JP2017150904A - Flaw detection device and flaw detection method - Google Patents

Flaw detection device and flaw detection method Download PDF

Info

Publication number
JP2017150904A
JP2017150904A JP2016032384A JP2016032384A JP2017150904A JP 2017150904 A JP2017150904 A JP 2017150904A JP 2016032384 A JP2016032384 A JP 2016032384A JP 2016032384 A JP2016032384 A JP 2016032384A JP 2017150904 A JP2017150904 A JP 2017150904A
Authority
JP
Japan
Prior art keywords
magnetic field
flaw detection
magnetic
flaw
field strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016032384A
Other languages
Japanese (ja)
Other versions
JP6768305B2 (en
Inventor
健 安部
Takeshi Abe
健 安部
豊 新井
Yutaka Arai
豊 新井
功一 長嶋
Koichi Nagashima
功一 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Engineering Solutions Corp
Tokyo Rigaku Kensa Co Ltd
Original Assignee
Tokyo Gas Engineering Solutions Corp
Tokyo Rigaku Kensa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Engineering Solutions Corp, Tokyo Rigaku Kensa Co Ltd filed Critical Tokyo Gas Engineering Solutions Corp
Priority to JP2016032384A priority Critical patent/JP6768305B2/en
Publication of JP2017150904A publication Critical patent/JP2017150904A/en
Application granted granted Critical
Publication of JP6768305B2 publication Critical patent/JP6768305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flaw detection device capable of detecting fine variation in magnetic field intensity even when a large-intensity bias magnetic field is applied, and even if a defect or flaw due to corrosion, thickness reduction, etc., is very small or positioned at a distance.SOLUTION: The present invention relates to a flaw detection device which detects a flaw present on a surface of an analyte or in it, and the flaw detection device has magnetic generating means and a magnetic sensor measuring first magnetic field intensity as a first directional component of a magnetic field generated by the magnetic generating means, the magnetic sensor having its relative position to the magnetic generating means so adjusted that the absolute value of the first magnetic field intensity is minimum when the analyte is assumed as a standard sample previously determined to have no flaw.SELECTED DRAWING: Figure 1

Description

本発明は、探傷装置および探傷方法に関する。   The present invention relates to a flaw detection apparatus and a flaw detection method.

たとえば、特許文献1は、鉄系構造物の壁内面の腐食等の欠陥を壁の外面から容易に検査可能な「鉄系構造物の劣化診断装置」を開示する。当該「鉄系構造物の劣化診断装置」は、磁気インピーダンス効果素子にバイアス磁界用コイルを付設し、その素子の出力を検波回路に通して検出する検出回路を備え、被検査面に磁気インピーダンス効果素子を接近させた状態でスキャニングさせるものであり、被検査面に添って弾性的に変形されるフレキシブル基板部を有し、このフレキシブル基板部に磁気インピーダンス効果素子及びバイアス磁界用コイルを実装することで、充分な精度で容易に鉄系構造物の劣化が診断できるとされている。   For example, Patent Document 1 discloses an “iron structure deterioration diagnosis device” capable of easily inspecting defects such as corrosion on the wall inner surface of an iron structure from the outer surface of the wall. The "iron structure degradation diagnosis device" includes a magnetic field impedance coil and a detection circuit for detecting the output of the element through a detection circuit, and the surface to be inspected has a magnetic impedance effect. Scanning with the element approached, having a flexible substrate part that is elastically deformed along the surface to be inspected, and mounting the magneto-impedance effect element and the bias magnetic field coil on this flexible substrate part Therefore, it is said that the deterioration of the iron-based structure can be easily diagnosed with sufficient accuracy.

特開2006−329855号公報JP 2006-329855 A

特許文献1の劣化診断装置によれば、バイアス磁界の磁気回路を構成することとなる鉄系構造物に、錆等に起因する腐食や減肉が存在した場合、バイアス磁界に変化を生じ、当該変化を磁気インピーダンス効果素子により検出することで、腐食や減肉等の検出が可能となる。腐食や減肉等が微小である場合、あるいは遠方に位置する腐食や減肉等を検知しようとする場合、磁気インピーダンス効果素子からの信号は微弱になることから、バイアス磁界の強度を大きくして、磁気インピーダンス効果素子からの信号レベルを高める必要がある。   According to the degradation diagnosis device of Patent Document 1, when there is corrosion or thinning due to rust or the like in an iron-based structure that constitutes a magnetic circuit of a bias magnetic field, a change occurs in the bias magnetic field, By detecting the change by the magneto-impedance effect element, it becomes possible to detect corrosion, thinning, and the like. When corrosion or thinning is very small, or when trying to detect corrosion or thinning located far away, the signal from the magneto-impedance effect element becomes weak, so increase the strength of the bias magnetic field. It is necessary to increase the signal level from the magneto-impedance effect element.

しかし、磁気インピーダンス効果素子が感度を有する磁界強度の範囲(測定レンジ)には限界があり、バイアス磁界の強度をあまりに大きくすると、測定値が磁気インピーダンス効果素子の測定レンジを超えてしまい、磁界強度の変化を測定することができなくなる問題がある。本発明の目的は、大強度のバイアス磁界を印加する場合であっても、微小な磁界強度の変化を検出することを可能とし、腐食や減肉等に起因する欠陥や傷微が微小な場合または遠方に位置する場合でも、検出することが可能な探傷装置を提供することにある。   However, there is a limit to the range (measurement range) of the magnetic field strength that the magneto-impedance effect element has sensitivity. If the bias magnetic field intensity is too large, the measured value will exceed the measurement range of the magneto-impedance effect element, and the magnetic field strength There is a problem that it becomes impossible to measure the change of the. The object of the present invention is to detect a minute change in magnetic field strength even when a high-strength bias magnetic field is applied, and when defects and scratches caused by corrosion, thinning, etc. are minute. Another object of the present invention is to provide a flaw detection apparatus that can detect even when located far away.

上記課題を解決するために、本発明の第1の態様においては、被検体の表面または内部に存在する傷を探知する探傷装置であって、磁気発生手段と、前記磁気発生手段により生じた磁場の第1方向成分である第1磁場強度を計測する磁気センサと、を有し、前記磁気センサが、無傷であると予め判明している標準検体を前記被検体とした場合に、前記第1磁場強度の絶対値が最少になるよう前記磁気発生手段との相対位置が調整された探傷装置を提供する。   In order to solve the above-mentioned problem, in the first aspect of the present invention, there is provided a flaw detection device for detecting a flaw existing on the surface or inside of a subject, the magnetic generation means and a magnetic field generated by the magnetic generation means. A magnetic sensor that measures a first magnetic field strength that is a first direction component of the first sensor. Provided is a flaw detection apparatus whose relative position with respect to the magnetism generating means is adjusted so that the absolute value of the magnetic field intensity is minimized.

前記磁気センサが、前記第1磁場強度に加えて、前記第1方向に直交する第2方向の磁場成分である第2磁場強度、並びに、前記第1方向および前記第2方向に直交する第3方向の磁場成分である第3磁場強度、を計測するものであり、前記標準検体を前記被検体とした場合に、前記第1磁場強度および前記第2磁場強度、または、前記第1磁場強度および前記第3磁場強度の各絶対値が最少になるよう前記磁気発生手段との相対位置が調整されたものであってもよい。   In addition to the first magnetic field strength, the magnetic sensor includes a second magnetic field strength that is a magnetic field component in a second direction orthogonal to the first direction, and a third magnetic field that is orthogonal to the first direction and the second direction. A third magnetic field strength which is a magnetic field component in a direction, and when the standard specimen is the subject, the first magnetic field strength and the second magnetic field strength, or the first magnetic field strength and The relative position with respect to the magnetism generating means may be adjusted so that each absolute value of the third magnetic field intensity is minimized.

前記磁気センサが、前記被検体と前記磁気発生手段とを結ぶ最近接線上に配置されてもよい。この場合、前記最近接線は、前記被検体の表面に含まれる任意点と前記磁気発生手段におけるN極およびS極の中点とを結ぶ直線であってもよい。   The magnetic sensor may be arranged on a closest line connecting the subject and the magnetism generating unit. In this case, the closest tangent may be a straight line connecting an arbitrary point included on the surface of the subject and the midpoint of the N pole and the S pole in the magnetism generating means.

特定方向成分の磁場強度の測定が可能な複数のセンサがアレイ状またはマトリックス状に配置され、当該複数のセンサのうち、少なくとも一つが前記磁気センサであってもよい。   A plurality of sensors capable of measuring the magnetic field strength of the specific direction component may be arranged in an array or a matrix, and at least one of the plurality of sensors may be the magnetic sensor.

また、本発明の第2の態様においては、上記した探傷装置を用いた探傷方法であって、前記第1方向が表面の法線方向である被検体の前記表面に沿って前記探傷装置を移動させるステップを有し、前記探傷装置を移動させるステップにおいて前記第1磁場強度に変化が有った場合には前記傷があると判断する探傷方法を提供する。   In the second aspect of the present invention, there is provided a flaw detection method using the flaw detection apparatus described above, wherein the flaw detection apparatus is moved along the surface of the subject whose first direction is a normal direction of the surface. A flaw detection method for determining that there is a flaw when there is a change in the first magnetic field intensity in the step of moving the flaw detection apparatus.

前記磁気センサが、前記第1磁場強度に加えて、前記第1方向に直交する第2方向の磁場成分である第2磁場強度を計測するものであり、前記探傷装置を移動させるステップにおいて前記探傷装置を前記第2方向に移動させ、前記探傷装置を移動させるステップにおける前記第2磁場強度の変化により前記傷深さを推定し、前記第2磁場強度および前記第1磁場強度の変化により前記傷の幅を推定してもよい。   The magnetic sensor measures a second magnetic field strength that is a magnetic field component in a second direction orthogonal to the first direction in addition to the first magnetic field strength, and the flaw detection is performed in a step of moving the flaw detection device. The flaw depth is estimated from the change in the second magnetic field strength in the step of moving the device in the second direction and moving the flaw detection device, and the flaw is determined by the change in the second magnetic field strength and the first magnetic field strength. May be estimated.

探傷装置100の概要を示した概念図であり、(a)は上面図、(b)は側面図である。It is the conceptual diagram which showed the outline | summary of the flaw detection apparatus 100, (a) is a top view, (b) is a side view. 探傷装置100の実例を示した写真である。3 is a photograph showing an example of the flaw detection apparatus 100. 探傷装置100における磁場と磁気センサ104の位置関係を示した模式図であり、(a)は上面図、(b)は側面図、(c)は正面図である。It is the schematic diagram which showed the positional relationship of the magnetic field and the magnetic sensor 104 in the flaw detection apparatus 100, (a) is a top view, (b) is a side view, (c) is a front view. 探傷装置100における磁場と磁気センサ104の他の位置関係を示した側面模式図である。It is the side surface schematic diagram which showed the other positional relationship of the magnetic field and the magnetic sensor 104 in the flaw detection apparatus 100. FIG. 探傷装置100における磁場と磁気センサ104の他の位置関係を示した正面模式図である。It is the front schematic diagram which showed the other positional relationship of the magnetic field and the magnetic sensor 104 in the flaw detection apparatus 100. FIG. 幅10mm、深さ1mmの凹みまでの距離を変えた場合のZ方向出力の変化値を示すグラフである。It is a graph which shows the change value of the Z direction output at the time of changing the distance between the recesses of width 10mm and depth 1mm. 幅10mm、深さ3mmの凹みまでの距離を変えた場合のZ方向出力の変化値を示すグラフである。It is a graph which shows the change value of the Z direction output at the time of changing the distance between the dents of width 10mm and depth 3mm. 幅20mm、深さ1mmの凹みまでの距離を変えた場合のZ方向出力の変化値を示すグラフである。It is a graph which shows the change value of the Z direction output at the time of changing the distance between the recesses of width 20mm and depth 1mm. 幅20mm、深さ3mmの凹みまでの距離を変えた場合のZ方向出力の変化値を示すグラフである。It is a graph which shows the change value of the Z direction output at the time of changing the distance between 20 mm of width | variety and a depth of 3 mm. 幅25mm、深さ2mmの凹みまでの距離を変えた場合のZ方向出力の変化値を示すグラフである。It is a graph which shows the change value of the Z direction output at the time of changing the distance between the dents of width 25mm and depth 2mm. 幅30mm、深さ2mmの凹みまでの距離を変えた場合のZ方向出力の変化値を示すグラフである。It is a graph which shows the change value of the Z direction output at the time of changing the distance between the recesses of width 30mm and depth 2mm. 凹みが無い場合のZ方向出力の変化値を示す比較グラフである。It is a comparison graph which shows the change value of the Z direction output when there is no dent. 凹みの幅に対するZ方向出力の変化値をプロットしたグラフである。It is the graph which plotted the change value of the Z direction output with respect to the width | variety of a dent. 凹みの深さに対するZ方向出力の変化値をプロットしたグラフである。It is the graph which plotted the change value of the Z direction output with respect to the depth of a dent. 凹みの幅に対するY方向出力の変化値をプロットしたグラフである。It is the graph which plotted the change value of the Y direction output with respect to the width | variety of a dent. 凹みの深さに対するY方向出力の変化値をプロットしたグラフである。It is the graph which plotted the change value of the Y direction output with respect to the depth of a dent. 磁気発生手段の他の例を示した側面図である。It is the side view which showed the other example of the magnetic generation means. 磁気発生手段の他の例を示した側面図である。It is the side view which showed the other example of the magnetic generation means. 磁気発生手段の他の例を示した側面図である。It is the side view which showed the other example of the magnetic generation means.

図1は、本発明の一実施の形態である探傷装置100の概要を示した概念図であり、(a)は上面図、(b)は側面図である。図2は、探傷装置100の実例を示した写真である。   FIG. 1 is a conceptual diagram showing an outline of a flaw detection apparatus 100 according to an embodiment of the present invention, where (a) is a top view and (b) is a side view. FIG. 2 is a photograph showing an actual example of the flaw detection apparatus 100.

探傷装置100は、被検体200の表面または内部に存在する傷を探知する。探傷装置100は、磁気発生手段102、磁気センサ104、支持体106、センサ基板108、センサ駆動検出回路110、制御部112、表示部114を有する。被検体200は、強磁性体、常磁性体、反磁性体の何れであっても良いが、内部の傷を検知する場合には、強磁性体または常磁性体である必要がある。以下の実施の形態の説明においては、被検体200には凹み202を有するとする。   The flaw detection apparatus 100 detects a flaw existing on the surface or inside of the subject 200. The flaw detection apparatus 100 includes a magnetic generation means 102, a magnetic sensor 104, a support 106, a sensor substrate 108, a sensor drive detection circuit 110, a control unit 112, and a display unit 114. The subject 200 may be any of a ferromagnetic material, a paramagnetic material, and a diamagnetic material. However, when detecting an internal flaw, the subject 200 needs to be a ferromagnetic material or a paramagnetic material. In the following description of the embodiment, it is assumed that the subject 200 has a dent 202.

磁気発生手段102は、磁場を発生し、磁気センサ104は、磁気発生手段102により生じた磁場を計測する。支持体106は、磁気発生手段102を支持し、センサ基板108には、磁気センサ104が配置される。支持体106およびセンサ基板108は、磁気発生手段102および磁気センサ104の相対位置が変動しない程度に硬い材料で構成されることが好ましく、また、磁界への影響が小さい常磁性体であることが好ましい。支持体106として、アクリル、ポリカーボネート等のプラスチックが、センサ基板108としてエポキシ、ガラスエポキシ等の電子回路基板が例示できる。   The magnetic generation means 102 generates a magnetic field, and the magnetic sensor 104 measures the magnetic field generated by the magnetic generation means 102. The support 106 supports the magnetic generation means 102, and the magnetic sensor 104 is disposed on the sensor substrate 108. The support 106 and the sensor substrate 108 are preferably made of a hard material so that the relative positions of the magnetism generating means 102 and the magnetic sensor 104 do not fluctuate, and are preferably a paramagnetic material that has little influence on the magnetic field. preferable. Examples of the support 106 include plastics such as acrylic and polycarbonate, and examples of the sensor substrate 108 include electronic circuit boards such as epoxy and glass epoxy.

センサ駆動検出回路110は、磁気センサ104を駆動し、磁気センサ104からの出力信号を検出する。制御部112は、センサ駆動検出回路110および磁気センサ104を制御し、表示部114は、磁気センサ104からの信号を表示する。   The sensor drive detection circuit 110 drives the magnetic sensor 104 and detects an output signal from the magnetic sensor 104. The control unit 112 controls the sensor drive detection circuit 110 and the magnetic sensor 104, and the display unit 114 displays a signal from the magnetic sensor 104.

磁気発生手段102により発生する磁場の強度は、自然に存在する外部磁場より十分大きいものとする。当該磁場は、被検体200の表面または内部の傷により影響を受け、磁界分布に変動を生じる。磁気センサ104は当該変動を検知し、傷を検出する。磁気発生手段102は、たとえば永久磁石、電磁石等が例示できる。本実施の形態においては磁気発生手段102として永久磁石を例示する。   It is assumed that the intensity of the magnetic field generated by the magnetism generation unit 102 is sufficiently larger than the external magnetic field that exists naturally. The magnetic field is affected by flaws on the surface or inside of the subject 200, and the magnetic field distribution fluctuates. The magnetic sensor 104 detects the fluctuation and detects a flaw. Examples of the magnetism generating means 102 include a permanent magnet and an electromagnet. In the present embodiment, a permanent magnet is exemplified as the magnetism generating means 102.

磁気センサ104から被検体200までの距離aは、被検体200の残留磁場の影響を受けない程度の距離だけ離すことが望ましい。距離aは、たとえば2mmとすることができる。磁気発生手段102から被検体200までの距離bは、被検体200に残留磁場を発生させない程度の距離だけ離すことが望ましい。距離bは、たとえば19mmとすることができる。   The distance a from the magnetic sensor 104 to the subject 200 is desirably separated by a distance that is not affected by the residual magnetic field of the subject 200. The distance a can be set to 2 mm, for example. The distance b from the magnetic generation means 102 to the subject 200 is desirably separated by a distance that does not cause the subject 200 to generate a residual magnetic field. The distance b can be 19 mm, for example.

磁気センサ104は、磁気発生手段102により生じた磁場の、少なくとも第1方向成分である第1磁場強度を計測し、無傷であると予め判明している標準検体を被検体200とした場合に、第1磁場強度の絶対値が最少になるよう磁気発生手段102との相対位置を調整する。磁気発生手段102と磁気センサ104との位置関係について、図3を用いて説明する。   The magnetic sensor 104 measures the first magnetic field strength that is at least the first direction component of the magnetic field generated by the magnetism generation unit 102, and when the standard specimen that is previously known to be intact is the subject 200, The relative position with the magnetism generating means 102 is adjusted so that the absolute value of the first magnetic field strength is minimized. The positional relationship between the magnetic generation means 102 and the magnetic sensor 104 will be described with reference to FIG.

図3は、探傷装置100における磁場と磁気センサ104の位置関係を示した模式図であり、(a)は上面図、(b)は側面図、(c)は正面図である。図中矢印付の線として磁力線を表示する。磁気センサ104の近傍に示した矢印pの方向は第1方向であり、従って、磁気センサ104が計測する第1磁場強度の方向は矢印pの方向である。このように矢印pを定義した場合、磁気センサ104は、矢印pが磁力線と直交するように、すなわち、第1磁場強度の絶対値が最少になるよう配置する。   3A and 3B are schematic views showing the positional relationship between the magnetic field and the magnetic sensor 104 in the flaw detection apparatus 100, where FIG. 3A is a top view, FIG. 3B is a side view, and FIG. Magnetic field lines are displayed as lines with arrows in the figure. The direction of the arrow p shown in the vicinity of the magnetic sensor 104 is the first direction. Therefore, the direction of the first magnetic field intensity measured by the magnetic sensor 104 is the direction of the arrow p. When the arrow p is defined in this way, the magnetic sensor 104 is arranged so that the arrow p is orthogonal to the magnetic field lines, that is, the absolute value of the first magnetic field strength is minimized.

第1磁場強度の絶対値が最少になるよう磁気センサ104を配置することにより、磁気発生手段102で発生する磁場の強度を相当に大きくしても磁気センサ104の測定レンジを超えることがない。一方、磁気発生手段102で発生する磁場を強くすることで相対的に遠くの傷、あるいは相対的に小さい傷による磁場の変動が大きくなり、高感度に傷を検出することができる。   By arranging the magnetic sensor 104 so that the absolute value of the first magnetic field strength is minimized, the measurement range of the magnetic sensor 104 is not exceeded even if the strength of the magnetic field generated by the magnetism generating means 102 is considerably increased. On the other hand, by increasing the magnetic field generated by the magnetism generating means 102, the fluctuation of the magnetic field due to a relatively distant scratch or a relatively small scratch increases, and the scratch can be detected with high sensitivity.

図3に示す位置関係では、磁気センサ104により計測する第1磁界強度の方向(矢印pの方向)をZ方向と一致させている。この場合、磁気センサ104がxyz方向の磁場強度を出力するMIセンサ(マグネト・インピーダンスセンサ)である場合にはZ方向出力を計測すればよい。また、この場合、磁気センサ104は、被検体200と磁気発生手段102とを結ぶ最近接線φ上に配置される。最近接線φは、被検体200の表面に含まれる任意点と磁気発生手段102におけるN極およびS極の中点とを結ぶ直線である。   In the positional relationship shown in FIG. 3, the direction of the first magnetic field intensity measured by the magnetic sensor 104 (the direction of the arrow p) is matched with the Z direction. In this case, if the magnetic sensor 104 is an MI sensor (magnet impedance sensor) that outputs a magnetic field intensity in the xyz direction, the Z direction output may be measured. In this case, the magnetic sensor 104 is disposed on the closest line φ connecting the subject 200 and the magnetism generation means 102. The closest tangent line φ is a straight line connecting an arbitrary point included on the surface of the subject 200 and the midpoint of the N pole and the S pole in the magnetic generation means 102.

なお、磁気センサ104は、第1磁場強度の絶対値が最少になるよう配置されればよく、最近接線φ上に配置される必要はない。たとえば図4に示すように、磁力線とp方向が直交するように傾いて配置されても良く、図5に示すように、磁力線とp方向が直交する限り平行移動して配置されてもよい。   The magnetic sensor 104 only needs to be arranged so that the absolute value of the first magnetic field strength is minimized, and does not need to be arranged on the closest tangent line φ. For example, as shown in FIG. 4, the magnetic lines of force may be arranged so as to be perpendicular to the p direction, and as shown in FIG. 5, they may be arranged so as to be translated as long as the magnetic lines of force are orthogonal to the p direction.

また、磁気センサ104が、第1磁場強度に加えて、第1方向に直交する第2方向の磁場成分である第2磁場強度、並びに、第1方向および第2方向に直交する第3方向の磁場成分である第3磁場強度、を計測するものであってもよい。この場合、標準検体を被検体200とした場合に、第1磁場強度および第2磁場強度、または、第1磁場強度および第3磁場強度、の各絶対値が最少になるよう磁気発生手段102との相対位置が調整することが好ましい。この場合、第1磁場強度だけでなく、絶対値が最少になるよう調整された第2磁場強度または第3磁場強度も傷検出に用いることができる。   Further, in addition to the first magnetic field strength, the magnetic sensor 104 has a second magnetic field strength that is a magnetic field component in the second direction orthogonal to the first direction, and a third direction orthogonal to the first direction and the second direction. The third magnetic field intensity, which is a magnetic field component, may be measured. In this case, when the standard specimen is the subject 200, the magnetic generation means 102 and the first magnetic field intensity and the second magnetic field intensity or the absolute values of the first magnetic field intensity and the third magnetic field intensity are minimized. It is preferable to adjust the relative position. In this case, not only the first magnetic field strength but also the second magnetic field strength or the third magnetic field strength adjusted to minimize the absolute value can be used for the flaw detection.

また、図1(a)の上面図に示すように、複数のセンサがアレイ状またはマトリックス状に配置されてもよい。複数のセンサは、特定方向成分の磁場強度の測定が可能なものであり、このうち少なくとも一つが磁気センサ104であればよい。この場合、多数のセンサにより測定でき、ノイズを低減することができる。   Moreover, as shown in the top view of FIG. 1A, a plurality of sensors may be arranged in an array or a matrix. The plurality of sensors can measure the magnetic field strength of the component in a specific direction, and at least one of them may be the magnetic sensor 104. In this case, measurement can be performed by a large number of sensors, and noise can be reduced.

図6〜図11は、凹みまでの距離Lを変えた場合のZ方向出力の変化値を示すグラフである。図6は凹みの幅が10mm、深さが1mmの場合、図7は凹みの幅が10mm、深さが3mmの場合、図8は凹みの幅が20mm、深さが1mmの場合、図9は凹みの幅が20mm、深さが3mmの場合、図10は凹みの幅が25mm、深さが2mmの場合、図11は凹みの幅が30mm、深さが2mmの場合である。また、図12は、凹みが無い場合のZ方向出力の変化値を示した比較のためのグラフである。   6 to 11 are graphs showing changes in the Z-direction output when the distance L between the recesses is changed. 6 shows a case where the width of the dent is 10 mm and the depth is 1 mm, FIG. 7 shows a case where the width of the dent is 10 mm and the depth is 3 mm, and FIG. 8 shows a case where the width of the dent is 20 mm and the depth is 1 mm. 10 shows a case where the width of the dent is 20 mm and a depth of 3 mm, FIG. 10 shows a case where the width of the dent is 25 mm and the depth is 2 mm, and FIG. 11 shows a case where the width of the dent is 30 mm and the depth is 2 mm. FIG. 12 is a graph for comparison showing the change value of the output in the Z direction when there is no dent.

図12と図6〜図11とを対比すれば、凹みがあるとZ方向出力が変化することがわかる。また、凹みの幅が大きいほど、凹みの深さが深いほど、Z方向出力の変化値が大きくなっていることがわかる。   If FIG. 12 and FIGS. 6-11 are contrasted, it will be understood that if there is a dent, the output in the Z direction changes. Further, it can be seen that the change value of the output in the Z direction increases as the width of the recess increases and the depth of the recess increases.

以上の結果から、第1方向(z方向)が表面の法線方向である被検体200の表面に沿って探傷装置100を移動させ、第1磁場強度(z方向出力)に変化が有った場合には傷があると判断することができる。   From the above results, the flaw detection apparatus 100 was moved along the surface of the subject 200 whose first direction (z direction) was the normal direction of the surface, and there was a change in the first magnetic field strength (z direction output). In some cases, it can be determined that there is a scratch.

図13は、凹みの幅に対するZ方向出力の変化値をプロットしたグラフであり、図14は、凹みの深さに対するZ方向出力の変化値をプロットしたグラフである。また、図15は、凹みの幅に対するY方向出力の変化値をプロットしたグラフであり、図16は、凹みの深さに対するY方向出力の変化値をプロットしたグラフである。   FIG. 13 is a graph plotting the change value of the Z direction output with respect to the width of the recess, and FIG. 14 is a graph plotting the change value of the Z direction output with respect to the depth of the recess. FIG. 15 is a graph in which the change value of the Y direction output is plotted with respect to the width of the recess, and FIG. 16 is a graph in which the change value of the Y direction output is plotted with respect to the depth of the recess.

図13および図14の結果から、Z方向出力の変化値は、凹みの幅と深さの何れにおいても、大であるほど変化値が大きいことがわかる。一方、図15および図16の結果から、Z方向出力の変化値においては、凹みの幅が変化してもZ方向出力は変化せず、凹みの深さについては深いほど変化値が大きいことがわかる。つまり、Z方向出力の変化値は凹みの幅および深さの両方に依存するが、Y方向出力は凹みの深さに強く依存することが伺える。   From the results of FIGS. 13 and 14, it can be seen that the change value of the Z-direction output is larger as the change is larger in both the width and depth of the recess. On the other hand, from the results of FIG. 15 and FIG. 16, in the change value of the Z direction output, the Z direction output does not change even if the width of the recess changes, and the change value increases as the depth of the recess increases. Recognize. That is, it can be seen that the change value of the Z direction output depends on both the width and the depth of the recess, but the Y direction output strongly depends on the depth of the recess.

この結果から、磁気センサ104が、第1磁場強度(Z方向出力)に加えて、第1方向(z方向)に直交する第2方向(y方向)の磁場成分である第2磁場強度(Y方向出力)を計測するものであるとき、探傷装置100を第2方向(y方向)に移動させ、第2磁場強度(Y方向出力)の変化により傷の深さを推定し、当該深さの推定値を前提に、第2磁場強度(Y方向出力)および第1磁場強度(Z方向出力)の変化から傷の幅を推定することができる。   From this result, in addition to the first magnetic field strength (Z direction output), the magnetic sensor 104 has a second magnetic field strength (Y that is a magnetic field component in the second direction (y direction) orthogonal to the first direction (z direction). (Direction output) is measured, the flaw detector 100 is moved in the second direction (y direction), the depth of the flaw is estimated by the change in the second magnetic field strength (Y direction output), On the assumption of the estimated value, the width of the scratch can be estimated from changes in the second magnetic field strength (Y direction output) and the first magnetic field strength (Z direction output).

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

たとえば、図17〜図19に示すように、磁気発生手段102である磁石に加えて、他の磁石120、122、124を付加してもよい。図17〜図19に例示した磁気発生手段の変更例においても、上記した実施の形態と同様な結果を得ることができる。   For example, as shown in FIGS. 17 to 19, other magnets 120, 122, and 124 may be added in addition to the magnet that is the magnetic generation means 102. Also in the modified examples of the magnetic generation means exemplified in FIGS. 17 to 19, the same result as in the above-described embodiment can be obtained.

100…探傷装置、102…磁気発生手段、104…磁気センサ、106…支持体、108…センサ基板、110…センサ駆動検出回路、112…制御部、114…表示部、120,122,124…磁石、200…被検体、202…凹み。 DESCRIPTION OF SYMBOLS 100 ... Flaw detection apparatus, 102 ... Magnetic generation means, 104 ... Magnetic sensor, 106 ... Support body, 108 ... Sensor substrate, 110 ... Sensor drive detection circuit, 112 ... Control part, 114 ... Display part, 120, 122, 124 ... Magnet , 200 ... subject, 202 ... dent.

Claims (7)

被検体の表面または内部に存在する傷を探知する探傷装置であって、
磁気発生手段と、前記磁気発生手段により生じた磁場の第1方向成分である第1磁場強度を計測する磁気センサと、を有し、
前記磁気センサが、無傷であると予め判明している標準検体を前記被検体とした場合に、前記第1磁場強度の絶対値が最少になるよう前記磁気発生手段との相対位置が調整された
探傷装置。
A flaw detection device for detecting a flaw existing on or inside a subject,
A magnetic sensor, and a magnetic sensor that measures a first magnetic field strength that is a first direction component of the magnetic field generated by the magnetic generator,
The relative position with respect to the magnetism generating means is adjusted so that the absolute value of the first magnetic field strength is minimized when the subject is a standard specimen that is previously known that the magnetic sensor is intact. Flaw detection equipment.
前記磁気センサが、前記第1磁場強度に加えて、前記第1方向に直交する第2方向の磁場成分である第2磁場強度、並びに、前記第1方向および前記第2方向に直交する第3方向の磁場成分である第3磁場強度、を計測するものであり、
前記標準検体を前記被検体とした場合に、前記第1磁場強度および前記第2磁場強度、または、前記第1磁場強度および前記第3磁場強度、の各絶対値が最少になるよう前記磁気発生手段との相対位置が調整されたものである
請求項1に記載の探傷装置。
In addition to the first magnetic field strength, the magnetic sensor includes a second magnetic field strength that is a magnetic field component in a second direction orthogonal to the first direction, and a third magnetic field that is orthogonal to the first direction and the second direction. Measuring the third magnetic field strength, which is the magnetic field component of the direction,
When the standard specimen is the subject, the magnetic field is generated so that the absolute values of the first magnetic field intensity and the second magnetic field intensity, or the first magnetic field intensity and the third magnetic field intensity are minimized. The flaw detection apparatus according to claim 1, wherein the relative position with respect to the means is adjusted.
前記磁気センサが、前記被検体と前記磁気発生手段とを結ぶ最近接線上に配置されている
請求項1または請求項2に記載の探傷装置。
The flaw detection apparatus according to claim 1, wherein the magnetic sensor is disposed on a closest line connecting the subject and the magnetism generation unit.
前記最近接線は、前記被検体の表面に含まれる任意点と前記磁気発生手段におけるN極およびS極の中点とを結ぶ直線である
請求項3に記載の探傷装置。
The flaw detection apparatus according to claim 3, wherein the closest tangent is a straight line connecting an arbitrary point included on the surface of the subject and the midpoint of the N pole and the S pole in the magnetism generating means.
特定方向成分の磁場強度の測定が可能な複数のセンサがアレイ状またはマトリックス状に配置され、
当該複数のセンサのうち、少なくとも一つが前記磁気センサである
請求項1から請求項4の何れか一項に記載の探傷装置。
A plurality of sensors capable of measuring the magnetic field strength of a specific direction component are arranged in an array or matrix,
The flaw detection apparatus according to any one of claims 1 to 4, wherein at least one of the plurality of sensors is the magnetic sensor.
請求項1から請求項5の何れか一項に記載の探傷装置を用いた探傷方法であって、
前記第1方向が表面の法線方向である被検体の前記表面に沿って前記探傷装置を移動させるステップを有し、
前記探傷装置を移動させるステップにおいて前記第1磁場強度に変化が有った場合には前記傷があると判断する
探傷方法。
A flaw detection method using the flaw detection apparatus according to any one of claims 1 to 5,
Moving the flaw detector along the surface of the subject whose first direction is a normal direction of the surface,
A flaw detection method in which it is determined that there is a flaw when there is a change in the first magnetic field intensity in the step of moving the flaw detection apparatus.
前記磁気センサが、前記第1磁場強度に加えて、前記第1方向に直交する第2方向の磁場成分である第2磁場強度を計測するものであり、
前記探傷装置を移動させるステップにおいて前記探傷装置を前記第2方向に移動させ、
前記探傷装置を移動させるステップにおける前記第2磁場強度の変化により前記傷の深さを推定し、前記第2磁場強度および前記第1磁場強度の変化により前記傷の幅を推定する
請求項6に記載の探傷方法。
The magnetic sensor measures a second magnetic field strength that is a magnetic field component in a second direction orthogonal to the first direction in addition to the first magnetic field strength,
Moving the flaw detector in the second direction in the step of moving the flaw detector,
The depth of the flaw is estimated from a change in the second magnetic field strength in the step of moving the flaw detector, and the width of the flaw is estimated from a change in the second magnetic field strength and the first magnetic field strength. Described flaw detection method.
JP2016032384A 2016-02-23 2016-02-23 Flaw detector and flaw detection method Active JP6768305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016032384A JP6768305B2 (en) 2016-02-23 2016-02-23 Flaw detector and flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016032384A JP6768305B2 (en) 2016-02-23 2016-02-23 Flaw detector and flaw detection method

Publications (2)

Publication Number Publication Date
JP2017150904A true JP2017150904A (en) 2017-08-31
JP6768305B2 JP6768305B2 (en) 2020-10-14

Family

ID=59740546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016032384A Active JP6768305B2 (en) 2016-02-23 2016-02-23 Flaw detector and flaw detection method

Country Status (1)

Country Link
JP (1) JP6768305B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027028A1 (en) * 2018-08-01 2020-02-06 コニカミノルタ株式会社 Non-destructive inspection device, non-destructive inspection system, and non-destructive inspection method
WO2020027043A1 (en) * 2018-08-01 2020-02-06 コニカミノルタ株式会社 Non-destructive inspection method, non-destructive inspection system, and non-destructive inspection program
CN113030243A (en) * 2021-03-22 2021-06-25 国网江苏省电力有限公司无锡供电分公司 Imaging-oriented ground steel structural member corrosion defect magnetic flux leakage detection method and system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106088A (en) * 1977-02-25 1978-09-14 Sumitomo Metal Ind Detecting method of defect property in magnetic crack detection
JPH0476453A (en) * 1990-07-19 1992-03-11 Nkk Corp Magnetic-field test equipment for thin steel belt
JPH04269653A (en) * 1991-02-25 1992-09-25 Nippon Telegr & Teleph Corp <Ntt> Leakage magnetic flux detector
JPH04296648A (en) * 1991-03-27 1992-10-21 Nippon Steel Corp Method and device for magnetic crack detection
JP2006220610A (en) * 2005-02-14 2006-08-24 Jfe Engineering Kk Defect detector
WO2006109382A1 (en) * 2005-03-14 2006-10-19 National University Corporation Okayama University Magnetic impedance measuring device
JP2011027592A (en) * 2009-07-27 2011-02-10 Nippon Steel Engineering Co Ltd Piping wall surface inspection method and inspection apparatus
CN104990977A (en) * 2015-06-29 2015-10-21 清华大学 Three-dimensional magnetic flux leakage inspection and defect compound inversion imaging method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106088A (en) * 1977-02-25 1978-09-14 Sumitomo Metal Ind Detecting method of defect property in magnetic crack detection
JPH0476453A (en) * 1990-07-19 1992-03-11 Nkk Corp Magnetic-field test equipment for thin steel belt
JPH04269653A (en) * 1991-02-25 1992-09-25 Nippon Telegr & Teleph Corp <Ntt> Leakage magnetic flux detector
JPH04296648A (en) * 1991-03-27 1992-10-21 Nippon Steel Corp Method and device for magnetic crack detection
JP2006220610A (en) * 2005-02-14 2006-08-24 Jfe Engineering Kk Defect detector
WO2006109382A1 (en) * 2005-03-14 2006-10-19 National University Corporation Okayama University Magnetic impedance measuring device
JP2011027592A (en) * 2009-07-27 2011-02-10 Nippon Steel Engineering Co Ltd Piping wall surface inspection method and inspection apparatus
CN104990977A (en) * 2015-06-29 2015-10-21 清华大学 Three-dimensional magnetic flux leakage inspection and defect compound inversion imaging method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027028A1 (en) * 2018-08-01 2020-02-06 コニカミノルタ株式会社 Non-destructive inspection device, non-destructive inspection system, and non-destructive inspection method
WO2020027043A1 (en) * 2018-08-01 2020-02-06 コニカミノルタ株式会社 Non-destructive inspection method, non-destructive inspection system, and non-destructive inspection program
JPWO2020027028A1 (en) * 2018-08-01 2021-08-02 コニカミノルタ株式会社 Non-destructive inspection equipment, non-destructive inspection system and non-destructive inspection method
JPWO2020027043A1 (en) * 2018-08-01 2021-08-02 コニカミノルタ株式会社 Non-destructive inspection method, non-destructive inspection system and non-destructive inspection program
JP7160098B2 (en) 2018-08-01 2022-10-25 コニカミノルタ株式会社 Nondestructive inspection method, nondestructive inspection system and nondestructive inspection program
JP7196921B2 (en) 2018-08-01 2022-12-27 コニカミノルタ株式会社 Non-Destructive Inspection Device, Non-Destructive Inspection System and Non-Destructive Inspection Method
CN113030243A (en) * 2021-03-22 2021-06-25 国网江苏省电力有限公司无锡供电分公司 Imaging-oriented ground steel structural member corrosion defect magnetic flux leakage detection method and system
CN113030243B (en) * 2021-03-22 2023-08-01 国网江苏省电力有限公司无锡供电分公司 Imaging-oriented method and imaging-oriented system for detecting corrosion defect and magnetic flux leakage of overground steel structural member

Also Published As

Publication number Publication date
JP6768305B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
US9146214B2 (en) Leakage magnetic flux flaw inspection method and device
JP6253118B2 (en) Differential sensor, inspection system, and method for detecting abnormality of conductive material
US20150316508A1 (en) Apparatus and method for detecting inner defects of steel plate
CN106814131B (en) Ferromagnetic planar member shallow layer damage magnetic emission detection method and magnetic emission detection system
US10175200B2 (en) Methods and systems for detecting nonuniformities in a material, component, or structure
JP2010164306A (en) Method and device for hardened depth
KR20180030537A (en) Defect measurement method, defect measurement device and inspection probe
KR20130038796A (en) Contactless magnetic linear position sensor
US20120153944A1 (en) Method for inspecting an austenitic stainless steel weld
JP2017150904A (en) Flaw detection device and flaw detection method
JP2015010902A (en) Magnetic inspection device and magnetic inspection method
JP2003232776A (en) Eddy current flaw detecting apparatus and method
JP6551885B2 (en) Nondestructive inspection device and nondestructive inspection method
JP6248201B2 (en) Steel plate defect inspection apparatus and method
JP6388672B2 (en) Coin detection system
JP2005127963A (en) Nondestructive inspection method and its apparatus
KR20130089430A (en) Apparatus and method for detecting the defects of reverse side using pulsed eddy current
US7365533B2 (en) Magneto-optic remote sensor for angular rotation, linear displacements, and evaluation of surface deformations
JP2006337250A (en) Method for measuring depth of treatment using eddy current, and measuring apparatus using the same
JP2004294341A (en) Flaw detection method and flaw detection apparatus by pulsed remote field eddy current
JP2019020272A (en) Front surface scratch inspection device
JP2003344362A (en) Eddy current flaw detection probe and eddy current flaw detector
JP2015078942A (en) Leakage magnetic flux flaw detector
CN203616286U (en) Lossless flaw detection device
JP2021001813A (en) Nondestructive inspection magnetic sensor and nondestructive inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190329

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200923

R150 Certificate of patent or registration of utility model

Ref document number: 6768305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250