JP2011252787A - Hardening quality inspection device - Google Patents

Hardening quality inspection device Download PDF

Info

Publication number
JP2011252787A
JP2011252787A JP2010126576A JP2010126576A JP2011252787A JP 2011252787 A JP2011252787 A JP 2011252787A JP 2010126576 A JP2010126576 A JP 2010126576A JP 2010126576 A JP2010126576 A JP 2010126576A JP 2011252787 A JP2011252787 A JP 2011252787A
Authority
JP
Japan
Prior art keywords
quality
quenching
magnetic field
inspection object
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010126576A
Other languages
Japanese (ja)
Inventor
Masatoshi Mizutani
政敏 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2010126576A priority Critical patent/JP2011252787A/en
Publication of JP2011252787A publication Critical patent/JP2011252787A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hardening quality inspection device capable of easily and accurately inspect hardening quality of an inspection object by removing effects of residual magnetism in the inspection object and using non-destructive inspection.SOLUTION: The hardening quality inspection device is provided with electrodes 2, 2 for conduction to be brought into contact with the surface of an inspection object 1, a power supply 4, and a magnetic field detection means 5 that measures a magnetic field generated by a quality measurement current flowing through the inspection object 1. It is provided with a quality measurement means 18 that measures hardening quality of the inspection object 1 based on the magnetic field measured by the magnetic field detection means 5, and with a demagnetization means 7A that demagnetizes a residual magnetism in the inspection object 1 before quality measurement.

Description

この発明は、鋼材製品における焼入れ硬度分布、焼入れ深さ等の焼入れ品質を検査する焼入れ品質検査装置に関する。   The present invention relates to a quenching quality inspection apparatus for inspecting quenching quality such as quenching hardness distribution and quenching depth in steel products.

軸受等の転動製品には焼入れ処理や焼戻し処理が施される。これらの処理の中でも、高周波焼入れ処理や、浸炭処理、浸炭窒化処理等の表面硬化処理では、品質保証のために表面硬化層の検査が行われる。この検査では、実際の製品を切断して、その切断面上で、製品表面から深さ方向に硬度を測定して硬化層の深さを測定している。製品を切断できないものでは、テストピースに製品と同じ炉で熱処理を施し、そのテストピースを切断して前記と同様に硬化層深さを測定して、製品の硬化層深さの保証を行っている。   Quenching and tempering treatments are applied to rolling products such as bearings. Among these treatments, in the surface hardening treatment such as induction hardening treatment, carburizing treatment, carbonitriding treatment, etc., the surface hardened layer is inspected for quality assurance. In this inspection, an actual product is cut and the depth of the cured layer is measured by measuring the hardness in the depth direction from the product surface on the cut surface. If the product cannot be cut, heat-treat the test piece in the same furnace as the product, cut the test piece, measure the cured layer depth in the same way as above, and guarantee the cured layer depth of the product. Yes.

このように、熱処理した転動製品の焼入れ硬化層深さの検査では、製品を切断する破壊検査が行われているが、この場合には製品が破壊されるため、マテリアルコストが大きくなる問題がある。また、製品の切断、および硬度計による深さ方向の硬度測定に時間がかかり、工数が大きくなる問題点もある。
製品を切断できない場合には、上記したようなテストピースにより保証が行われているが、実際の製品の検査ではないため、保証精度が悪い等の問題点がある。
In this way, in the inspection of the depth of the hardened layer of the heat-treated rolling product, a destructive inspection for cutting the product is performed. In this case, the product is destroyed, which increases the material cost. is there. In addition, there is a problem that it takes time to cut the product and to measure the hardness in the depth direction using a hardness meter, which increases the number of steps.
If the product cannot be cut, it is guaranteed by the test piece as described above. However, since it is not an actual product inspection, there are problems such as poor guarantee accuracy.

そこで、破壊検査での上記した課題を解決するために、焼入れ硬化層を非破壊で検査する方法が提案されている。その非破壊検査の提案例の一つは、焼入れによる導電率の変化を利用して検査する電位差法である。この方法は、検査対象物に接触させたプローブで、検査対象物に直流電流を通電し、この検査対象物におけるプローブの接触位置とは異なる位置で接触させた2つの探針間の電位差を測定して焼入れ深さを求めるものである(例えば特許文献1,2)。   Therefore, in order to solve the above-described problems in the destructive inspection, a method for inspecting the hardened hardened layer in a nondestructive manner has been proposed. One example of the proposed non-destructive inspection is a potential difference method in which inspection is performed by utilizing a change in conductivity due to quenching. This method uses a probe that is in contact with an inspection object, and a direct current is passed through the inspection object to measure the potential difference between two probes that are in contact with the inspection object at a position different from the contact position of the probe. Thus, the quenching depth is obtained (for example, Patent Documents 1 and 2).

特開2004−309355号公報JP 2004-309355 A 特開2007−064817号公報JP 2007-064817 A 特願2009−134727号Japanese Patent Application No. 2009-134727

上記した非破壊検査方法では、検査対象物に直流電流を通電していることから、焼入れ深さの測定には有効であるものの、硬度の深さ方向の分布を測定できない。焼入れの品質保証精度を向上させるためには、焼入れ深さだけでなく、焼入れ硬度の深さ方向の分布検出が必要である。   In the non-destructive inspection method described above, since a direct current is applied to the inspection object, the hardness distribution in the depth direction cannot be measured although it is effective for measuring the quenching depth. In order to improve the quality assurance accuracy of quenching, it is necessary to detect not only the quenching depth but also the distribution of quenching hardness in the depth direction.

上記問題を解決するため、本件出願人は、図5に示すように、一対の通電用電極22,22と磁界を測定する磁界センサ25とを一体として検出ヘッド28を構成し、検査対象物21の表面に通電用電極22,22を接触させ、電源からこれら通電用電極22,22を通して検査対象物21に電流を通電し、検査対象物21中を流れる電流が生成する磁界を磁界センサ25で測定することで焼入れ深さや焼入れ硬度分布などを検査する焼入れ品質検査装置を提案した(特許文献3)。この装置では、電流の周波数を変化させることで電流が流れる深さを制御できるため、深さ方向の硬度分布を検出できる。   In order to solve the above problem, as shown in FIG. 5, the applicant forms a detection head 28 integrally including a pair of energizing electrodes 22 and 22 and a magnetic field sensor 25 that measures a magnetic field, and the inspection object 21. The current-carrying electrodes 22, 22 are brought into contact with the surface of the current, and a current is passed from the power source through the current-carrying electrodes 22, 22 to the inspection object 21. A quenching quality inspection device for inspecting quenching depth and quenching hardness distribution by measuring was proposed (Patent Document 3). In this apparatus, since the depth at which the current flows can be controlled by changing the frequency of the current, the hardness distribution in the depth direction can be detected.

ところで、軸受などの機械部品の製作における研磨工程では、その機械部品を保持するのにマグネットチャックなどを使用するため、製作される機械部品に磁気が残留する場合がある。このような磁気の残留する機械部品を検査対象物として上記した焼入れ品質検査装置で焼入れ硬化層深さの検査を行うと、残留磁気のために検査精度が悪化するという問題がある。この場合に、前記機械部品に残留する磁気を、予め脱磁機を用いて脱磁しておき、その後で焼入れ品質検査装置による検査を行うようにすれば、上記した問題を解消することができる。しかし、そのためには、焼入れ品質検査装置とは別に脱磁機を準備する必要があり、焼入れ品質検査の工程が複雑になるという新たな問題が生じる。   By the way, in a polishing process in manufacturing a mechanical part such as a bearing, a magnet chuck or the like is used to hold the mechanical part, and thus magnetism may remain in the manufactured mechanical part. If the quenching hardened layer depth is inspected with the above-described quenching quality inspection apparatus using such mechanical parts having magnetism as inspection objects, there is a problem that the inspection accuracy deteriorates due to residual magnetism. In this case, if the magnetism remaining in the machine part is demagnetized in advance using a demagnetizer and then inspected by a quenching quality inspection device, the above-described problems can be solved. . However, in order to do so, it is necessary to prepare a demagnetizer separately from the quenching quality inspection apparatus, which causes a new problem that the quenching quality inspection process becomes complicated.

この発明の目的は、検査対象物に残留する磁気の影響を無くして、非破壊検査により検査対象物の焼入れ品質を簡単にかつ精度良く検査することができる焼入れ品質検査装置を提供することである。   An object of the present invention is to provide a quenching quality inspection apparatus that can easily and accurately inspect the quenching quality of an inspection object by non-destructive inspection without the influence of magnetism remaining on the inspection object. .

この発明の焼入れ品質検査装置は、検査対象物に電流を通電し、その検査対象物中を流れる電流がつくる磁界を測定することで焼入れ品質を検査する焼入れ品質検査装置であって、前記検査対象物の表面に接触させる通電用電極と、この通電用電極を介して前記検査対象物に品質測定用の電流を印加する電源と、この電源により前記検査対象物を流れる品質測定用電流が生成する磁界を測定する磁界検出手段と、この磁界検出手段で測定した磁界により、前記検査対象物の焼入れ品質を測定する品質測定手段と、品質測定前に前記検査対象物に残留する磁気を脱磁する脱磁手段とを備えることを特徴とする。   The quenching quality inspection apparatus according to the present invention is a quenching quality inspection apparatus for inspecting quenching quality by passing a current through an inspection object and measuring a magnetic field generated by a current flowing through the inspection object, the inspection object An energizing electrode to be brought into contact with the surface of the object, a power source for applying a current for quality measurement to the inspection object via the energizing electrode, and a quality measuring current flowing through the inspection object by the power source are generated. Magnetic field detection means for measuring a magnetic field, quality measurement means for measuring the quenching quality of the inspection object, and magnetic field remaining on the inspection object before the quality measurement are demagnetized by the magnetic field measured by the magnetic field detection means. And a demagnetizing means.

この構成によると、検査対象物の表面に一対の通電用電極を接触させ、電源からこれら通電用電極を通して品質測定用の電流を通電する。この状態において、検査対象物を流れる電流が生成する磁界を、磁界検出手段で測定する。品質測定手段は、磁界検出手段で測定した磁界により、検査対象物の焼入れ品質を測定する。例えば、磁界の磁路断面積の変化が磁気抵抗の変化として現れ、この磁気抵抗の変化に基づく磁界の変化から、検査対象物の焼入れ硬度、焼入れ深さ等の焼入れ品質等を求める。
焼入れにより鋼材の透磁率、導電率が変化する。一般に焼入れにより鋼材の硬度が高くなる程、透磁率、導電率共に小さくなる。この理由により、焼入れ硬度、深さによって検査対象物に流れる電流が変化する。よって、電流がつくる磁界の磁路断面積の変化による磁界の変化を磁界検出手段で測定することにより、電流の変化を検出する。
According to this configuration, the pair of energization electrodes are brought into contact with the surface of the inspection object, and a current for quality measurement is applied from the power source through the energization electrodes. In this state, the magnetic field generated by the current flowing through the inspection object is measured by the magnetic field detection means. The quality measuring means measures the quenching quality of the inspection object by the magnetic field measured by the magnetic field detecting means. For example, a change in the magnetic path cross-sectional area of the magnetic field appears as a change in magnetic resistance, and quenching quality such as quenching hardness and quenching depth of the inspection object is obtained from the change in magnetic field based on the change in magnetoresistance.
The permeability and conductivity of the steel material change due to quenching. Generally, the higher the hardness of a steel material by quenching, the smaller the permeability and conductivity. For this reason, the current flowing through the inspection object varies depending on the quenching hardness and depth. Therefore, the change in the current is detected by measuring the change in the magnetic field caused by the change in the magnetic path cross-sectional area of the magnetic field generated by the current with the magnetic field detection means.

検査対象物1を電流が流れる深さは、表皮効果により周波数f、導電率σ、透磁率μにより変化する。ここで電流が流れる深さδは、次式(1)で表される。
δ=√(1/πfσμ) …(1)
上式(1)より、検査対象物1を電流が流れる侵入深さは周波数により変化する。このため、周波数を変化させることで、電流が流れる深さを変えながら測定を行うことができる。例えば、高周波電流を通電したときは、電流は検査対象物表面しか流れることができないので、検査対象物表面の焼入れ硬度を知ることができる。周波数を高周波側から次第に小さくしていくと、電流の侵入深さは大きくなっていく。したがって、例えば、周波数を高周波側から小さくしつつ磁界を測定することで、焼入れ硬度の深さ方向の分布を推定することができる。このように、非破壊検査により検査対象物の焼入れ品質を精度良く検査することができる。
特に、脱磁手段を設けて、品質測定前に前記検査対象物に残留する磁気を脱磁するようにしているので、別途脱磁機を設けることなく検査対象物に残留する磁気の影響を無くすことができ、非破壊検査により検査対象物の焼入れ品質を簡単に且つ精度良く検査することができる。
The depth at which current flows through the inspection object 1 varies depending on the frequency f, conductivity σ, and permeability μ due to the skin effect. Here, the depth δ through which the current flows is expressed by the following equation (1).
δ = √ (1 / πfσμ) (1)
From the above equation (1), the penetration depth at which current flows through the inspection object 1 varies depending on the frequency. For this reason, by changing the frequency, the measurement can be performed while changing the depth at which the current flows. For example, when a high frequency current is applied, the current can flow only on the surface of the inspection object, so that the quenching hardness of the surface of the inspection object can be known. As the frequency is gradually decreased from the high frequency side, the penetration depth of the current increases. Therefore, for example, the distribution of the quenching hardness in the depth direction can be estimated by measuring the magnetic field while decreasing the frequency from the high frequency side. Thus, the quenching quality of the inspection object can be accurately inspected by nondestructive inspection.
In particular, since the demagnetizing means is provided to demagnetize the magnetism remaining on the inspection object before quality measurement, the influence of the magnetism remaining on the inspection object is eliminated without providing a separate demagnetizer. The quenching quality of the inspection object can be easily and accurately inspected by nondestructive inspection.

この発明において、前記脱磁手段は、前記電源に設けられ、品質測定前に前記通電用電極を介して前記検査対象物に脱磁用の電流を印加する脱磁用電流供給部であっても良い。この構成の場合、電源の構成の大部分と、前記通電用電極とを脱磁手段として共用できるので、構成を簡略化できる。   In the present invention, the demagnetization means may be a demagnetization current supply unit that is provided in the power source and applies a demagnetization current to the inspection object via the energization electrode before quality measurement. good. In the case of this configuration, since most of the configuration of the power source and the energization electrode can be shared as demagnetizing means, the configuration can be simplified.

この発明において、前記脱磁用の電流は、振幅が漸減する交流電流であるのが望ましく、その交流電流は一定周期のものであることが望ましい。   In the present invention, the demagnetizing current is preferably an alternating current whose amplitude gradually decreases, and the alternating current is preferably of a constant period.

また、この発明において、前記品質測定用の電流は、振幅が一定で周波数が変化する交流電流であるのが望ましい。
電源から検査対象物に印加する品質測定用の電流が、振幅が一定で周波数が変化する交流電流であると、周波数に応じて検査目的となる焼入れ品質を求めることができ、多様な品質検査を行うことができる。品質測定用の電流の周波数の変化は、次第に連続的に変化するようにしても、また段階的に変化するようにしても良い。
In the present invention, the quality measuring current is preferably an alternating current having a constant amplitude and a varying frequency.
If the current for quality measurement applied from the power source to the inspection object is an alternating current with a constant amplitude and frequency, the quenching quality for inspection purposes can be determined according to the frequency, and various quality inspections can be performed. It can be carried out. The change in the frequency of the quality measurement current may be gradually changed or may be changed step by step.

この発明において、前記磁界検出手段は、低周波の磁界を測定可能な磁界センサであるのが望ましい。検査対象物に印加する交流電流の周波数が低い程、その交流電流は検査対象物の深い部分を流れるので、より深い位置での焼入れ硬度を知るためには、磁界センサは、低周波の磁界を測定できるものが望ましい。   In the present invention, the magnetic field detecting means is preferably a magnetic field sensor capable of measuring a low frequency magnetic field. The lower the frequency of the alternating current applied to the inspection object, the more the alternating current flows in the deeper part of the inspection object. Therefore, in order to know the quenching hardness at a deeper position, the magnetic field sensor uses a low-frequency magnetic field. What can be measured is desirable.

この発明において、前記磁界センサは、ホールセンサ、MRセンサ、GMRセンサ、TMRセンサ、MIセンサ、およびフラックスゲートセンサのうちのいずれか一つであっても良い。   In the present invention, the magnetic field sensor may be any one of a Hall sensor, an MR sensor, a GMR sensor, a TMR sensor, an MI sensor, and a fluxgate sensor.

この発明において、前記品質測定手段は、前記焼入れ品質として、前記検査対象物の表面硬度、深さ方向の焼入れ硬度分布、および焼入れ深さの少なくとも一つを測定するものとしても良い。   In the present invention, the quality measuring means may measure at least one of the surface hardness, the quenching hardness distribution in the depth direction, and the quenching depth of the inspection object as the quenching quality.

この発明の焼入れ品質検査装置は、検査対象物に電流を通電し、その検査対象物中を流れる電流がつくる磁界を測定することで焼入れ品質を検査する焼入れ品質検査装置であって、前記検査対象物の表面に接触させる通電用電極と、この通電用電極を介して前記検査対象物に品質測定用の電流を印加する電源と、この電源により前記検査対象物を流れる品質測定用電流が生成する磁界を測定する磁界検出手段と、この磁界検出手段で測定した磁界により、前記検査対象物の焼入れ品質を測定する品質測定手段と、品質測定前に前記検査対象物に残留する磁気を脱磁する脱磁手段とを備えるため、検査対象物に残留する磁気の影響を無くして、非破壊検査により検査対象物の焼入れ品質を簡単に且つ精度良く検査することができる。   The quenching quality inspection apparatus according to the present invention is a quenching quality inspection apparatus for inspecting quenching quality by passing a current through an inspection object and measuring a magnetic field generated by a current flowing through the inspection object, the inspection object An energizing electrode to be brought into contact with the surface of the object, a power source for applying a current for quality measurement to the inspection object via the energizing electrode, and a quality measuring current flowing through the inspection object by the power source are generated. Magnetic field detection means for measuring a magnetic field, quality measurement means for measuring the quenching quality of the inspection object, and magnetic field remaining on the inspection object before the quality measurement are demagnetized by the magnetic field measured by the magnetic field detection means. Since the demagnetizing means is provided, the quenching quality of the inspection object can be easily and accurately inspected by nondestructive inspection without the influence of magnetism remaining on the inspection object.

この発明の一実施形態にかかる焼入れ品質検査装置の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the quenching quality inspection apparatus concerning one Embodiment of this invention. 同焼入れ品質検査装置の構成を示すブロック図である。It is a block diagram which shows the structure of the quenching quality inspection apparatus. 同焼入れ品質検査装置の電源が供給する品質測定用電流の波形図である。It is a wave form diagram of the current for quality measurement which the power supply of the quenching quality inspection apparatus supplies. 同焼入れ品質検査装置の脱磁手段が供給する脱磁用電流の波形図である。It is a wave form diagram of the current for demagnetization which the demagnetizing means of the quenching quality inspection apparatus supplies. 提案例の構成を示すブロック図である。It is a block diagram which shows the structure of a proposal example.

この発明の一実施形態を図1ないし図4と共に説明する。図1において、この実施形態の焼入れ品質検査装置の原理について説明する。この焼入れ品質検査装置では、検査対象物1に品質測定用の電流を通電し、その検査対象物1中を流れる電流3がつくる磁界6を測定することで焼入れ品質を検査する。図中で、磁界6は磁束を示す線により、電流3は流れ経路を示す線により、それぞれ図示している。検査対象物1は、焼入れ処理が施された部品、例えば軸受や軸受部品等の鋼材製品である。ただし、これらの鋼材製品に限定されるものではない。   An embodiment of the present invention will be described with reference to FIGS. In FIG. 1, the principle of the quenching quality inspection apparatus of this embodiment will be described. In this quenching quality inspection apparatus, a current for quality measurement is applied to the inspection object 1, and the quenching quality is inspected by measuring the magnetic field 6 generated by the current 3 flowing through the inspection object 1. In the figure, the magnetic field 6 is indicated by a line indicating a magnetic flux, and the current 3 is indicated by a line indicating a flow path. The inspection object 1 is a steel product such as a part subjected to quenching treatment, such as a bearing or a bearing part. However, it is not limited to these steel products.

この例では、品質測定用の通電電流として交流電流が使用される。図1に示すように、品質測定用の交流電流は、検査対象物1に接触させた一対の通電用電極2,2を介して交流電源である電源4から供給、すなわち印加する。検査対象物1に交流電流を印加して、検査対象物1上に設けた磁界検出手段である磁界センサ5で、検査対象物1を流れる電流3が生成する磁界6を測定する。磁界センサ5は、磁界の強さまたは大きさおよび方向を検出するセンサであり、例えば電圧値で出力する。この明細書で言う「磁界センサ」は、磁気センサを含む。
検査対象物1となる鋼材は、焼入れにより透磁率、導電率が変化する。一般に焼入れにより鋼材の硬度が高くなる程、透磁率、導電率共に小さくなる。この理由により、焼入れ硬度、深さによって検査対象物1に流れる電流が変化する。よって、電流がつくる磁界の強さまたは大きさを磁界センサ5で測定することにより、電流の変化を検出する。
In this example, an alternating current is used as an energizing current for quality measurement. As shown in FIG. 1, the AC current for quality measurement is supplied, that is, applied from a power source 4 that is an AC power source via a pair of energizing electrodes 2 and 2 that are in contact with the inspection object 1. An alternating current is applied to the inspection object 1, and the magnetic field 6 generated by the current 3 flowing through the inspection object 1 is measured by the magnetic field sensor 5 that is a magnetic field detection means provided on the inspection object 1. The magnetic field sensor 5 is a sensor that detects the strength or magnitude and direction of the magnetic field, and outputs the voltage value, for example. The “magnetic field sensor” referred to in this specification includes a magnetic sensor.
The steel material to be inspected 1 changes its magnetic permeability and conductivity by quenching. Generally, the higher the hardness of a steel material by quenching, the smaller the permeability and conductivity. For this reason, the current flowing through the inspection object 1 varies depending on the quenching hardness and depth. Therefore, the change in current is detected by measuring the strength or magnitude of the magnetic field generated by the current with the magnetic field sensor 5.

検査対象物1を電流が流れる深さは、表皮効果により周波数f、導電率σ、透磁率μにより変化する。ここで電流が流れる深さδは、次式(1)で表される。
δ=√(1/πfσμ) …(1)
上式(1)より、検査対象物1を電流が流れる侵入深さδは周波数fにより変化する。このため、周波数fを変化させることで、電流が流れる深さδを変えながら測定を行うことができる。例えば、高周波電流を通電したときは、電流は検査対象物表面しか流れることができないので、検査対象物表面の焼入れ硬度を知ることができる。この観点から、より深い位置での焼入れ硬度を知るためには、磁界センサ5は、低周波の磁界を測定できるものが望ましい。周波数を高周波側から次第に小さくしていくと、電流の侵入深さδは大きくなっていく。したがって、例えば、周波数fを高周波側から小さくしつつ磁界を測定することで、焼入れ硬度の深さ方向の分布を推定することができる。このように、非破壊検査により検査対象物1の焼入れ品質を精度良く検査することができる。周波数fを変化させる場合、段階的に変化させても、また連続的に変化させても良い。
The depth at which current flows through the inspection object 1 varies depending on the frequency f, conductivity σ, and permeability μ due to the skin effect. Here, the depth δ through which the current flows is expressed by the following equation (1).
δ = √ (1 / πfσμ) (1)
From the above equation (1), the penetration depth δ through which the current flows through the inspection object 1 varies with the frequency f. Therefore, by changing the frequency f, it is possible to perform measurement while changing the depth δ through which the current flows. For example, when a high frequency current is applied, the current can flow only on the surface of the inspection object, so that the quenching hardness of the surface of the inspection object can be known. From this viewpoint, in order to know the quenching hardness at a deeper position, it is desirable that the magnetic field sensor 5 can measure a low-frequency magnetic field. As the frequency is gradually decreased from the high frequency side, the current penetration depth δ increases. Therefore, for example, the distribution of the quenching hardness in the depth direction can be estimated by measuring the magnetic field while decreasing the frequency f from the high frequency side. Thus, the quenching quality of the inspection object 1 can be accurately inspected by nondestructive inspection. When changing the frequency f, it may be changed stepwise or continuously.

図2は、焼入れ品質検査装置の構成を示す。この焼入れ品質検査装置は、検出ヘッドとなるプローブ8と、測定装置9とを有する。プローブ8は、検査対象物1の表面1aに接触させる一対の通電用電極2,2と、電源4により検査対象物1を流れる品質測定用の電流が生成する磁界を測定する磁界センサ5とを一体にしたものである。すなわち磁界センサ5は、センサ基板11に実装され、モールド材12等でセンサハウジング13に固定されている。センサハウジング13は樹脂等の非磁性体であることが望ましい。センサハウジング13は、図示の例では、ブロック状に形成されて下面の外周に周壁が突出し、その周壁の内方が凹み部となった形状を成しており、その凹み部の底面にセンサ基板11が配置される。前記モールド材12は、磁界センサ5が実装されたセンサ基板11と前記センサハウジング13の前記周壁との間の隙間を埋める。   FIG. 2 shows the configuration of the quenching quality inspection apparatus. This quenching quality inspection apparatus includes a probe 8 serving as a detection head and a measurement apparatus 9. The probe 8 includes a pair of energizing electrodes 2 and 2 that are brought into contact with the surface 1a of the inspection object 1 and a magnetic field sensor 5 that measures a magnetic field generated by a quality measurement current flowing through the inspection object 1 by the power source 4. It is one. That is, the magnetic field sensor 5 is mounted on the sensor substrate 11 and fixed to the sensor housing 13 with the molding material 12 or the like. The sensor housing 13 is preferably a non-magnetic material such as resin. In the illustrated example, the sensor housing 13 is formed in a block shape, and has a shape in which a peripheral wall protrudes from the outer periphery of the lower surface, and an inner portion of the peripheral wall becomes a recessed portion, and a sensor substrate is formed on the bottom surface of the recessed portion. 11 is arranged. The molding material 12 fills a gap between the sensor substrate 11 on which the magnetic field sensor 5 is mounted and the peripheral wall of the sensor housing 13.

センサハウジング13には、センサ基板11への配線である電極14,15および前記一対の通電用電極2,2が固定される。各通電用電極2は丸棒状に形成されこの通電用電極2の少なくとも一端部が、センサハウジング13の端面から突出するように、プローブ8に上から下に向けて配置されている。電極14,15および通電用電極2は、センサハウジング13に設けられた貫通孔に挿通される。また一対の通電用電極2,2は所定距離隔てて平行に配置され、且つ、これら通電用電極2,2間に磁界センサ5が配置されている。各通電用電極2の他端部は、測定装置9における後述の増幅回路16に電気的に接続され、センサ基板11に固着される電極14,15が測定装置9における後述のセンサ信号処理回路17に電気的に接続されている。   The sensor housing 13 is fixed with electrodes 14 and 15 which are wirings to the sensor substrate 11 and the pair of energizing electrodes 2 and 2. Each energizing electrode 2 is formed in a round bar shape, and at least one end of the energizing electrode 2 is arranged on the probe 8 from the top to the bottom so as to protrude from the end face of the sensor housing 13. The electrodes 14 and 15 and the energizing electrode 2 are inserted through through holes provided in the sensor housing 13. The pair of energization electrodes 2 and 2 are arranged in parallel at a predetermined distance, and the magnetic field sensor 5 is arranged between the energization electrodes 2 and 2. The other end of each energizing electrode 2 is electrically connected to an amplifier circuit 16 (described later) in the measuring device 9, and electrodes 14 and 15 fixed to the sensor substrate 11 are connected to a sensor signal processing circuit 17 (described later) in the measuring device 9. Is electrically connected.

図2において、前記測定装置9は、電源4と、品質測定手段18を有する。電源4は、周波数可変の発振回路19と、この発振回路19から出力された交流信号を増幅して検査対象物1に通電する電流を供給つまり印加する増幅回路16とを含む。発振回路19は、品質測定手段18の信号処理部20に電気的に接続され、この信号処理部20からの指示により周波数を変化させる。
品質測定手段18は、発振回路19から出力される品質測定用の交流電流の周波数を変化させながら磁界センサ5で測定した磁界により、検査対象物1の焼入れ品質を測定するものである。ここでは、品質測定用の交流電流は、図3のように振幅が一定で周波数が連続的に次第に変化する波形とされている。周波数の変化は、段階的に生じるようにしても良い。この品質測定手段18は、磁界センサ5の信号に増幅、リニア化、フィルタ処理等の前処理を施すセンサ信号処理回路17と、センサ信号処理回路17で前処理された磁界センサ信号から焼入れ深さや硬度分布を推定する信号処理部20とを有する。
In FIG. 2, the measuring device 9 has a power source 4 and quality measuring means 18. The power supply 4 includes a frequency variable oscillation circuit 19 and an amplification circuit 16 that amplifies an AC signal output from the oscillation circuit 19 and supplies, that is, applies a current to be supplied to the inspection object 1. The oscillation circuit 19 is electrically connected to the signal processing unit 20 of the quality measuring unit 18 and changes the frequency according to an instruction from the signal processing unit 20.
The quality measuring means 18 measures the quenching quality of the inspection object 1 by the magnetic field measured by the magnetic field sensor 5 while changing the frequency of the quality measuring alternating current output from the oscillation circuit 19. Here, the AC current for quality measurement has a waveform in which the amplitude is constant and the frequency is gradually changed as shown in FIG. The change in frequency may occur in stages. The quality measuring means 18 includes a sensor signal processing circuit 17 that performs preprocessing such as amplification, linearization, and filter processing on the signal of the magnetic field sensor 5, and the quenching depth and the like from the magnetic field sensor signal preprocessed by the sensor signal processing circuit 17. And a signal processing unit 20 for estimating the hardness distribution.

信号処理部20は、焼入れ品質として、検査対象物1の表面硬度、深さ方向の焼入れ硬度分布、および焼入れ深さ(「焼入れ硬度等」と称す)を推定する手段である。信号処理部20は、検出された電圧値を、これらの各品質項目毎に定められた磁気抵抗の変化量に見合う電圧値と品質値(表面硬度、深さ方向の焼入れ硬度分布、焼入れ深さ等)の関係に照らし、対応する前記表面硬度、深さ方向の焼入れ硬度分布、焼入れ深さ等を推定値として出力する。ただし、これら検査対象物1の表面硬度、深さ方向の焼入れ硬度分布、および焼入れ深さのうちの少なくともいずれか1つを測定するものとしても良い。信号処理部20は、判定部20aと周波数変更指令部20bとを有し、判定部20aにより、上記の推定と、次の異常判定とを行う。   The signal processing unit 20 is a means for estimating the surface hardness, the quenching hardness distribution in the depth direction, and the quenching depth (referred to as “quenching hardness etc.”) of the inspection object 1 as the quenching quality. The signal processing unit 20 uses the detected voltage value as a voltage value and a quality value (surface hardness, quenching hardness distribution in the depth direction, quenching depth) corresponding to the amount of change in magnetic resistance determined for each of these quality items. Etc.), the corresponding surface hardness, quenching hardness distribution in the depth direction, quenching depth, etc. are output as estimated values. However, it is also possible to measure at least one of the surface hardness, the quenching hardness distribution in the depth direction, and the quenching depth of the inspection object 1. The signal processing unit 20 includes a determination unit 20a and a frequency change command unit 20b. The determination unit 20a performs the above estimation and the next abnormality determination.

判定部20aは、測定値から上記のように推定した焼入れ品質が設定品質値を下回るときに、品質異常つまり焼入れ異常と判定する。判定部20aは、センサ信号処理回路17で処理された信号に比例する深さ方向の焼入れ硬度等を算出する電子回路と、異常判定を行う電子回路とからなる。判定部20aの上記焼入れ硬度等を算出する電子回路は、検出された電圧値と深さ方向の焼入れ硬度等との関係を演算式またはテーブル等で設定した関係設定手段(図示せず)を有し、測定した磁界の強さまたは大きさおよび方向に基づく信号である電圧値を、前記関係設定手段に照らし深さ方向の焼入れ硬度等を算出する。
前記設定品質値は、種々の試験等から求めて適宜設定される閾値であり、例えば書換え可能な不図示の記憶媒体等に記憶される。判定部20aは、異常判定として、前記関係設定手段に照らして算出した任意の深さの焼入れ硬度が、同深さにおける設定品質値を下回るか否かを判定する。前記算出した焼入れ硬度が設定品質値を下回るとき、品質異常と判定する。
The determination unit 20a determines that the quality abnormality, that is, the quenching abnormality, when the quenching quality estimated as described above from the measurement value is lower than the set quality value. The determination unit 20a includes an electronic circuit that calculates a quenching hardness in the depth direction that is proportional to the signal processed by the sensor signal processing circuit 17, and an electronic circuit that performs abnormality determination. The electronic circuit for calculating the quenching hardness and the like of the determination unit 20a has a relationship setting means (not shown) in which the relationship between the detected voltage value and the quenching hardness in the depth direction is set by an arithmetic expression or a table. Then, a voltage value, which is a signal based on the intensity or magnitude and direction of the measured magnetic field, is compared with the relationship setting means to calculate the quenching hardness in the depth direction.
The set quality value is a threshold that is appropriately set by obtaining from various tests and is stored in, for example, a rewritable storage medium (not shown). As the abnormality determination, the determination unit 20a determines whether or not the quenching hardness of an arbitrary depth calculated in light of the relationship setting unit is below a set quality value at the same depth. When the calculated quenching hardness is lower than the set quality value, it is determined that the quality is abnormal.

周波数変更指令部20bは、交流電源4の発振回路19に交流信号の周波数を連続的にを変化させる指令を与える。この周波数変更指令部20bの指令を受け、発振回路19の出力する交流信号の周波数が図3のように順次変化する。ここでは、周波数変更指令部20bは、品質測定用電流となる発振回路19の交流信号の周波数のみを可変設定するものとしたが、周波数のほか振幅も可変設定できるようにしても良い。また、周波数変更指令部20bは、例えば、周波数を変える変更幅、頻度、変更の繰り返し周期等の規則等が、目的とする焼入れ品質の種類や、検査対象物1の種類等に応じて複数種類設定されていて、適宜の入力により任意の規則が選択可能なものであっても良い。具体例を示すと、前記交流電流は、一つの検査対象物を検査する間に、例えば、10Hz〜 10kHzの間で変化させる。   The frequency change command unit 20 b gives a command to continuously change the frequency of the AC signal to the oscillation circuit 19 of the AC power supply 4. In response to the command from the frequency change command unit 20b, the frequency of the AC signal output from the oscillation circuit 19 sequentially changes as shown in FIG. Here, the frequency change command unit 20b variably sets only the frequency of the AC signal of the oscillation circuit 19 serving as the quality measurement current. However, the amplitude may be variably set in addition to the frequency. Further, the frequency change command unit 20b has, for example, a plurality of types of rules such as change width, frequency, change repetition period, etc. for changing the frequency according to the type of the desired quenching quality, the type of the inspection object 1, and the like. It may be set and an arbitrary rule can be selected by appropriate input. As a specific example, the alternating current is changed between, for example, 10 Hz to 10 kHz while inspecting one inspection object.

周波数変更指令部20bは、検査対象物1の同一箇所において発振回路19に周波数を変更する指令を与える。これにより、検査対象物1を電流が流れる侵入深さが変化する。この場合に、判定部20aは測定した磁界の強さまたは大きさおよび方向に基づく信号を、前記関係設定手段に照らし各深さの焼入れ硬度を算出する。このような周波数変更を繰り返すことで、判定部20aは焼入れ硬度の深さ方向の分布を推定し得る。なお、判定部20aは、複数の周波数における、磁界の強さまたは大きさおよび方向に基づく信号を一旦記憶しておき、焼入れ硬度の深さ方向の分布を推定するようにしても良い。   The frequency change command unit 20 b gives a command to change the frequency to the oscillation circuit 19 at the same location of the inspection object 1. As a result, the penetration depth at which current flows through the inspection object 1 changes. In this case, the determination unit 20a calculates the quenching hardness of each depth by illuminating the signal based on the measured magnetic field strength or magnitude and direction with the relation setting means. By repeating such frequency change, the determination unit 20a can estimate the distribution of the quenching hardness in the depth direction. Note that the determination unit 20a may temporarily store signals based on the strength or magnitude and direction of the magnetic field at a plurality of frequencies, and estimate the distribution of the quenching hardness in the depth direction.

前記測定装置9には、品質測定前に検査対象物1に脱磁用の電流を印加するための脱磁用電流供給部7Aが設けられる。この脱磁用電流供給部7Aは前記電源4に設けられる。脱磁用電流供給部7Aから供給される脱磁用の電流は、通電用電極2,2を介して検査対象物1に印加され、これにより検査対象物1に残留する磁気が品質測定前に脱磁される。すなわち、脱磁用電流供給部7Aおよび通電用電極2,2は、品質測定前に検査対象物1に残留する磁気を脱磁する脱磁手段を構成する。   The measuring device 9 is provided with a demagnetizing current supply unit 7A for applying a demagnetizing current to the inspection object 1 before quality measurement. The demagnetizing current supply unit 7A is provided in the power source 4. The demagnetization current supplied from the demagnetization current supply unit 7A is applied to the inspection object 1 through the energization electrodes 2 and 2, and thereby the magnetism remaining on the inspection object 1 is measured before quality measurement. Demagnetized. That is, the demagnetizing current supply unit 7A and the energizing electrodes 2 and 2 constitute demagnetizing means for demagnetizing the magnetism remaining on the inspection object 1 before quality measurement.

電源4における脱磁用電流供給部7Aは、モード選択部10と、発振回路19と、増幅回路16とでなる。脱磁用電流供給部7Aの一部を構成する発振回路19および増幅回路16は品質測定用電流の供給部7Bと共用される。モード選択部10は、品質測定前に外部からのスイッチなどによる選択指令を受けて、発振回路19を、その交流信号が、例えば図4に示すように、一定周波数で振幅が漸減する信号波形となるように制御する。すなわち、脱磁用電流供給部7Aから通電用電極2,2を介して検査対象物1に印加される脱磁用電流は、一定周波数で振幅が漸減する交流電流となる。振幅の変化は、例えば、一つの検査対象物の脱磁を行う間に、脱磁用電流として最大電流を印加する振幅から零まで変化させる。外部からモード選択部10に選択指令が入力されない場合には、電源4における上記した品質測定用電流供給部7Bだけが作動して、図3に示すような波形図の品質測定用の交流電流が通電用電極2,2を介して検査対象物1に印加される。
また、測定を行う前に、周波数を一定にして振幅のみを変化させる指令を周波数変更指令部20bから脱磁用電流供給部7Aに与えて脱磁を行っても良い。この場合、モード選択部10を省略することができる。
The demagnetizing current supply unit 7 </ b> A in the power supply 4 includes a mode selection unit 10, an oscillation circuit 19, and an amplification circuit 16. The oscillation circuit 19 and the amplifier circuit 16 that constitute a part of the demagnetization current supply unit 7A are shared with the quality measurement current supply unit 7B. The mode selection unit 10 receives a selection command from an external switch or the like before quality measurement, and causes the oscillation circuit 19 to change its AC signal to a signal waveform whose amplitude gradually decreases at a constant frequency, for example, as shown in FIG. Control to be. That is, the demagnetizing current applied to the inspection object 1 from the demagnetizing current supply unit 7A via the energization electrodes 2 and 2 is an alternating current whose amplitude gradually decreases at a constant frequency. The change in the amplitude is changed from the amplitude at which the maximum current is applied as a demagnetizing current to zero while demagnetizing one inspection object, for example. When the selection command is not input to the mode selection unit 10 from the outside, only the quality measurement current supply unit 7B in the power source 4 operates, and the AC current for quality measurement in the waveform diagram as shown in FIG. It is applied to the inspection object 1 through the energization electrodes 2 and 2.
Further, before performing the measurement, a demagnetization may be performed by giving a command to change only the amplitude with a constant frequency from the frequency change command unit 20b to the demagnetization current supply unit 7A. In this case, the mode selection unit 10 can be omitted.

このように、この焼入れ品質検査装置では、通電用電極2,2を検査対象物1の表面に接触させ、電源4から通電用電極2,2を介して検査対象物1に品質測定用電流を印加し、このとき検査対象物1を流れる電流が生成する磁界を磁界検出手段である磁界センサ5で測定し、この磁界センサ5で測定した磁界により品質測定手段18で検査対象物1の焼入れ品質を測定するようにしたので、非破壊検査により検査対象物1の焼入れ品質を精度良く検査することができる。   Thus, in this quenching quality inspection apparatus, the current-carrying electrodes 2 and 2 are brought into contact with the surface of the inspection object 1, and a quality measurement current is supplied to the inspection object 1 from the power supply 4 via the current-carrying electrodes 2 and 2. The magnetic field generated by the current flowing through the inspection object 1 at this time is measured by the magnetic field sensor 5 as the magnetic field detection means, and the quenching quality of the inspection object 1 is measured by the quality measurement means 18 by the magnetic field measured by the magnetic field sensor 5. Therefore, the quenching quality of the inspection object 1 can be inspected with high accuracy by nondestructive inspection.

特に、脱磁手段となる脱磁用電流供給部7Aを測定装置9の電源4に設けて、品質測定前に検査対象物1に残留する磁気を脱磁するようにしているので、別途脱磁機を用いることなく、検査対象物1に残留する磁気の影響を無くして、非破壊検査により検査対象物1の焼入れ品質を簡単に、且つ精度良く検査することができる。また、検出ヘッドとなるプローブ8内に脱磁用のコイルを設ける必要がないので、プローブ8の構造の簡略化および小型化も可能となる。   In particular, a demagnetizing current supply unit 7A serving as a demagnetizing means is provided in the power source 4 of the measuring device 9 so as to demagnetize the magnetism remaining on the inspection object 1 before quality measurement. Without using a machine, the influence of magnetism remaining on the inspection object 1 can be eliminated, and the quenching quality of the inspection object 1 can be inspected easily and accurately by nondestructive inspection. Further, since it is not necessary to provide a demagnetizing coil in the probe 8 serving as the detection head, the structure of the probe 8 can be simplified and downsized.

また、この実施形態では、脱磁用の電流を、振幅が漸減する交流電流としており、またその交流電流の周期を一定周期としているので、検査対象物1の残留磁気を脱磁するのにより効果を上げることができる。   Further, in this embodiment, the current for demagnetization is an alternating current whose amplitude gradually decreases, and the period of the alternating current is a constant period, so that it is more effective to demagnetize the residual magnetism of the inspection object 1. Can be raised.

また、この実施形態では、前記品質測定手段18が、交流電源の出力する周波数を種々変化させる周波数変更指令部20bを有し、かつこの周波数変更指令部20bで変化させた各周波数における磁界を測定し、焼入れ品質を測定する機能を有するものとしているので、検査目的となる焼入れ品質を求めるのに適した周波数の変更が行い易い。   In this embodiment, the quality measuring means 18 has a frequency change command unit 20b that changes the frequency output from the AC power supply in various ways, and measures the magnetic field at each frequency changed by the frequency change command unit 20b. In addition, since it has a function of measuring the quenching quality, it is easy to change the frequency suitable for obtaining the quenching quality to be inspected.

また、この実施形態では、品質測定用の電流として、周波数が順次変化する交流電流を用いたが、周波数を変化させない単一周波数の交流電流を用いることも可能である。さらには、品質用の電流として直流電流を用いても良い。この場合には、検査対象物1に、方向、大きさが種々異なる電流を印加して、方向、大きさが異なる電流毎の磁界の強さまたは大きさおよび方向を測定しても良い。この場合にも、前記実施形態のものと同様に検査対象物1の焼入れ深さを測定し得る。   In this embodiment, an alternating current whose frequency sequentially changes is used as the quality measurement current. However, it is also possible to use a single frequency alternating current that does not change the frequency. Further, a direct current may be used as the quality current. In this case, currents with different directions and magnitudes may be applied to the inspection object 1 to measure the strength or magnitude and direction of the magnetic field for each current with different directions and magnitudes. Also in this case, the quenching depth of the inspection object 1 can be measured in the same manner as in the above embodiment.

上記実施形態において磁界検出手段として用いた磁界センサ5には、磁気インピーダンス素子(MIセンサ、MI:Magneto-Impedance)、磁気抵抗素子(MRセンサ、MR:Magnetoresistive)、巨大磁気抵抗素子(GMRセンサ、GMR:Giant Magnetoresisitive )、トンネル磁気抵抗素子(TMRセンサ、TMR:Tunnel Magnetoresisitive)、ホールセンサ、フラックスゲートセンサ等を使用することができる。交流磁界のみを測定する場合、巻き線型の磁界センサを使用しても良い。   The magnetic field sensor 5 used as the magnetic field detection means in the above embodiment includes a magnetic impedance element (MI sensor, MI: Magneto-Impedance), a magnetoresistive element (MR sensor, MR: Magnetoresistive), a giant magnetoresistive element (GMR sensor, GMR: Giant Magnetoresisitive), tunnel magnetoresistive element (TMR sensor, TMR: Tunnel Magnetoresisitive), Hall sensor, fluxgate sensor, etc. can be used. When measuring only an alternating magnetic field, a wound magnetic field sensor may be used.

1…検査対象物
2…通電用電極
4…電源
5…磁界センサ(磁界検出手段)
7A…脱磁用電流供給部(脱磁手段)
18…品質測定手段
20b…周波数変更指令部
DESCRIPTION OF SYMBOLS 1 ... Test object 2 ... Electrode 4 for energization ... Power supply 5 ... Magnetic field sensor (magnetic field detection means)
7A ... Current supply section for demagnetization (demagnetization means)
18 ... Quality measuring means 20b ... Frequency change command section

Claims (8)

検査対象物に電流を通電し、その検査対象物中を流れる電流がつくる磁界を測定することで焼入れ品質を検査する焼入れ品質検査装置であって、
前記検査対象物の表面に接触させる通電用電極と、この通電用電極を介して前記検査対象物に品質測定用の電流を印加する電源と、この電源により前記検査対象物を流れる品質測定用電流が生成する磁界を測定する磁界検出手段と、この磁界検出手段で測定した磁界により、前記検査対象物の焼入れ品質を測定する品質測定手段と、品質測定前に前記検査対象物に残留する磁気を脱磁する脱磁手段とを備えることを特徴とする焼入れ品質検査装置。
A quenching quality inspection device that inspects the quenching quality by passing a current through the inspection object and measuring the magnetic field generated by the current flowing through the inspection object,
An energization electrode that is brought into contact with the surface of the inspection object, a power source that applies a current for quality measurement to the inspection object via the energization electrode, and a quality measurement current that flows through the inspection object by the power source Magnetic field detection means for measuring the magnetic field generated by the magnetic field, quality measurement means for measuring the quenching quality of the inspection object by the magnetic field measured by the magnetic field detection means, and magnetism remaining on the inspection object before the quality measurement A quenching quality inspection apparatus comprising a demagnetizing means for demagnetizing.
請求項1において、前記脱磁手段は、前記電源に設けられ、品質測定前に前記通電用電極を介して前記検査対象物に脱磁用の電流を印加する脱磁用電流供給部である焼入れ品質検査装置。   2. The quenching according to claim 1, wherein the demagnetizing means is a demagnetizing current supply unit that is provided in the power source and applies a demagnetizing current to the inspection object via the energization electrode before quality measurement. Quality inspection device. 請求項2において、前記脱磁用の電流は、振幅が漸減する交流電流である焼入れ品質検査装置。   3. The quenching quality inspection apparatus according to claim 2, wherein the demagnetizing current is an alternating current whose amplitude gradually decreases. 請求項3において、前記脱磁用の電流が一定周期の交流電流である焼入れ品質検査装置。   4. The quenching quality inspection apparatus according to claim 3, wherein the demagnetizing current is an alternating current having a constant period. 請求項1ないし請求項4のいずれか1項において、前記品質測定用の電流は、振幅が一定で周波数が変化する交流電流である焼入れ品質検査装置。   5. The quenching quality inspection apparatus according to claim 1, wherein the quality measurement current is an alternating current having a constant amplitude and a varying frequency. 請求項1ないし請求項5のいずれか1項において、前記磁界検出手段は、低周波の磁界を測定可能な磁界センサである焼入れ品質検査装置。   6. The quenching quality inspection apparatus according to claim 1, wherein the magnetic field detection unit is a magnetic field sensor capable of measuring a low-frequency magnetic field. 請求項6において、前記磁界センサが、ホールセンサ、MRセンサ、GMRセンサ、TMRセンサ、MIセンサ、およびフラックスゲートセンサのうちのいずれか一つである焼入れ品質検査装置。   The quenching quality inspection apparatus according to claim 6, wherein the magnetic field sensor is any one of a Hall sensor, an MR sensor, a GMR sensor, a TMR sensor, an MI sensor, and a fluxgate sensor. 請求項1ないし請求項7のいずれか1項において、前記品質測定手段は、前記焼入れ品質として、前記検査対象物の表面硬度、深さ方向の焼入れ硬度分布、および焼入れ深さの少なくとも一つを測定する焼入れ品質検査装置。   The quality measuring means according to any one of claims 1 to 7, wherein the quality measuring means includes at least one of a surface hardness, a quenching hardness distribution in a depth direction, and a quenching depth of the inspection object as the quenching quality. Quenching quality inspection device to measure.
JP2010126576A 2010-06-02 2010-06-02 Hardening quality inspection device Pending JP2011252787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010126576A JP2011252787A (en) 2010-06-02 2010-06-02 Hardening quality inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010126576A JP2011252787A (en) 2010-06-02 2010-06-02 Hardening quality inspection device

Publications (1)

Publication Number Publication Date
JP2011252787A true JP2011252787A (en) 2011-12-15

Family

ID=45416837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010126576A Pending JP2011252787A (en) 2010-06-02 2010-06-02 Hardening quality inspection device

Country Status (1)

Country Link
JP (1) JP2011252787A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019042807A (en) * 2017-09-04 2019-03-22 Jfeスチール株式会社 Manufacturing method of steel plate and surface layer hardness measuring device for magnetic material
JP2023507637A (en) * 2019-12-20 2023-02-24 ポスコホールディングス インコーポレーティッド Steel plate surface material inspection device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019042807A (en) * 2017-09-04 2019-03-22 Jfeスチール株式会社 Manufacturing method of steel plate and surface layer hardness measuring device for magnetic material
JP2023507637A (en) * 2019-12-20 2023-02-24 ポスコホールディングス インコーポレーティッド Steel plate surface material inspection device and method

Similar Documents

Publication Publication Date Title
RU2593677C2 (en) Electromagnetic sensor and calibration thereof
JP5483268B2 (en) Surface property inspection method
JP6289732B2 (en) Rope damage diagnostic inspection apparatus and rope damage diagnostic inspection method
JP5946086B2 (en) Eddy current inspection device, eddy current inspection probe, and eddy current inspection method
WO2010050155A1 (en) Barkhausen noise inspection apparatus and inspection method
Espina-Hernandez et al. Rapid estimation of artificial near-side crack dimensions in aluminium using a GMR-based eddy current sensor
JP2010164306A (en) Method and device for hardened depth
JP5892341B2 (en) Hardening depth measuring method and quenching depth measuring device
JP4975142B2 (en) Eddy current measuring sensor and eddy current measuring method
JP2010048552A (en) Nondestructive inspecting device and method
Angelopoulos et al. Steel health monitoring device based on Hall sensors
JP2011252787A (en) Hardening quality inspection device
JP2011257223A (en) Hardening quality inspection device
US20120068696A1 (en) Apparatus for evaluating hardening quality and method thereof
JP4831298B2 (en) Hardening depth measuring device
JP2005127963A (en) Nondestructive inspection method and its apparatus
JP2010243173A (en) Device and method for inspecting hardening quality
JPH01269049A (en) Method of inspecting deterioration of metallic material
KR102224117B1 (en) Magnetic nondestructive inspection device using magnetic hysteresis property estimation method
RU103926U1 (en) ELECTROMAGNETIC CONVERTER TO DEFECTOSCOPE
JP6074256B2 (en) Quenching quality inspection equipment
JP2000304725A (en) Method for measuring thickness of transformation layer of steel material
Decitre et al. Detection of Grinder Burn Area on Surfaces of Ferromagnetic Material by Eddy Current, Barkhausen Noise and Multi Technical 3MA Methods
Barbashova et al. DETERMINATION OF ELECTROMAGNETIC PARAMETERS OF METAL CAR BODY AS A THIN-WALLED SHEET METALS AT MAGNETIC PULSE TREATMENT
Zhang et al. A novel TMR-based sensor in injected direct current field measurement for nonferrous metal inspection