間には、通過を禁止した記録紙103は進入していないとされ、報知されることはない。   If the pulse signal of the magnetic wire 102 is not detected as a result of the arithmetic processing in step 507 (NO in step 508), it is determined that the recording paper 103 prohibited from passing does not enter between the detection gates 101. It will never be done.

また、検知回路204で得られた信号波形に磁性ワイヤ102のパルス信号があった場合(ステップ502でYES)や、検知回路204で得られた信号波形がノートPC209の信号波形と演算処理された信号波形に磁性ワイヤ102のパルス信号があった場合(ステップ504でYES)や、検知回路204で得られた信号波形がスチール缶の信号波形と演算処理された信号波形に磁性ワイヤ102のパルス信号があった場合(ステップ506でYES)や、検知回路204で得られた信号波形がノートPC209の信号波形とスチール缶の信号波形とが加算されて合成された信号波形と演算処理された信号波形に磁性ワイヤ102のパルス信号が検出された場合(ステップ508でYES)には、検知ゲート101が備える図示しない報知ブザーが作動して、通過が禁止された記録紙103が検知されたことが報知される(ステップ509)。   Further, when the signal waveform obtained by the detection circuit 204 includes a pulse signal of the magnetic wire 102 (YES in step 502), the signal waveform obtained by the detection circuit 204 is processed with the signal waveform of the notebook PC 209. When there is a pulse signal of the magnetic wire 102 in the signal waveform (YES in step 504), or the signal waveform obtained by the detection circuit 204 is a signal waveform obtained by calculating the signal waveform of the steel can and the pulse signal of the magnetic wire 102. (YES in step 506), the signal waveform obtained by the detection circuit 204 is a signal waveform obtained by adding the signal waveform of the notebook PC 209 and the signal waveform of the steel can and the signal waveform obtained by the arithmetic processing. If the pulse signal of the magnetic wire 102 is detected (YES in step 508), the detection gate 101 is not shown. Knowledge buzzer is actuated, the passage of the recording paper 103 that is prohibited is detected is notified (step 509).

次に、演算回路207で行なわれる、検知回路204で検知された信号波形と波形記憶装置205で記憶されるノイズ源の信号波形との演算処理について図6を参照して説明を行なう。   Next, calculation processing of the signal waveform detected by the detection circuit 204 and the signal waveform of the noise source stored in the waveform storage device 205 performed by the arithmetic circuit 207 will be described with reference to FIG.

図6は、演算回路207で行なわれる演算処理について示したフローチャートであり、図6(a)は、ノイズ源自体の方向に依存しないノイズ源の平均的な信号波形との演算処理を示すフローチャートであり、図6(b)は、ノイズ源自体の向きに依存しないノイズ源の最大信号波形と最小信号波形と平均信号波形との演算処理を示すフローチャートであり、図6(c)は、ノイズ源自体の向きを考慮してXYZ方向のそれぞれの方向についての最大信号波形と最小信号波形と平均信号波形との演算処理を示すフローチャートである。   FIG. 6 is a flowchart showing arithmetic processing performed by the arithmetic circuit 207, and FIG. 6A is a flowchart showing arithmetic processing with an average signal waveform of the noise source independent of the direction of the noise source itself. FIG. 6B is a flowchart showing a calculation process of the maximum signal waveform, the minimum signal waveform, and the average signal waveform of the noise source that does not depend on the direction of the noise source itself, and FIG. It is a flowchart which shows the calculation process of the maximum signal waveform, minimum signal waveform, and average signal waveform about each direction of XYZ direction in consideration of direction of itself.

図5に示すフローチャートにおいて、ステップ502、505、507、509で行なわれる演算処理は、その演算処理において図6(a)、(b)、(c)に示すように3通りのやり方がある。   In the flowchart shown in FIG. 5, the arithmetic processing performed in steps 502, 505, 507, and 509 has three methods as shown in FIGS. 6 (a), (b), and (c).

図6(a)に示すように、ノイズ源自体の方向に依存しないノイズ源の平均的な信号波形との演算処理においては、検知回路204で検知された信号波形が、波形記憶装置205に記憶されるノイズ源自体の方向に依存しないノイズ源の平均的な信号波形で減算される演算処理が行なわれる(ステップ601)。   As shown in FIG. 6A, in the calculation process with the average signal waveform of the noise source that does not depend on the direction of the noise source itself, the signal waveform detected by the detection circuit 204 is stored in the waveform storage device 205. A calculation process is performed to subtract the average signal waveform of the noise source independent of the direction of the noise source itself (step 601).

また、図6(b)に示すように、ノイズ源自体の方向に依存しないノイズ源の最大信号波形と最小信号波形と平均信号波形との演算処理においては、まず検知回路204で検知された信号波形が、波形記憶装置205に記憶されるノイズ源の方向に依存しないノイズ源の最小信号波形と演算回路207で演算処理され(ステップ611)、それでも磁性ワイヤ102のパルス信号が信号処理回路206で検知されないと、次に、検知回路204で検知された信号波形は波形記憶装置205に記憶されるノイズ源の方向に依存しないノイズ源の平均信号波形と演算処理され(ステップ612)、それでも磁性ワイヤ102のパルス信号が検知されないと、次に、検知回路204で検知された信号波形は波形記憶装置206に記憶されるノイズ源の方向に依存しないノイズ源の最大信号波形と演算処理される(ステップ613)。   Further, as shown in FIG. 6B, in the arithmetic processing of the maximum signal waveform, the minimum signal waveform, and the average signal waveform of the noise source that does not depend on the direction of the noise source itself, first, the signal detected by the detection circuit 204 is detected. The waveform is calculated by the calculation circuit 207 and the minimum signal waveform of the noise source independent of the direction of the noise source stored in the waveform storage device 205 (step 611), and the pulse signal of the magnetic wire 102 is still processed by the signal processing circuit 206. If not detected, the signal waveform detected by the detection circuit 204 is then processed with the average signal waveform of the noise source independent of the direction of the noise source stored in the waveform storage device 205 (step 612). If the pulse signal 102 is not detected, then the signal waveform detected by the detection circuit 204 is a noise source stored in the waveform storage device 206. It is processing the maximum signal waveform of a noise source that is independent of the direction (Step 613).

ステップ611、612、613のいずれかの処理において信号処理回路206で磁性ワイヤ102のパルス信号が検知された場合には検知ゲート101が備える図示しない報知ブザーによって記録紙103の検知が報知される(図5のステップ509)。   When the pulse signal of the magnetic wire 102 is detected by the signal processing circuit 206 in any one of the steps 611, 612, and 613, the detection of the recording paper 103 is notified by a notification buzzer (not shown) provided in the detection gate 101 ( Step 509 in FIG.

また、図6(c)に示すように、ノイズ源自体の方向を考慮してXYZ方向のそれぞれの方向について最小信号波形と最大信号波形と平均信号波形との演算処理が行なわれるやり方では、検知回路204で検知された信号波形が、まず、ノイズ源がX方向に向いたときの最小信号波形と演算回路207で演算処理され(ステップ621)、それでも磁性ワイヤ102のパルス信号が信号処理回路206で検知されないと、次に、ノイズ源がX方向に向いたときの平均信号波形と演算回路207で演算処理され(ステップ622)、それでも磁性ワイヤ102のパルス信号が信号処理回路206で検知されないと、次に、ノイズ源がX方向に向いたときの最大信号波形と演算回路207で演算処理される(ステップ623)。   In addition, as shown in FIG. 6C, in the method in which the calculation processing of the minimum signal waveform, the maximum signal waveform, and the average signal waveform is performed in each of the XYZ directions in consideration of the direction of the noise source itself, detection is performed. The signal waveform detected by the circuit 204 is first processed by the calculation circuit 207 with the minimum signal waveform when the noise source is directed in the X direction (step 621), and the pulse signal of the magnetic wire 102 is still processed by the signal processing circuit 206. If the noise source is not detected in step 622, the average signal waveform when the noise source is directed in the X direction and the arithmetic circuit 207 are processed (step 622), and the pulse signal of the magnetic wire 102 is still not detected by the signal processing circuit 206. Next, the maximum signal waveform when the noise source is directed in the X direction and the arithmetic circuit 207 perform arithmetic processing (step 623).

ステップ623においても磁性ワイヤ102のパルス信号が信号処理回路206で検知されないと、次に、検知回路204で検知された信号波形は、ノイズ源がY方向に向いたときの最小信号波形と演算処理され(ステップ624)、それでも磁性ワイヤ102のパルス信号が検知されないと、次に、ノイズ源がY方向に向いたときの平均信号波形と演算処理され(ステップ625)、それでも磁性ワイヤ102のパルス信号が検知されないと、次に、ノイズ源がY方向に向いたときの最大信号波形と演算処理される(ステップ626)。   Even in step 623, if the pulse signal of the magnetic wire 102 is not detected by the signal processing circuit 206, then the signal waveform detected by the detection circuit 204 is calculated with the minimum signal waveform when the noise source is directed in the Y direction. If the pulse signal of the magnetic wire 102 is still not detected (step 624), the average signal waveform when the noise source is directed in the Y direction is processed next (step 625). If the noise source is not detected, the maximum signal waveform when the noise source is directed in the Y direction is processed (step 626).

ステップ626においても磁性ワイヤ102のパルス信号が検知されないと、次に、検知回路204で検知された信号波形は、ノイズ源がZ方向に向いたときの最小信号波形と演算処理され(ステップ627)、それでも磁性ワイヤ102のパルス信号が検知されないと、次に、ノイズ源がZ方向に向いたときの平均信号波形と演算処理され(ステップ628)、それでも磁性ワイヤ102のパルス信号が検知されないと、次に、ノイズ源がZ方向に向いたときの最大信号波形と演算処理される(ステップ629)。   If the pulse signal of the magnetic wire 102 is not detected in step 626, the signal waveform detected by the detection circuit 204 is then processed with the minimum signal waveform when the noise source is directed in the Z direction (step 627). If the pulse signal of the magnetic wire 102 is still not detected, the average signal waveform when the noise source is directed in the Z direction is processed (step 628). If the pulse signal of the magnetic wire 102 is still not detected, Next, the maximum signal waveform when the noise source is directed in the Z direction is processed (step 629).

ステップ621から629までのいずれかの処理において、磁性ワイヤ102のパルス信号が検知された場合には検知ゲート101が備える図示しない報知ブザーによって記録紙103の検知が報知される(図5のステップ509)。   In any of the processes from step 621 to 629, when the pulse signal of the magnetic wire 102 is detected, the detection buzzer provided in the detection gate 101 notifies the detection of the recording paper 103 (step 509 in FIG. 5). ).

このようにノイズ源の信号波形との演算処理については、ノイズ源の平均信号波形との演算処理、或いは、ノイズ源の最小信号波形、最大信号波形、平均信号波形との演算処理、或いは、ノイズ源がXYZ軸の各方向を向いたときの各方向におけるノイズ源の最小信号波形、最大信号波形、平均信号波形との演算処理の3通りのやり方があり、どのやり方が行なわれてもよい。   As described above, the calculation processing with the noise source signal waveform is performed with the noise source average signal waveform, or the noise source minimum signal waveform, maximum signal waveform, average signal waveform calculation processing, or noise There are three ways of calculation processing with the minimum signal waveform, maximum signal waveform, and average signal waveform of the noise source in each direction when the source faces each direction of the XYZ axes, and any method may be performed.

以上述べたように、磁性ワイヤ102を付与した記録紙103が検知ゲート101に進入時に、同時に進入するノイズ源となる金属物(ノートPC、スチール缶)等により記録紙103が検知できなくなることを防止するため、あらかじめこれらのノイズ源となる金属物等のノイズ波形を記憶し、検知される信号波形と記憶したノイズ源の信号波形とを演算処理することによって高い精度で磁性ワイヤ102が付与された記録紙103を検知することができる。   As described above, when the recording paper 103 provided with the magnetic wire 102 enters the detection gate 101, the recording paper 103 cannot be detected by a metal object (notebook PC, steel can) or the like that simultaneously enters noise. In order to prevent this, a magnetic waveform such as a metal object serving as a noise source is stored in advance, and the magnetic wire 102 is provided with high accuracy by performing arithmetic processing on the detected signal waveform and the stored signal waveform of the noise source. The recording sheet 103 can be detected.

なお、ノイズ源の信号波形を測定する際に、図4(a)に示したようにXーZ平面上の複数の被測定位置でノートPC209の信号波形を測定するように説明したが、測定するX−Z平面をY軸方向に平行移動させてY軸方向の様々な位置より信号波形が測定されるようにして、検知ゲート101間の全空間において信号波形が測定されるようにしてもよい。   In the measurement of the signal waveform of the noise source, the signal waveform of the notebook PC 209 is measured at a plurality of measurement positions on the X-Z plane as shown in FIG. The X-Z plane to be translated is translated in the Y-axis direction so that the signal waveform is measured from various positions in the Y-axis direction, and the signal waveform is measured in the entire space between the detection gates 101. Good.

なお、図6を参照して説明した、検知回路204で検知された信号波形と波形記憶装置205に記憶されるノイズ源の信号波形との演算処理は、検知回路204で検知された信号波形からノイズ源の信号波形が減算されるように説明したが、単に減算されるのではなく、ノイズ源の信号波形に特定の係数を掛ける処理を行ってから、検知回路204で検知された信号波形より減算するようにしてもよい。   The calculation processing of the signal waveform detected by the detection circuit 204 and the signal waveform of the noise source stored in the waveform storage device 205 described with reference to FIG. 6 is performed from the signal waveform detected by the detection circuit 204. Although the signal waveform of the noise source has been described as being subtracted, the signal waveform detected by the detection circuit 204 is not simply subtracted, but a process of multiplying the signal waveform of the noise source by a specific coefficient. You may make it subtract.

なお、本実施例においては検知ゲート101で磁性ワイヤ102が付与された記録紙103を検知するように説明したが、ゲート間に進入したことを検知する物体は磁性ワイヤ102が付与されていれば特に記録紙という媒体に限定しない。   In this embodiment, the detection gate 101 has been described as detecting the recording paper 103 to which the magnetic wire 102 has been applied. However, if the object that detects that the magnetic wire 102 has entered between the gates has been provided with the magnetic wire 102, In particular, the present invention is not limited to a recording paper medium.

なお、記録紙103に付与される磁性ワイヤ102は大バルクハウゼン効果を有する強磁性体であればよく、特にワイヤという媒体には限定されない。   The magnetic wire 102 applied to the recording paper 103 may be a ferromagnetic material having a large Barkhausen effect, and is not particularly limited to a medium called a wire.

この発明は、磁性ワイヤが付与された記録紙等を検知する検知ゲートにおいて利用可能である。   The present invention can be used in a detection gate that detects a recording sheet or the like provided with a magnetic wire.

この発明によれば、想定されるノイズ源の信号波形をあらかじめ記憶しておき、検知回路より得られる信号波形から記憶したノイズ源の信号波形を減算する演算処理を行うことで、検知ゲートに記録紙とノイズ源とが同時に持ち込まれても高い精度で磁性ワイヤが付与された記録紙を検知することができる。   According to the present invention, the signal waveform of the assumed noise source is stored in advance, and the processing is performed by subtracting the stored signal waveform of the noise source from the signal waveform obtained from the detection circuit, thereby recording the signal waveform on the detection gate. Even when the paper and the noise source are brought in at the same time, the recording paper provided with the magnetic wire can be detected with high accuracy.

検知ゲート101を示す模式図。The schematic diagram which shows the detection gate 101. FIG. 検知ゲート101の構成を示すブロック図。FIG. 2 is a block diagram showing a configuration of a detection gate 101. 演算処理される信号波形を示した図。The figure which showed the signal waveform processed. ノイズ源の信号波形が測定されて記憶される様子について示す図。The figure which shows a mode that the signal waveform of a noise source is measured and memorize | stored. 検知ゲート101で行なわれる、検知された信号波形への処理を示すフローチャート。The flowchart which shows the process to the detected signal waveform performed in the detection gate 101. FIG. 検知された信号が波形記憶装置205に記憶された信号波形と演算処理されるフローを示すフローチャート。The flowchart which shows the flow by which the detected signal is arithmetically processed with the signal waveform memorize | stored in the waveform memory | storage device 205. FIG.

符号の説明Explanation of symbols

101 検知ゲート
102 磁性ワイヤ
103 記録紙
201 励磁コイル
202 検知コイル
203 励磁回路
204 検知回路
205 波形記憶装置
206 信号処理回路
207 演算回路
208 平均波形算出回路
209 ノートPC
DESCRIPTION OF SYMBOLS 101 Detection gate 102 Magnetic wire 103 Recording paper 201 Excitation coil 202 Detection coil 203 Excitation circuit 204 Detection circuit 205 Waveform memory device 206 Signal processing circuit 207 Arithmetic circuit 208 Average waveform calculation circuit 209 Notebook PC

Claims (6)

交番磁界を発生させる励磁手段と、
前記励磁手段により発生された交番磁界内の該交番磁界以外の信号を検知する検知手段と、
前記検知手段で検知した信号に、前記交番磁界内を通過する被検知物体に付与された磁性体の磁化反転によるパルス信号があるかを確認する確認手段と、
前記被検知物体に付与された磁性体とは異なる既知の物体が前記交番磁界内を通過したに前記検知手段で検知される信号を予め記憶する記憶手段と、
前記確認手段で前記パルス信号が確認されない場合に、前記検知手段で検知した信号から前記記憶手段に記憶した信号を減算する演算を行う演算手段と、
前記確認手段による確認又は前記演算手段による演算によって前記パルス信号が確認された場合に、前記交番磁界内を通過する前記被検知物体を検知する物体検知手段と
を具備する物体検知装置。
Excitation means for generating an alternating magnetic field;
Detecting means for detecting a signal other than the alternating magnetic field in the alternating magnetic field generated by the exciting means ;
Confirmation means for confirming whether the signal detected by the detection means has a pulse signal due to magnetization reversal of the magnetic material applied to the detected object passing through the alternating magnetic field;
A storage means for said known object different from the magnetic material has been applied to the detection object body stores in advance the signal sensed by the sensing means when passing through the said alternating magnetic field,
An arithmetic means for performing an operation of subtracting the signal stored in the storage means from the signal detected by the detection means when the pulse signal is not confirmed by the confirmation means;
An object detection apparatus comprising: an object detection unit configured to detect the detected object passing through the alternating magnetic field when the pulse signal is confirmed by confirmation by the confirmation unit or calculation by the calculation unit.
前記記憶手段は、
複数の既知の物体に発生する複数の信号を予め記憶し、
前記演算手段は、
前記検知手段で検知した信号から前記記憶手段に記憶した1または複数の信号をそれぞれ減算する演算を行う
請求項1記載の物体検知装置。
The storage means
Pre-store multiple signals generated on multiple known objects,
It said Starring Sante stage,
The object detection apparatus according to claim 1, wherein an operation of subtracting one or a plurality of signals stored in the storage unit from a signal detected by the detection unit is performed.
前記記憶手段は、
前記既知の物体の通過向きに対応して前記検知手段で検知される複数の信号を該既知の物体に対応して複数記憶し、
前記演算手段は、
前記検知手段で検知した信号から前記記憶手段に記憶した1または複数の信号をそれぞれ減算する演算を行う
請求項1または2記載の物体検知装置。
The storage means
Storing a plurality of signals detected by the detecting means corresponding to the passing direction of the known object, corresponding to the known object;
It said Starring Sante stage,
The object detection apparatus according to claim 1, wherein a calculation is performed to subtract one or more signals stored in the storage unit from signals detected by the detection unit.
前記記憶手段は、
前記既知の物体の通過位置に対応して前記検知手段で検知される複数の信号を該既知の物体に対応して複数記憶し、
前記演算手段は、
前記検知手段で検知した信号から前記記憶手段に記憶した1または複数の信号をそれぞれ減算する演算を行う
請求項1乃至3のいずれかに記載の物体検知装置。
The storage means
Storing a plurality of signals detected by the detecting means corresponding to the passing positions of the known objects, corresponding to the known objects;
The computing means is
The object detection apparatus according to any one of claims 1 to 3, wherein a calculation for subtracting one or a plurality of signals stored in the storage unit from a signal detected by the detection unit is performed.
前記被検知物体は、
前記励磁手段により発生された交番磁界により所定の信号を発生する所定の磁性体が付与された記録紙である
請求項1乃至4のいずれかに記載の物体検知装置。
The detected object is
The object detection apparatus according to claim 1, wherein the object detection apparatus is a recording sheet provided with a predetermined magnetic body that generates a predetermined signal by an alternating magnetic field generated by the excitation unit.
交番磁界を励磁手段で発生させ、
前記励磁手段により発生された交番磁界内の該交番磁界以外の信号を検知手段により検知し、
前記検知手段で検知した信号に、前記交番磁界内を通過する被検知物体に付与された磁性体の磁化反転によるパルス信号があるかを確認手段により確認し、
前記確認手段で前記パルス信号が確認されない場合に、前記検知手段で検知した信号から、前記被検知物体に付与された磁性体とは異なる既知の物体が前記交番磁界内を通過した時に前記検知手段で検知される信号であって予め記憶する信号を減算する演算を演算手段により行い、
前記確認手段による確認又は前記演算手段による演算によって前記パルス信号が確認された場合に、前記交番磁界内を通過する前記被検知物体を検知する物体検知方法。」
An alternating magnetic field is generated by the excitation means,
A signal other than the alternating magnetic field in the alternating magnetic field generated by the excitation means is detected by the detection means,
Confirming by the confirmation means whether the signal detected by the detection means has a pulse signal due to the magnetization reversal of the magnetic material applied to the detected object passing through the alternating magnetic field ,
When the pulse signal is not confirmed by the confirmation means, the detection means when a known object different from the magnetic material applied to the detected object passes through the alternating magnetic field from the signal detected by the detection means. a calculation for subtracting the in signal for storing in advance a signal detected conducted by Starring Sante stage,
When said pulse signal is confirmed, the object detection method of detection known the detection target object passing through the said alternating magnetic field by calculation by check or said calculation means by said confirmation means. "
JP2006192869A 2006-07-13 2006-07-13 Object detection apparatus and object detection method Expired - Fee Related JP4747974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006192869A JP4747974B2 (en) 2006-07-13 2006-07-13 Object detection apparatus and object detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006192869A JP4747974B2 (en) 2006-07-13 2006-07-13 Object detection apparatus and object detection method

Publications (2)

Publication Number Publication Date
JP2008020346A JP2008020346A (en) 2008-01-31
JP4747974B2 true JP4747974B2 (en) 2011-08-17

Family

ID=39076393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006192869A Expired - Fee Related JP4747974B2 (en) 2006-07-13 2006-07-13 Object detection apparatus and object detection method

Country Status (1)

Country Link
JP (1) JP4747974B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5428006B2 (en) * 2008-06-17 2014-02-26 国立大学法人信州大学 Magnetic foreign matter detector
JP5423023B2 (en) 2009-02-06 2014-02-19 富士ゼロックス株式会社 Object detection device
JP5691594B2 (en) * 2011-02-09 2015-04-01 富士ゼロックス株式会社 Detection device and processing system
JP5962036B2 (en) * 2012-01-31 2016-08-03 株式会社島津製作所 Magnetic detection system
KR101330203B1 (en) * 2012-03-27 2013-11-15 오오종 metal detector
CN105549090A (en) * 2015-12-17 2016-05-04 无锡信大气象传感网科技有限公司 Induction based metal detection device
CN115662383B (en) * 2022-12-22 2023-04-14 杭州爱华智能科技有限公司 Method and system for deleting main sound source, method, system and device for identifying multiple sound sources

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07117584B2 (en) * 1988-05-25 1995-12-18 日本無線株式会社 Buried object exploration equipment
JPH08185496A (en) * 1994-12-27 1996-07-16 Nhk Spring Co Ltd Data carrier, and method and device for identification
JPH09113630A (en) * 1995-10-23 1997-05-02 Japan Radio Co Ltd Locator for buried object
JP3263594B2 (en) * 1996-04-23 2002-03-04 三菱重工業株式会社 X-ray foreign matter detection device
JP2000258549A (en) * 1999-03-11 2000-09-22 Sekisui Chem Co Ltd Buried object-prospecting device
JP4529420B2 (en) * 2003-11-18 2010-08-25 富士ゼロックス株式会社 Security paper and method and apparatus for manufacturing the same

Also Published As

Publication number Publication date
JP2008020346A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
JP4747974B2 (en) Object detection apparatus and object detection method
CN102549375B (en) Eddy current inspection of case hardening depth
JP5423023B2 (en) Object detection device
RU2593677C2 (en) Electromagnetic sensor and calibration thereof
JP5586036B2 (en) Current sensor
AU4281899A (en) Apparatus for detecting metals
JP2009163336A (en) Magnetic pattern detection device
JP2008086751A5 (en)
JP5004177B2 (en) Magnetic moving body speed detector
JP6905884B2 (en) probe
JP2017150904A (en) Flaw detection device and flaw detection method
JP2008185436A (en) Method and apparatus for measuring electromagnetic characteristic of metal analyte
JP2006284191A (en) Surface defect detecting method by eddy current type sensor
EP3159854B1 (en) Coin detection system
JP2007010349A (en) Metal sensor
US20100156408A1 (en) DC magnetic field interceptor apparatus and method
JP2006293574A (en) Paper sheet discrimination device and magnetic characteristic detection device
JP2003344362A (en) Eddy current flaw detection probe and eddy current flaw detector
JP5458614B2 (en) Coin identification device
JP2008046039A (en) Object detecting device and object detection method
JP2004125526A (en) High-precision detection method of magnetic substance
JP2001324396A (en) Tightening inspection of bolt
JP2011252787A (en) Hardening quality inspection device
JP5347606B2 (en) Coin identification device
JP2006058113A (en) Metal detecting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R150 Certificate of patent or registration of utility model

Ref document number: 4747974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees