JP2011257223A - Hardening quality inspection device - Google Patents

Hardening quality inspection device Download PDF

Info

Publication number
JP2011257223A
JP2011257223A JP2010130914A JP2010130914A JP2011257223A JP 2011257223 A JP2011257223 A JP 2011257223A JP 2010130914 A JP2010130914 A JP 2010130914A JP 2010130914 A JP2010130914 A JP 2010130914A JP 2011257223 A JP2011257223 A JP 2011257223A
Authority
JP
Japan
Prior art keywords
magnetic field
quenching
current
inspection object
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010130914A
Other languages
Japanese (ja)
Inventor
Masatoshi Mizutani
政敏 水谷
Shunsuke Koike
俊介 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2010130914A priority Critical patent/JP2011257223A/en
Publication of JP2011257223A publication Critical patent/JP2011257223A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hardening quality inspection device which is capable of accurately inspecting hardening quality of an object to be inspected, by nondestructive inspection.SOLUTION: The hardening quality inspection device includes: current-carrying electrodes 2 and 2 to be brought into contact with a surface of an object 1 to be inspected; a power source 4; magnetic field detection means 5 for measuring a magnetic field generated by a current flowing in the object 1 to be inspected; quality measuring means 18 for measuring hardening quality of the object 1 to be inspected, by the magnetic field measured by the magnetic field detection means 5; and disturbance magnetic field removal means 7 for preventing the influence of a magnetic field generated by a current flowing outside the object to be inspected, on measurement of the magnetic field detection means 5.

Description

この発明は、鋼材製品における焼入れ硬度分布、焼入れ深さ等の焼入れ品質を検査する焼入れ品質検査装置に関する。   The present invention relates to a quenching quality inspection apparatus for inspecting quenching quality such as quenching hardness distribution and quenching depth in steel products.

軸受等の転動製品には焼入れ処理や焼戻し処理が施される。これらの処理の中でも、高周波焼入れ処理や、浸炭処理、浸炭窒化処理等の表面硬化処理では、品質保証のために表面硬化層の検査が行われる。この検査では、実際の製品を切断して、その切断面上で、製品表面から深さ方向に硬度を測定して硬化層の深さを測定している。製品を切断できないものでは、テストピースに製品と同じ炉で熱処理を施し、そのテストピースを切断して前記と同様に硬化層深さを測定して、製品の硬化層深さの保証を行っている。   Quenching and tempering treatments are applied to rolling products such as bearings. Among these treatments, in the surface hardening treatment such as induction hardening treatment, carburizing treatment, carbonitriding treatment, etc., the surface hardened layer is inspected for quality assurance. In this inspection, an actual product is cut and the depth of the cured layer is measured by measuring the hardness in the depth direction from the product surface on the cut surface. If the product cannot be cut, heat-treat the test piece in the same furnace as the product, cut the test piece, measure the cured layer depth in the same way as above, and guarantee the cured layer depth of the product. Yes.

このように、熱処理した転動製品の焼入れ硬化層深さの検査では、製品を切断する破壊検査が行われているが、この場合には製品が破壊されるため、マテリアルコストが大きくなる問題がある。また、製品の切断、および硬度計による深さ方向の硬度測定に時間がかかり、工数が大きくなる問題点もある。
製品を切断できない場合には、上記したようなテストピースにより保証が行われているが、実際の製品の検査ではないため、保証精度が悪い等の問題点がある。
In this way, in the inspection of the depth of the hardened layer of the heat-treated rolling product, a destructive inspection for cutting the product is performed. In this case, the product is destroyed, which increases the material cost. is there. In addition, there is a problem that it takes time to cut the product and to measure the hardness in the depth direction using a hardness meter, which increases the number of steps.
If the product cannot be cut, it is guaranteed by the test piece as described above. However, since it is not an actual product inspection, there are problems such as poor guarantee accuracy.

そこで、破壊検査での上記した課題を解決するために、焼入れ硬化層を非破壊で検査する方法が提案されている。その非破壊検査の提案例の一つは、焼入れによる導電率の変化を利用して検査する電位差法である。この方法は、検査対象物に接触させたプローブで、検査対象物に直流電流を通電し、この検査対象物におけるプローブの接触位置とは異なる位置で接触させた2つの探針間の電位差を測定して焼入れ深さを求めるものである(例えば特許文献1,2)。   Therefore, in order to solve the above-described problems in the destructive inspection, a method for inspecting the hardened hardened layer in a nondestructive manner has been proposed. One example of the proposed non-destructive inspection is a potential difference method in which inspection is performed by utilizing a change in conductivity due to quenching. This method uses a probe that is in contact with an inspection object, and a direct current is passed through the inspection object to measure the potential difference between two probes that are in contact with the inspection object at a position different from the contact position of the probe. Thus, the quenching depth is obtained (for example, Patent Documents 1 and 2).

特開2004−309355号公報JP 2004-309355 A 特開2007−064817号公報JP 2007-064817 A 特願2009−134727号Japanese Patent Application No. 2009-134727

上記した非破壊検査方法では、検査対象物に直流電流を通電していることから、焼入れ深さの測定には有効であるものの、硬度の深さ方向の分布を測定できない。焼入れの品質保証精度を向上させるためには、焼入れ深さだけでなく、焼入れ硬度の深さ方向の分布検出が必要である。   In the non-destructive inspection method described above, since a direct current is applied to the inspection object, the hardness distribution in the depth direction cannot be measured although it is effective for measuring the quenching depth. In order to improve the quality assurance accuracy of quenching, it is necessary to detect not only the quenching depth but also the distribution of quenching hardness in the depth direction.

上記問題を解決するため、本件出願人は、図8に示すように、検査対象物21に電流を通電し、その検査対象物中を流れる電流がつくる磁界を測定することで焼入れ深さや焼入れ硬度分布などを検査する焼入れ品質検査装置を提案した(特許文献3)。この装置では、電流の周波数を変化させることで電流が流れる深さを制御できるため、深さ方向の硬度分布を検出できる。しかし、この装置では、電流を通電する通電用電極22,22と磁界を測定する磁界センサ25とを一体として検出ヘッド28を構成し、この検出ヘッド28ではその上方から下方へと電流を通電するように通電用電極22,22を配置しているので、磁界センサ25の測定対象である磁界が通電用電極22,22を流れる電流の影響を受けて、検出精度が悪くなるという問題点がある。   In order to solve the above problem, as shown in FIG. 8, the applicant of the present invention applies a current to the inspection object 21 and measures the magnetic field generated by the current flowing through the inspection object 21 to thereby reduce the quenching depth and the hardness. A quenching quality inspection device for inspecting distribution and the like has been proposed (Patent Document 3). In this apparatus, since the depth at which the current flows can be controlled by changing the frequency of the current, the hardness distribution in the depth direction can be detected. However, in this apparatus, the energization electrodes 22 and 22 for energizing the current and the magnetic field sensor 25 for measuring the magnetic field are integrated to form the detection head 28, and the current is energized from the upper side to the lower side in the detection head 28. Thus, since the energizing electrodes 22 and 22 are arranged, there is a problem that the detection accuracy deteriorates due to the influence of the current flowing through the energizing electrodes 22 and 22 by the magnetic field that is the measurement target of the magnetic field sensor 25. .

この発明の目的は、非破壊検査により検査対象物の焼入れ品質を精度良く検査することができる焼入れ品質検査装置を提供することである。   An object of the present invention is to provide a quenching quality inspection apparatus capable of accurately inspecting the quenching quality of an inspection object by nondestructive inspection.

この発明の焼入れ品質検査装置は、検査対象物に電流を通電し、その検査対象物中を流れる電流がつくる磁界を測定することで焼入れ品質を検査する焼入れ品質検査装置であって、前記検査対象物の表面に接触させる通電用電極と、この通電用電極を介して前記検査対象物に電流を印加する電源と、この電源により前記検査対象物を流れる電流が生成する磁界を測定する磁界検出手段と、この磁界検出手段で測定した磁界により、前記検査対象物の焼入れ品質を測定する品質測定手段と、前記検査対象物の外部を流れる電流が生成する磁界が前記磁界検出手段の測定に影響を与えるのを防止する外乱磁界除去手段とを備えることを特徴とする。   The quenching quality inspection apparatus according to the present invention is a quenching quality inspection apparatus for inspecting quenching quality by passing a current through an inspection object and measuring a magnetic field generated by a current flowing through the inspection object, the inspection object A current-carrying electrode brought into contact with the surface of the object, a power source for applying a current to the inspection object via the current-carrying electrode, and a magnetic field detection means for measuring a magnetic field generated by a current flowing through the inspection object by the power source And the quality measuring means for measuring the quenching quality of the inspection object by the magnetic field measured by the magnetic field detection means, and the magnetic field generated by the current flowing outside the inspection object affects the measurement of the magnetic field detection means. Disturbing magnetic field removing means for preventing application is provided.

この構成によると、検査対象物の表面に一対の通電用電極を接触させ、電源からこれら通電用電極を通して電流を通電する。この状態において、検査対象物を流れる電流が生成する磁界を、磁界検出手段で測定する。品質測定手段は、磁界検出手段で測定した磁界により、検査対象物の焼入れ品質を測定する。例えば、磁界の磁路断面積の変化が磁気抵抗の変化として現れ、この磁気抵抗の変化に基づく磁界の変化から、検査対象物の焼入れ硬度、焼入れ深さ等の焼入れ品質等を求める。
焼入れにより鋼材の透磁率、導電率が変化する。一般に焼入れにより鋼材の硬度が高くなる程、透磁率、導電率共に小さくなる。この理由により、焼入れ硬度、深さによって検査対象物に流れる電流が変化する。よって、電流がつくる磁界の磁路断面積の変化による磁界の変化を磁界検出手段で測定することにより、電流の変化を検出する。
According to this configuration, the pair of energization electrodes are brought into contact with the surface of the inspection object, and a current is applied from the power source through the energization electrodes. In this state, the magnetic field generated by the current flowing through the inspection object is measured by the magnetic field detection means. The quality measuring means measures the quenching quality of the inspection object by the magnetic field measured by the magnetic field detecting means. For example, a change in the magnetic path cross-sectional area of the magnetic field appears as a change in magnetic resistance, and quenching quality such as quenching hardness and quenching depth of the inspection object is obtained from the change in magnetic field based on the change in magnetoresistance.
The permeability and conductivity of the steel material change due to quenching. Generally, the higher the hardness of a steel material by quenching, the smaller the permeability and conductivity. For this reason, the current flowing through the inspection object varies depending on the quenching hardness and depth. Therefore, the change in the current is detected by measuring the change in the magnetic field caused by the change in the magnetic path cross-sectional area of the magnetic field generated by the current with the magnetic field detection means.

検査対象物1を電流が流れる深さは、表皮効果により周波数f、導電率σ、透磁率μにより変化する。ここで電流が流れる深さδは、次式(1)で表される。
δ=√(1/πfσμ) …(1)
上式(1)より、検査対象物1を電流が流れる侵入深さは周波数により変化する。このため、周波数を変化させることで、電流が流れる深さを変えながら測定を行うことができる。例えば、高周波電流を通電したときは、電流は検査対象物表面しか流れることができないので、検査対象物表面の焼入れ硬度を知ることができる。周波数を高周波側から次第に小さくしていくと、電流の侵入深さは大きくなっていく。したがって、例えば、周波数を高周波側から小さくしつつ磁界を測定することで、焼入れ硬度の深さ方向の分布を推定することができる。このように、非破壊検査により検査対象物の焼入れ品質を精度良く検査することができる。
特に、外乱磁界除去手段を設けて、検査対象物の外部を流れる電流が生成する外乱磁界が磁界検出手段の測定に影響を与えるのを防止するようにしているので、非破壊検査により検査対象物の焼入れ品質をさらに精度良く検査することができる。
The depth at which current flows through the inspection object 1 varies depending on the frequency f, conductivity σ, and permeability μ due to the skin effect. Here, the depth δ through which the current flows is expressed by the following equation (1).
δ = √ (1 / πfσμ) (1)
From the above equation (1), the penetration depth at which current flows through the inspection object 1 varies depending on the frequency. For this reason, by changing the frequency, the measurement can be performed while changing the depth at which the current flows. For example, when a high frequency current is applied, the current can flow only on the surface of the inspection object, so that the quenching hardness of the surface of the inspection object can be known. As the frequency is gradually decreased from the high frequency side, the penetration depth of the current increases. Therefore, for example, the distribution of the quenching hardness in the depth direction can be estimated by measuring the magnetic field while decreasing the frequency from the high frequency side. Thus, the quenching quality of the inspection object can be accurately inspected by nondestructive inspection.
In particular, a disturbance magnetic field removing means is provided to prevent the disturbance magnetic field generated by the current flowing outside the inspection object from affecting the measurement of the magnetic field detection means. The quality of quenching can be inspected with higher accuracy.

この発明において、前記外乱磁界除去手段は、前記通電用電極に施した磁気シールドであっても良い。この場合の磁気シールドは、通電用電極を強磁性体からなるシールド材で被覆したものであっても良い。磁気シールドによると、外乱磁界の影響を簡単にかつ効果的に除去することができる。また、前記シールド材は軟磁性金属であっても良いし、軟磁性酸化物であっても良い。軟磁性であると、外乱磁界の影響をより効果的に除去することができる。前記シールド材の形状はビーズ形状であっても良い。ここで言う「ビーズ形状」は、通し用の孔が明いた形状を言い、円筒状であっても、玉状であっても良い。ビーズ形状であれば、通電用電極を中に通すことで、通電用電極に対して容易に取付けることができる。   In this invention, the disturbance magnetic field removing means may be a magnetic shield applied to the energizing electrode. The magnetic shield in this case may be one in which the energizing electrode is covered with a shielding material made of a ferromagnetic material. According to the magnetic shield, the influence of the disturbance magnetic field can be easily and effectively removed. The shield material may be a soft magnetic metal or a soft magnetic oxide. If it is soft magnetic, the influence of the disturbance magnetic field can be more effectively removed. The shape of the shield material may be a bead shape. The “bead shape” as used herein refers to a shape with a through hole, which may be cylindrical or ball-shaped. If it is a bead shape, it can be easily attached to the energizing electrode by passing the energizing electrode therethrough.

この発明において、前記通電用電極と前記磁界検出手段とを一体として検出ヘッドを構成し、前記外乱磁界除去手段は、前記通電用電極を流れる電流の流れを前記検出ヘッドの側面から内部に向かわせるものとしても良い。上記の「一体として」とは、互いに固定状態にある一つの組立部品としてと言う意味である。   In this invention, the energizing electrode and the magnetic field detecting means are integrated to form a detection head, and the disturbance magnetic field removing means directs the flow of current flowing through the energizing electrode from the side surface of the detection head to the inside. It is good as a thing. The above-mentioned "as one body" means as one assembly part that is fixed to each other.

この発明において、前記通電用電極がL字形であり、前記外乱磁界除去手段は、前記通電用電極を、その一端が前記検出ヘッドの側面に位置し他端が検出ヘッドの前記検査対象物1と対向する面に位置するように配置する電極位置決め手段であっても良い。   In the present invention, the energizing electrode is L-shaped, and the disturbance magnetic field removing means includes the energizing electrode, one end of which is located on a side surface of the detection head and the other end of the inspection target 1 of the detection head. It may be an electrode positioning means arranged so as to be positioned on the opposing surfaces.

この発明において、前記検出ヘッドにおける前記通電用電極を含めた全ての電極の材質が非磁性材であっても良い。このように、検出ヘッドにおける全ての電極の材質を非磁性材とすると、外乱磁界が磁界検出手段の測定に影響を与えるのをさらに防止できる。   In the present invention, the material of all electrodes including the energization electrode in the detection head may be a non-magnetic material. Thus, if the material of all the electrodes in the detection head is a non-magnetic material, it is possible to further prevent the disturbance magnetic field from affecting the measurement of the magnetic field detection means.

この発明において、前記電源から前記検査対象物に印加する電流が直流電流であっても良く、交流電流であっても良い。直流電流と交流電流とを切り換えて印加するようにしても良い。   In the present invention, the current applied from the power source to the inspection object may be a direct current or an alternating current. A direct current and an alternating current may be switched and applied.

電源から検査対象物に印加する電流が交流電流である場合に、前記品質測定手段は、前記電源の出力する交流電流の周波数を種々変化させる周波数変更指令部を有し、かつこの周波数変更指令部で変化させた各周波数における磁界を測定し、焼入れ品質を測定する機能を有するものとしても良い。この構成の場合、検査目的となる焼入れ品質を求めるのに適した周波数の変更が行い易い。   When the current applied from the power source to the object to be inspected is an alternating current, the quality measuring means has a frequency change command unit that variously changes the frequency of the alternating current output from the power source, and the frequency change command unit It is good also as what has a function which measures the magnetic field in each frequency changed by (1), and measures quenching quality. In the case of this configuration, it is easy to change the frequency suitable for obtaining the quenching quality to be inspected.

この発明において、前記磁界検出手段は、低周波の磁界を測定可能な磁界センサであるのが望ましい。検査対象物に印加する交流電流の周波数が低い程、その交流電流は検査対象物1の深い部分を流れるので、より深い位置での焼入れ硬度を知るためには、磁界センサは、低周波の磁界を測定できるものが望ましい。   In the present invention, the magnetic field detecting means is preferably a magnetic field sensor capable of measuring a low frequency magnetic field. The lower the frequency of the alternating current applied to the inspection object, the more the alternating current flows through the deeper part of the inspection object 1, so in order to know the quenching hardness at a deeper position, the magnetic field sensor is a low-frequency magnetic field. It is desirable to be able to measure

この発明において、前記磁界センサは、ホールセンサ、MRセンサ、GMRセンサ、TMRセンサ、MIセンサ、およびフラックスゲートセンサのうちのいずれか一つであっても良い。   In the present invention, the magnetic field sensor may be any one of a Hall sensor, an MR sensor, a GMR sensor, a TMR sensor, an MI sensor, and a fluxgate sensor.

この発明において、前記品質測定手段は、前記焼入れ品質として、前記検査対象物の表面硬度、深さ方向の焼入れ硬度分布、および焼入れ深さの少なくとも一つを検査するものとしても良い。   In this invention, the quality measuring means may inspect at least one of the surface hardness, the quenching hardness distribution in the depth direction, and the quenching depth of the inspection object as the quenching quality.

この発明の焼入れ品質検査装置は、検査対象物に電流を通電し、その検査対象物中を流れる電流がつくる磁界を測定することで焼入れ品質を検査する焼入れ品質検査装置であって、前記検査対象物の表面に接触させる通電用電極と、この通電用電極を介して前記検査対象物に電流を印加する電源と、この電源により前記検査対象物を流れる電流が生成する磁界を測定する磁界検出手段と、この磁界検出手段で測定した磁界により、前記検査対象物の焼入れ品質を測定する品質測定手段と、前記検査対象物の外部を流れる電流が生成する磁界が前記磁界検出手段の測定に影響を与えるのを防止する外乱磁界除去手段とを備えるため、非破壊検査により検査対象物の焼入れ品質を精度良く検査することができる。   The quenching quality inspection apparatus according to the present invention is a quenching quality inspection apparatus for inspecting quenching quality by passing a current through an inspection object and measuring a magnetic field generated by a current flowing through the inspection object, the inspection object A current-carrying electrode brought into contact with the surface of the object, a power source for applying a current to the inspection object via the current-carrying electrode, and a magnetic field detection means for measuring a magnetic field generated by a current flowing through the inspection object by the power source And the quality measuring means for measuring the quenching quality of the inspection object by the magnetic field measured by the magnetic field detection means, and the magnetic field generated by the current flowing outside the inspection object affects the measurement of the magnetic field detection means. Since it is provided with a disturbance magnetic field removing means for preventing the magnetic field from being applied, the quenching quality of the inspection object can be inspected with high accuracy by nondestructive inspection.

この発明の一実施形態にかかる焼入れ品質検査装置の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the quenching quality inspection apparatus concerning one Embodiment of this invention. 同焼入れ品質検査装置の構成を示すブロック図である。It is a block diagram which shows the structure of the quenching quality inspection apparatus. (A)は同焼入れ品質検査装置におけるプローブの拡大断面図、(B)は同プローブにおける通電用電極の磁気シールドに用いられるシールド材の斜視図である。(A) is an expanded sectional view of the probe in the quenching quality inspection apparatus, and (B) is a perspective view of a shield material used for the magnetic shield of the energization electrode in the probe. 同プローブの他の構成例を示す拡大断面図である。It is an expanded sectional view showing other examples of composition of the probe. 同プローブのさらに他の構成例を示す拡大断面図である。It is an expanded sectional view showing other examples of composition of the probe. 同プローブのさらに他の構成例を示す拡大断面図である。It is an expanded sectional view showing other examples of composition of the probe. この発明の他の実施形態にかかる焼入れ品質検査装置の構成を示すブロック図である。It is a block diagram which shows the structure of the hardening quality inspection apparatus concerning other embodiment of this invention. 提案例の構成を示すブロック図である。It is a block diagram which shows the structure of a proposal example.

この発明の一実施形態を図1ないし図3と共に説明する。図1において、この実施形態の焼入れ品質検査装置の原理について説明する。この焼入れ品質検査装置では、検査対象物1に電流を通電し、その検査対象物1中を流れる電流3がつくる磁界6を測定することで焼入れ品質を検査する。図中で、磁界6は磁束を示す線により、電流3は流れ経路を示す線により、それぞれ図示している。検査対象物1は、焼入れ処理が施された部品、例えば軸受や軸受部品等の鋼材製品である。ただし、これらの鋼材製品に限定されるものではない。   An embodiment of the present invention will be described with reference to FIGS. In FIG. 1, the principle of the quenching quality inspection apparatus of this embodiment will be described. In this quenching quality inspection apparatus, the quenching quality is inspected by passing a current through the inspection object 1 and measuring the magnetic field 6 generated by the current 3 flowing through the inspection object 1. In the figure, the magnetic field 6 is indicated by a line indicating a magnetic flux, and the current 3 is indicated by a line indicating a flow path. The inspection object 1 is a steel product such as a part subjected to quenching treatment, such as a bearing or a bearing part. However, it is not limited to these steel products.

この例では、通電電流として交流電流が使用される。図1に示すように、交流電流は、検査対象物1に接触させた一対の通電用電極2,2を介して交流電源である電源4から供給、すなわち印加する。検査対象物1に交流電流を印加して、検査対象物1上に設けた磁界検出手段である磁界センサ5で、検査対象物1を流れる電流3が生成する磁界6を測定する。磁界センサ5は、磁界の強さまたは大きさおよび方向を検出するセンサであり、例えば電圧値で出力する。この明細書で言う「磁界センサ」は、磁気センサを含む。
検査対象物1となる鋼材は、焼入れにより透磁率、導電率が変化する。一般に焼入れにより鋼材の硬度が高くなる程、透磁率、導電率共に小さくなる。この理由により、焼入れ硬度、深さによって検査対象物1に流れる電流が変化する。よって、電流がつくる磁界の強さまたは大きさを磁界センサ5で測定することにより、電流の変化を検出する。
In this example, an alternating current is used as the energizing current. As shown in FIG. 1, an alternating current is supplied from, or applied to, a power source 4 that is an alternating current power source via a pair of energizing electrodes 2 and 2 that are brought into contact with the inspection object 1. An alternating current is applied to the inspection object 1, and the magnetic field 6 generated by the current 3 flowing through the inspection object 1 is measured by the magnetic field sensor 5 that is a magnetic field detection means provided on the inspection object 1. The magnetic field sensor 5 is a sensor that detects the strength or magnitude and direction of the magnetic field, and outputs the voltage value, for example. The “magnetic field sensor” referred to in this specification includes a magnetic sensor.
The steel material to be inspected 1 changes its magnetic permeability and conductivity by quenching. Generally, the higher the hardness of a steel material by quenching, the smaller the permeability and conductivity. For this reason, the current flowing through the inspection object 1 varies depending on the quenching hardness and depth. Therefore, the change in current is detected by measuring the strength or magnitude of the magnetic field generated by the current with the magnetic field sensor 5.

検査対象物1を電流が流れる深さは、表皮効果により周波数f、導電率σ、透磁率μにより変化する。ここで電流が流れる深さδは、次式(1)で表される。
δ=√(1/πfσμ) …(1)
上式(1)より、検査対象物1を電流が流れる侵入深さδは周波数fにより変化する。このため、周波数fを変化させることで、電流が流れる深さδを変えながら測定を行うことができる。例えば、高周波電流を通電したときは、電流は検査対象物表面しか流れることができないので、検査対象物表面の焼入れ硬度を知ることができる。この観点から、より深い位置での焼入れ硬度を知るためには、磁界センサ5は、低周波の磁界を測定できるものが望ましい。周波数を高周波側から次第に小さくしていくと、電流の侵入深さδは大きくなっていく。したがって、例えば、周波数fを高周波側から小さくしつつ磁界を測定することで、焼入れ硬度の深さ方向の分布を推定することができる。このように、非破壊検査により検査対象物1の焼入れ品質を精度良く検査することができる。周波数fを変化させる場合、段階的に変化させても、また連続的に変化させても良い。
The depth at which current flows through the inspection object 1 varies depending on the frequency f, conductivity σ, and permeability μ due to the skin effect. Here, the depth δ through which the current flows is expressed by the following equation (1).
δ = √ (1 / πfσμ) (1)
From the above equation (1), the penetration depth δ through which the current flows through the inspection object 1 varies with the frequency f. Therefore, by changing the frequency f, it is possible to perform measurement while changing the depth δ through which the current flows. For example, when a high frequency current is applied, the current can flow only on the surface of the inspection object, so that the quenching hardness of the surface of the inspection object can be known. From this viewpoint, in order to know the quenching hardness at a deeper position, it is desirable that the magnetic field sensor 5 can measure a low-frequency magnetic field. As the frequency is gradually decreased from the high frequency side, the current penetration depth δ increases. Therefore, for example, the distribution of the quenching hardness in the depth direction can be estimated by measuring the magnetic field while decreasing the frequency f from the high frequency side. Thus, the quenching quality of the inspection object 1 can be accurately inspected by nondestructive inspection. When changing the frequency f, it may be changed stepwise or continuously.

図2は、焼入れ品質検査装置の構成を示す。この焼入れ品質検査装置は、検出ヘッドとなるプローブ8と、測定装置9とを有する。プローブ8は、検査対象物1の表面1aに接触させる一対の通電用電極2,2と、電源4により検査対象物1を流れる電流が生成する磁界を測定する磁界センサ5とを一体にしたものである。すなわち磁界センサ5は、センサ基板11に実装され、モールド材12等でセンサハウジング13に固定されている。センサハウジング13は樹脂等の非磁性体であることが望ましい。センサハウジング13は、図示の例では、ブロック状に形成されて下面の外周に周壁が突出し、その周壁の内方が凹み部となった形状を成しており、その凹み部の底面にセンサ基板11が配置される。前記モールド材12は、磁界センサ5が実装されセンサ基板11と前記センサハウジング13の前記周壁との間の隙間を埋める。   FIG. 2 shows the configuration of the quenching quality inspection apparatus. This quenching quality inspection apparatus includes a probe 8 serving as a detection head and a measurement apparatus 9. The probe 8 is a combination of a pair of energizing electrodes 2 and 2 that are brought into contact with the surface 1a of the inspection object 1 and a magnetic field sensor 5 that measures the magnetic field generated by the current flowing through the inspection object 1 by the power source 4. It is. That is, the magnetic field sensor 5 is mounted on the sensor substrate 11 and fixed to the sensor housing 13 with the molding material 12 or the like. The sensor housing 13 is preferably a non-magnetic material such as resin. In the illustrated example, the sensor housing 13 is formed in a block shape, and has a shape in which a peripheral wall protrudes from the outer periphery of the lower surface, and an inner portion of the peripheral wall becomes a recessed portion, and a sensor substrate is formed on the bottom surface of the recessed portion. 11 is arranged. The mold material 12 is mounted with the magnetic field sensor 5 and fills a gap between the sensor substrate 11 and the peripheral wall of the sensor housing 13.

センサハウジング13には、センサ基板11への配線である電極14,15および前記一対の通電用電極2,2が固定される。各通電用電極2は丸棒状に形成されこの通電用電極2の少なくとも一端部が、センサハウジング13の端面から突出するように、プローブ8に上から下に向けて配置されている。電極14,15および通電用電極2は、センサハウジング13に設けられた貫通孔に挿通される。また一対の通電用電極2,2は所定距離離隔てて平行に配置され、且つ、これら通電用電極2,2間に磁界センサ5が配置されている。各通電用電極2の他端部は、測定装置9における後述の増幅回路16に電気的に接続され、センサ基板11に固着される電極14,15が測定装置9における後述のセンサ信号処理回路17に電気的に接続されている。   The sensor housing 13 is fixed with electrodes 14 and 15 which are wirings to the sensor substrate 11 and the pair of energizing electrodes 2 and 2. Each energizing electrode 2 is formed in a round bar shape, and at least one end of the energizing electrode 2 is arranged on the probe 8 from the top to the bottom so as to protrude from the end face of the sensor housing 13. The electrodes 14 and 15 and the energizing electrode 2 are inserted through through holes provided in the sensor housing 13. The pair of energizing electrodes 2 and 2 are arranged in parallel with a predetermined distance apart, and the magnetic field sensor 5 is arranged between the energizing electrodes 2 and 2. The other end of each energizing electrode 2 is electrically connected to an amplifier circuit 16 (described later) in the measuring device 9, and electrodes 14 and 15 fixed to the sensor substrate 11 are connected to a sensor signal processing circuit 17 (described later) in the measuring device 9. Is electrically connected.

前記一対の通電用電極2,2には磁気シールド7が施されている。この磁気シールド7は、検査対象物1の外部を流れる電流が生成する磁界が前記磁界センサ5の測定に影響を与えるのを防止する外乱磁界除去手段となるものである。すなわち、この場合、検査対象物1の外部を流れる電流とは、通電用電極2,2を流れる電流のことであり、この電流が生成する磁界が磁界センサ5の測定に影響を及ぼさないように、通電用電極2,2に磁気シール7が施される。磁気シールド7は、ここでは図3(A)に拡大して示すように、通電用電極2,2における磁界センサ5に近接した部位を強磁性体からなるシールド材10で被覆して構成される。シールド材10の形状は、例えば図3(B)に示すようなビーズ形状とされる。シールド材10の形状は、ビーズ状であればよく、図示のような円筒状であっても、また玉状などであっても良い。この場合のシールド材10として、軟磁性金属や軟磁性酸化物などを用いることができる。軟磁性金属としては、ケイ素鋼、パーマロイ、アモルファス合金など を用いることができ、軟磁性酸化物としては、軟磁性フェライトなどを用いることができる。   A magnetic shield 7 is applied to the pair of energizing electrodes 2 and 2. The magnetic shield 7 serves as disturbance magnetic field removing means for preventing the magnetic field generated by the current flowing outside the inspection object 1 from affecting the measurement of the magnetic field sensor 5. That is, in this case, the current flowing outside the inspection object 1 is the current flowing through the energization electrodes 2 and 2 so that the magnetic field generated by this current does not affect the measurement of the magnetic field sensor 5. A magnetic seal 7 is applied to the energizing electrodes 2 and 2. Here, the magnetic shield 7 is configured by covering a portion of the energizing electrodes 2 and 2 close to the magnetic field sensor 5 with a shielding material 10 made of a ferromagnetic material, as shown in an enlarged view in FIG. . The shape of the shield material 10 is, for example, a bead shape as shown in FIG. The shape of the shield material 10 may be a bead shape, and may be a cylindrical shape as illustrated or a ball shape. As the shielding material 10 in this case, a soft magnetic metal, a soft magnetic oxide, or the like can be used. As the soft magnetic metal, silicon steel, permalloy, amorphous alloy or the like can be used, and as the soft magnetic oxide, soft magnetic ferrite or the like can be used.

図2において、前記測定装置9は、電源4と、品質測定手段18を有する。電源4は、周波数可変の発振回路19と、この発振回路19から出力された交流信号を増幅して検査対象物1に通電する電流を供給つまり印加する増幅回路16とを含む。発振回路19は、品質測定手段18の信号処理部20に電気的に接続され、この信号処理部20からの指示により周波数および振幅を変化させる。
品質測定手段18は、発振回路19により交流電流の周波数を変化させながら磁界センサ5で測定した磁界により、検査対象物1の焼入れ品質を測定するものである。この品質測定手段18は、磁界センサ5の信号に増幅、リニア化、フィルタ処理等の前処理を施すセンサ信号処理回路17と、センサ信号処理回路17で前処理された磁界センサ信号から焼入れ深さや硬度分布を推定する信号処理部20とを有する。
In FIG. 2, the measuring device 9 has a power source 4 and quality measuring means 18. The power supply 4 includes a frequency variable oscillation circuit 19 and an amplification circuit 16 that amplifies an AC signal output from the oscillation circuit 19 and supplies, that is, applies a current to be supplied to the inspection object 1. The oscillation circuit 19 is electrically connected to the signal processing unit 20 of the quality measuring unit 18 and changes the frequency and amplitude according to an instruction from the signal processing unit 20.
The quality measuring means 18 measures the quenching quality of the inspection object 1 by the magnetic field measured by the magnetic field sensor 5 while changing the frequency of the alternating current by the oscillation circuit 19. The quality measuring means 18 includes a sensor signal processing circuit 17 that performs preprocessing such as amplification, linearization, and filter processing on the signal of the magnetic field sensor 5, and the quenching depth and the like from the magnetic field sensor signal preprocessed by the sensor signal processing circuit 17. And a signal processing unit 20 for estimating the hardness distribution.

信号処理部20は、焼入れ品質として、検査対象物1の表面硬度、深さ方向の焼入れ硬度分布、および焼入れ深さ(「焼入れ硬度等」と称す)を推定する手段である。信号処理部20は、検出された電圧値を、これらの各品質項目毎に定められた磁気抵抗の変化量に見合う電圧値と品質値(表面硬度、深さ方向の焼入れ硬度分布、焼入れ深さ等)の関係に照らし、対応する前記表面硬度、深さ方向の焼入れ硬度分布、焼入れ深さ等を推定値として出力する。ただし、これら検査対象物1の表面硬度、深さ方向の焼入れ硬度分布、および焼入れ深さのうちの少なくともいずれか1つを測定するものとしても良い。信号処理部20は、判定部20aと周波数変更指令部20bとを有し、判定部20aにより、上記の推定と、次の異常判定とを行う。   The signal processing unit 20 is a means for estimating the surface hardness, the quenching hardness distribution in the depth direction, and the quenching depth (referred to as “quenching hardness etc.”) of the inspection object 1 as the quenching quality. The signal processing unit 20 uses the detected voltage value as a voltage value and a quality value (surface hardness, quenching hardness distribution in the depth direction, quenching depth) corresponding to the amount of change in magnetic resistance determined for each of these quality items. Etc.), the corresponding surface hardness, quenching hardness distribution in the depth direction, quenching depth, etc. are output as estimated values. However, it is also possible to measure at least one of the surface hardness, the quenching hardness distribution in the depth direction, and the quenching depth of the inspection object 1. The signal processing unit 20 includes a determination unit 20a and a frequency change command unit 20b. The determination unit 20a performs the above estimation and the next abnormality determination.

判定部20aは、測定値から上記のように推定した焼入れ品質が設定品質値を下回るときに、品質異常つまり焼入れ異常と判定する。判定部20aは、センサ信号処理回路17で処理された信号に比例する深さ方向の焼入れ硬度等を算出する電子回路と、異常判定を行う電子回路とからなる。判定部20aの上記焼入れ硬度等を算出する電子回路は、検出された電圧値と深さ方向の焼入れ硬度等との関係を演算式またはテーブル等で設定した関係設定手段(図示せず)を有し、測定した磁界の強さまたは大きさおよび方向に基づく信号である電圧値を、前記関係設定手段に照らし深さ方向の焼入れ硬度等を算出する。
前記設定品質値は、種々の試験等から求めて適宜設定される閾値であり、例えば書換え可能な不図示の記憶媒体等に記憶される。判定部20aは、異常判定として、前記関係設定手段に照らして算出した任意の深さの焼入れ硬度が、同深さにおける設定品質値を下回るか否かを判定する。前記算出した焼入れ硬度が設定品質値を下回るとき、品質異常と判定する。
The determination unit 20a determines that the quality abnormality, that is, the quenching abnormality, when the quenching quality estimated as described above from the measurement value is lower than the set quality value. The determination unit 20a includes an electronic circuit that calculates a quenching hardness in the depth direction that is proportional to the signal processed by the sensor signal processing circuit 17, and an electronic circuit that performs abnormality determination. The electronic circuit for calculating the quenching hardness and the like of the determination unit 20a has a relationship setting means (not shown) in which the relationship between the detected voltage value and the quenching hardness in the depth direction is set by an arithmetic expression or a table. Then, a voltage value, which is a signal based on the intensity or magnitude and direction of the measured magnetic field, is compared with the relationship setting means to calculate the quenching hardness in the depth direction.
The set quality value is a threshold that is appropriately set by obtaining from various tests and is stored in, for example, a rewritable storage medium (not shown). As the abnormality determination, the determination unit 20a determines whether or not the quenching hardness of an arbitrary depth calculated in light of the relationship setting unit is below a set quality value at the same depth. When the calculated quenching hardness is lower than the set quality value, it is determined that the quality is abnormal.

周波数変更指令部20bは、交流電源4の発振回路19に交流信号の周波数および振幅を可変設定する指令を与える。この周波数変更指令部20bの指令を受け、発振回路19の出力する交流信号の周波数および振幅が可変設定される。周波数変更指令部20bは、例えば、周波数を変える変更幅、頻度、変更の繰り返し周期等の規則等が、目的とする焼入れ品質の種類や、検査対象物1の種類等に応じて複数種類設定されていて、適宜の入力により任意の規則が選択可能なものとしても良い。   The frequency change command unit 20 b gives a command to variably set the frequency and amplitude of the AC signal to the oscillation circuit 19 of the AC power supply 4. In response to the command from the frequency change command unit 20b, the frequency and amplitude of the AC signal output from the oscillation circuit 19 are variably set. In the frequency change command unit 20b, for example, a plurality of types of rules such as change width, frequency, change repetition period, etc. for changing the frequency are set in accordance with the type of the desired quenching quality, the type of the inspection object 1, and the like. Any rule may be selected by appropriate input.

前記のように判定部20aが任意の深さの焼入れ硬度を算出した後、検査対象物1の同一箇所において周波数変更指令部20bが発振回路19に周波数を変更する指令を与える。これにより、検査対象物1を電流が流れる侵入深さが変化する。この場合に測定した磁界の強さまたは大きさおよび方向に基づく信号を、前記関係設定手段に照らし前記任意の深さとは異なる深さの焼入れ硬度を算出する。このような周波数変更を繰り返すことで、判定部20aは焼入れ硬度の深さ方向の分布を推定し得る。なお、複数の周波数における、磁界の強さまたは大きさおよび方向に基づく信号を一旦記憶しておき、焼入れ硬度の深さ方向の分布を推定するようにしても良い。   After the determination unit 20a calculates the quenching hardness of an arbitrary depth as described above, the frequency change command unit 20b gives a command to change the frequency to the oscillation circuit 19 at the same location of the inspection object 1. As a result, the penetration depth at which current flows through the inspection object 1 changes. In this case, a quenching hardness having a depth different from the arbitrary depth is calculated in light of the signal based on the measured strength or magnitude and direction of the magnetic field and the relationship setting means. By repeating such frequency change, the determination unit 20a can estimate the distribution of the quenching hardness in the depth direction. Note that signals based on the strength or magnitude and direction of the magnetic field at a plurality of frequencies may be temporarily stored, and the distribution of the quenching hardness in the depth direction may be estimated.

このように、この焼入れ品質検査装置では、通電用電極2,2を検査対象物1の表面に接触させ、電源4から通電用電極2,2を介して検査対象物1に電流を印加し、このとき検査対象物1を流れる電流が生成する磁界を磁界検出手段である磁界センサ5で測定し、この磁界センサ5で測定した磁界により品質測定手段18で検査対象物1の焼入れ品質を測定するようにしたので、非破壊検査により検査対象物1の焼入れ品質を精度良く検査することができる。
特に、外乱磁界除去手段となる磁気シールド7を前記通電用電極2,2に施すことにより、検査対象物1の外部を流れる電流つまり通電用電極2,2を流れる電流が生成する外乱磁界を除去して、外乱磁界が磁界センサ5の測定に影響を与えるのを防止するようにしてので、非破壊検査により検査対象物1の焼入れ品質をさらに精度良く検査することができる。
Thus, in this quenching quality inspection apparatus, the current-carrying electrodes 2 and 2 are brought into contact with the surface of the inspection object 1, and a current is applied from the power source 4 to the inspection object 1 through the current-carrying electrodes 2 and 2, At this time, the magnetic field generated by the current flowing through the inspection object 1 is measured by the magnetic field sensor 5 which is a magnetic field detection means, and the quenching quality of the inspection object 1 is measured by the quality measurement means 18 based on the magnetic field measured by the magnetic field sensor 5. Since it did in this way, the quenching quality of the test object 1 can be test | inspected with a sufficient precision by nondestructive inspection.
In particular, by applying a magnetic shield 7 as a disturbance magnetic field removing means to the energizing electrodes 2 and 2, the disturbance magnetic field generated by the current flowing outside the inspection object 1, that is, the current flowing through the energizing electrodes 2 and 2 is removed. Then, since the disturbance magnetic field is prevented from affecting the measurement of the magnetic field sensor 5, the quenching quality of the inspection object 1 can be inspected with higher accuracy by nondestructive inspection.

この実施形態では、前記品質測定手段18が、交流電源の出力する周波数を種々変化させる周波数変更指令部20bを有し、かつこの周波数変更指令部20bで変化させた各周波数における磁界を測定し、焼入れ品質を測定する機能を有するものとしているので、検査目的となる焼入れ品質を求めるのに適した周波数の変更が行い易い。   In this embodiment, the quality measuring means 18 has a frequency change command unit 20b that changes the frequency output from the AC power source in various ways, and measures the magnetic field at each frequency changed by the frequency change command unit 20b. Since it has a function of measuring the quenching quality, it is easy to change the frequency suitable for obtaining the quenching quality as the inspection purpose.

図4は、図1〜図3に示した実施形態におけるプローブ8の他の構成例を示す。この構成例では、外乱磁界除去手段として、プローブ8内における通電用電極2,2の全部位に磁気シールド7が施されている。詳しくは、プローブ8のセンサハウジング13内の全部位に磁気シールド7が施され、通電用電極2,2のセンサハウジング13から突出する部分のみ、磁気シールド7から露出している。その他の構成は図3の例と同様である。
このように、プローブ8内における通電用電極2,2の全部位に磁気シールド7を施した場合、通電用電極2,2の生成する外乱磁界が磁界センサ5の測定に与える影響をより確実に除去できるので、検査対象物1の焼入れ品質をさらに精度良く検査することができる。
FIG. 4 shows another configuration example of the probe 8 in the embodiment shown in FIGS. In this configuration example, the magnetic shield 7 is applied to all portions of the energization electrodes 2 and 2 in the probe 8 as a disturbance magnetic field removing means. Specifically, the magnetic shield 7 is applied to all parts in the sensor housing 13 of the probe 8, and only portions of the energizing electrodes 2 and 2 that protrude from the sensor housing 13 are exposed from the magnetic shield 7. Other configurations are the same as those in the example of FIG.
As described above, when the magnetic shield 7 is applied to all portions of the energization electrodes 2 and 2 in the probe 8, the influence of the disturbance magnetic field generated by the energization electrodes 2 and 2 on the measurement of the magnetic field sensor 5 is more reliably performed. Since it can remove, the quenching quality of the test object 1 can be test | inspected more accurately.

図5は、図1〜図3に示した実施形態におけるプローブ8のさらに他の構成例を示す。この構成例では、外乱磁界除去手段として、プローブ8内における通電用電極2,2の磁界センサ5に近接した部位に磁気シールド7が施されると共に、磁界センサ5が実装されるセンサ基板11のセンサ実装面とは反対側の面にも磁気シールド7Aが施されている。この場合の磁気シールド7Aにも、通電用電極2,2の磁気シールド7と同様の材質のシールド材10が用いられる。その他の構成は図3の場合と同様である。
このように、通電用電極2,2だけでなく、センサ基板11にも磁気シールド7Aを施した場合、通電用電極2,2の生成する外乱磁界が磁界センサ5の測定に与える影響をさらに確実に除去できるので、検査対象物1の焼入れ品質をさらに精度良く検査することができる。
FIG. 5 shows still another configuration example of the probe 8 in the embodiment shown in FIGS. In this configuration example, as a disturbance magnetic field removing means, a magnetic shield 7 is applied to a portion of the probe 8 adjacent to the magnetic field sensor 5 of the energizing electrodes 2 and 2 and the sensor substrate 11 on which the magnetic field sensor 5 is mounted. A magnetic shield 7A is also provided on the surface opposite to the sensor mounting surface. In this case, the shield material 10 made of the same material as the magnetic shield 7 of the energization electrodes 2 and 2 is also used for the magnetic shield 7A. Other configurations are the same as those in FIG.
As described above, when the magnetic shield 7A is applied not only to the energizing electrodes 2 and 2 but also to the sensor substrate 11, the influence of the disturbance magnetic field generated by the energizing electrodes 2 and 2 on the measurement of the magnetic field sensor 5 is further ensured. Therefore, the quenching quality of the inspection object 1 can be inspected with higher accuracy.

図6は、図1〜図3に示した実施形態におけるプローブ8のさらに他の構成例を示す。この構成例では、通電用電極2,2がL字形とされている。また、外乱磁界除去手段の機能は、通電用電極2,2を、その一端がプローブ8の側面に位置し他端がプローブ8の検査対象物1と対向する面に位置するように位置決めする電極位置決め手段13aが担っている。この場合の電極位置決め手段13aは、具体的には通電用電極2,2を固定するセンサハウジング13の一部である。すなわち、この場合の外乱磁界除去手段は、通電用電極2,2を流れる電流の流れを、検出ヘッドであるプローブ8の側面から内部に向かわせることで、通電用電極2,2を流れる電流が生成する外乱磁界が磁界センサ5の測定に影響を与えないようにしている。この場合に、外乱磁界が磁界センサ5の測定に与える影響をより確実に防止する観点から、検出ヘッドであるプローブ8における通電用電極2,2や電極14,15などの全ての電極の材質は非磁性材であることが望ましい。その他の構成は図3の場合と同様である。
このように、通電用電極2,2を流れる電流の向きを、プローブ8の側面から内部に向かわせるようにした場合にも、通電用電極2,2の生成する外乱磁界が磁界センサ5の測定に与える影響を除去できるので、検査対象物1の焼入れ品質を精度良く検査することができる。
FIG. 6 shows still another configuration example of the probe 8 in the embodiment shown in FIGS. In this configuration example, the energizing electrodes 2 and 2 are L-shaped. The disturbance magnetic field removing means functions to position the energizing electrodes 2 and 2 so that one end thereof is positioned on the side surface of the probe 8 and the other end is positioned on the surface of the probe 8 facing the inspection object 1. Positioning means 13a is responsible. Specifically, the electrode positioning means 13a in this case is a part of the sensor housing 13 that fixes the energization electrodes 2 and 2. That is, the disturbance magnetic field removing means in this case causes the current flowing through the energizing electrodes 2, 2 to flow inward from the side surface of the probe 8, which is the detection head, so that the current flowing through the energizing electrodes 2, 2 is The disturbance magnetic field to be generated is prevented from affecting the measurement of the magnetic field sensor 5. In this case, from the viewpoint of more reliably preventing the influence of the disturbance magnetic field on the measurement of the magnetic field sensor 5, the materials of all the electrodes such as the energizing electrodes 2, 2 and the electrodes 14, 15 in the probe 8 serving as the detection head are A non-magnetic material is desirable. Other configurations are the same as those in FIG.
As described above, even when the direction of the current flowing through the energizing electrodes 2 and 2 is directed from the side surface of the probe 8 to the inside, the disturbance magnetic field generated by the energizing electrodes 2 and 2 is measured by the magnetic field sensor 5. Therefore, the quenching quality of the inspection object 1 can be inspected with high accuracy.

図7は、この発明の他の実施形態にかかる焼入れ品質検査装置の構成を示すブロック図である。以下の説明において、図1〜図3に示した実施形態で説明している事項に対応している部分には同一の参照符を付し、重複する説明を略する。図7の例では、測定装置9Aは、直流電源4Aを備えている。また信号処理部20Aは、判定部20aと電源制御部20cとを備えている。すなわち、電源制御部20cは、通電用電極2,2間に印加する電流の少なくとも方向、大きさを切り換える。所定時間毎に電流の方向、大きさを切り換えても良い。上記所定時間は、任意に定めた時間で良い。品質測定手段18は、この電流切換え毎に磁界センサ5の信号を処理しても良い。この構成においては検査対象物1の焼入れ深さを測定し得る。
なお、交流電源を用いて、一対の通電用電極を介して検査対象物に周波数fを変化させない単一周波数の電流を通電することも可能である。
直流電源4Aを用いて検査対象物1に直流電流を通電する場合において、検査対象物1に、方向、大きさが種々異なる電流を印加して、方向、大きさが異なる電流毎の磁界の強さまたは大きさおよび方向を測定しても良い。この場合にも、前記実施形態のものと同様に検査対象物1の焼入れ深さを測定し得る。
FIG. 7 is a block diagram showing a configuration of a quenching quality inspection apparatus according to another embodiment of the present invention. In the following description, portions corresponding to the matters described in the embodiment shown in FIGS. 1 to 3 are denoted by the same reference numerals, and redundant descriptions are omitted. In the example of FIG. 7, the measuring device 9A includes a DC power supply 4A. The signal processing unit 20A includes a determination unit 20a and a power supply control unit 20c. That is, the power supply control unit 20 c switches at least the direction and the magnitude of the current applied between the energization electrodes 2 and 2. The direction and magnitude of the current may be switched every predetermined time. The predetermined time may be an arbitrarily determined time. The quality measuring means 18 may process the signal of the magnetic field sensor 5 every time this current is switched. In this configuration, the quenching depth of the inspection object 1 can be measured.
Note that it is also possible to energize a test object with a single frequency current that does not change the frequency f through a pair of energization electrodes using an AC power source.
When a direct current is applied to the inspection object 1 using the DC power supply 4A, currents having different directions and magnitudes are applied to the inspection object 1 to increase the magnetic field strength for each current having a different direction and magnitude. The thickness or size and direction may be measured. Also in this case, the quenching depth of the inspection object 1 can be measured in the same manner as in the above embodiment.

上記各実施形態において磁界検出手段として用いた磁界センサ5には、磁気インピーダンス素子(MIセンサ、MI:Magneto-Impedance)、磁気抵抗素子(MRセンサ、MR: Magnetoresistive)、巨大磁気抵抗素子(GMRセンサ、GMR: Giant Magnetoresistive )、TMRセンサ(TMR:Tunnel Magnetoresistive )、ホールセンサ、フラックスゲートセンサ等を使用することができる。交流磁界のみを測定する場合、巻き線型の磁界センサを使用しても良い。   The magnetic field sensor 5 used as the magnetic field detection means in each of the above embodiments includes a magnetic impedance element (MI sensor, MI: Magneto-Impedance), a magnetoresistive element (MR sensor, MR: Magnetoresistive), and a giant magnetoresistive element (GMR sensor). , GMR: Giant Magnetoresistive), TMR sensor (TMR: Tunnel Magnetoresistive), Hall sensor, fluxgate sensor, etc. can be used. When measuring only an alternating magnetic field, a wound magnetic field sensor may be used.

1…検査対象物
2…通電用電極
4,4A…電源
5…磁界センサ(磁界検出手段)
7…磁気シールド(外乱磁界除去手段)
8…プローブ(検出ヘッド)
10…シールド材
13…センサハウジング
13a…電極位置決め手段
18…品質測定手段
20b…周波数変更指令部
DESCRIPTION OF SYMBOLS 1 ... Test object 2 ... Electrode for energization 4, 4A ... Power supply 5 ... Magnetic field sensor (magnetic field detection means)
7. Magnetic shield (disturbance magnetic field removal means)
8 ... Probe (detection head)
DESCRIPTION OF SYMBOLS 10 ... Shield material 13 ... Sensor housing 13a ... Electrode positioning means 18 ... Quality measuring means 20b ... Frequency change command part

Claims (15)

検査対象物に電流を通電し、その検査対象物中を流れる電流がつくる磁界を測定することで焼入れ品質を検査する焼入れ品質検査装置であって、
前記検査対象物の表面に接触させる通電用電極と、この通電用電極を介して前記検査対象物に電流を印加する電源と、この電源により前記検査対象物を流れる電流が生成する磁界を測定する磁界検出手段と、この磁界検出手段で測定した磁界により、前記検査対象物の焼入れ品質を測定する品質測定手段と、前記検査対象物の外部を流れる電流が生成する磁界が前記磁界検出手段の測定に影響を与えるのを防止する外乱磁界除去手段とを備えることを特徴とする焼入れ品質検査装置。
A quenching quality inspection device that inspects the quenching quality by passing a current through the inspection object and measuring the magnetic field generated by the current flowing through the inspection object,
A current-carrying electrode that is brought into contact with the surface of the inspection object, a power source that applies a current to the inspection object via the current-carrying electrode, and a magnetic field that is generated by a current that flows through the inspection object is measured by the power source. The magnetic field detection means, the quality measurement means for measuring the quenching quality of the inspection object by the magnetic field measured by the magnetic field detection means, and the magnetic field generated by the current flowing outside the inspection object is measured by the magnetic field detection means. A quenching quality inspection device comprising disturbance magnetic field removing means for preventing the magnetic field from being affected.
請求項1において、前記外乱磁界除去手段は、前記通電用電極に施した磁気シールドである焼入れ品質検査装置。   2. The quenching quality inspection apparatus according to claim 1, wherein the disturbance magnetic field removing means is a magnetic shield applied to the energizing electrode. 請求項2において、前記磁気シールドは、前記通電用電極を強磁性体からなるシールド材で被覆したものである焼入れ品質検査装置。   3. The quenching quality inspection apparatus according to claim 2, wherein the magnetic shield is obtained by coating the energization electrode with a shielding material made of a ferromagnetic material. 請求項3において、前記シールド材が軟磁性金属である焼入れ品質検査装置。   The quenching quality inspection apparatus according to claim 3, wherein the shield material is a soft magnetic metal. 請求項3において、前記シールド材が軟磁性酸化物である焼入れ品質検査装置。   The quenching quality inspection apparatus according to claim 3, wherein the shield material is a soft magnetic oxide. 請求項3ないし請求項5のいずれか1項において、前記シール材の形状がビーズ形状である焼入れ品質検査装置。   The quenching quality inspection apparatus according to any one of claims 3 to 5, wherein the sealing material has a bead shape. 請求項1において、前記通電用電極と前記磁界検出手段とを一体として検出ヘッドを構成し、前記外乱磁界除去手段は、前記通電用電極を流れる電流の流れを前記検出ヘッドの側面から内部に向かわせるものとした焼入れ品質検査装置。   2. The detection head according to claim 1, wherein the current-carrying electrode and the magnetic field detection unit are integrated to form a detection head, and the disturbance magnetic field removal unit directs a current flow through the current-carrying electrode from a side surface of the detection head to the inside. Quenching quality inspection equipment that can be changed. 請求項7において、前記通電用電極がL字形であり、前記外乱磁界除去手段は、前記通電用電極を、その一端が前記検出ヘッドの側面に位置し他端が検出ヘッドの前記検査対象部と対向する面に位置するように配置する電極位置決め手段である焼入れ品質検査装置。   8. The energizing electrode according to claim 7, wherein the energizing electrode is L-shaped, and the disturbance magnetic field removing means includes the energizing electrode, one end of which is located on a side surface of the detection head and the other end of the inspection target portion of the detection head. A quenching quality inspection device which is an electrode positioning means arranged so as to be positioned on the opposing surfaces. 請求項7または請求項8のいずれか1項において、前記検出ヘッドにおける前記通電用電極を含めた全ての電極の材質が非磁性材である焼入れ品質検査装置。   9. The quenching quality inspection apparatus according to claim 7, wherein all electrodes including the energization electrode in the detection head are made of a non-magnetic material. 請求項1ないし請求項9のいずれか1項において、前記電源から前記検査対象物に印加する電流が直流電流である焼入れ品質検査装置。   The quenching quality inspection apparatus according to any one of claims 1 to 9, wherein a current applied from the power source to the inspection object is a direct current. 請求項1ないし請求項9のいずれか1項において、前記電源から前記検査対象物に印加する電流が交流電流である焼入れ品質検査装置。   The quenching quality inspection apparatus according to claim 1, wherein a current applied from the power source to the inspection object is an alternating current. 請求項11において、前記品質測定手段は、前記電源の出力する交流電流の周波数を種々変化させる周波数変更指令部を有し、かつこの周波数変更指令部で変化させた各周波数における磁界を測定し、焼入れ品質を測定する機能を有するものとした焼入れ品質検査装置。   In Claim 11, the quality measuring means has a frequency change command section that variously changes the frequency of the alternating current output from the power source, and measures the magnetic field at each frequency changed by the frequency change command section, A quench quality inspection device having a function of measuring quench quality. 請求項1ないし請求項12のいずれか1項において、前記磁界検出手段は、低周波の磁界を測定可能な磁界センサである焼入れ品質検査装置。   13. The quenching quality inspection apparatus according to claim 1, wherein the magnetic field detection unit is a magnetic field sensor capable of measuring a low frequency magnetic field. 請求項13において、前記磁界センサが、ホールセンサ、MRセンサ、GMRセンサ、TMRセンサ、MIセンサ、およびフラックスゲートセンサのうちのいずれか一つである焼入れ品質検査装置。   The quenching quality inspection apparatus according to claim 13, wherein the magnetic field sensor is any one of a Hall sensor, an MR sensor, a GMR sensor, a TMR sensor, an MI sensor, and a fluxgate sensor. 請求項1ないし請求項14のいずれか1項において、前記品質測定手段は、前記焼入れ品質として、前記検査対象物の表面硬度、深さ方向の焼入れ硬度分布、および焼入れ深さの少なくとも一つを検査する焼入れ品質検査装置。   The quality measurement means according to any one of claims 1 to 14, wherein the quenching quality is at least one of a surface hardness, a quenching hardness distribution in a depth direction, and a quenching depth of the inspection object. Quenching quality inspection equipment to inspect.
JP2010130914A 2010-06-08 2010-06-08 Hardening quality inspection device Pending JP2011257223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010130914A JP2011257223A (en) 2010-06-08 2010-06-08 Hardening quality inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010130914A JP2011257223A (en) 2010-06-08 2010-06-08 Hardening quality inspection device

Publications (1)

Publication Number Publication Date
JP2011257223A true JP2011257223A (en) 2011-12-22

Family

ID=45473548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010130914A Pending JP2011257223A (en) 2010-06-08 2010-06-08 Hardening quality inspection device

Country Status (1)

Country Link
JP (1) JP2011257223A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101309976B1 (en) * 2011-12-27 2013-09-17 재단법인 포항산업과학연구원 Defect detecting apparatus of curved steel wire and operating method thereof
KR102072189B1 (en) * 2018-11-15 2020-01-31 (주) 다음기술단 Apparatus for Detection Damage of Structural Steel Welding Region
KR20200061639A (en) * 2018-11-26 2020-06-03 현대제철 주식회사 Inspection device for material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101309976B1 (en) * 2011-12-27 2013-09-17 재단법인 포항산업과학연구원 Defect detecting apparatus of curved steel wire and operating method thereof
KR102072189B1 (en) * 2018-11-15 2020-01-31 (주) 다음기술단 Apparatus for Detection Damage of Structural Steel Welding Region
KR20200061639A (en) * 2018-11-26 2020-06-03 현대제철 주식회사 Inspection device for material
KR102122666B1 (en) 2018-11-26 2020-06-12 현대제철 주식회사 Inspection device for material

Similar Documents

Publication Publication Date Title
RU2593677C2 (en) Electromagnetic sensor and calibration thereof
JP5483268B2 (en) Surface property inspection method
JP2010164306A (en) Method and device for hardened depth
JP5946086B2 (en) Eddy current inspection device, eddy current inspection probe, and eddy current inspection method
Espina-Hernandez et al. Rapid estimation of artificial near-side crack dimensions in aluminium using a GMR-based eddy current sensor
JP2013505443A (en) Eddy current inspection for surface hardening depth
KR20170120167A (en) Rope damage diagnosis test equipment and rope damage diagnosis test method
Cheng Nondestructive testing of back-side local wall-thinning by means of low strength magnetization and highly sensitive magneto-impedance sensors
JP2010048552A (en) Nondestructive inspecting device and method
JP2011257223A (en) Hardening quality inspection device
US20120068696A1 (en) Apparatus for evaluating hardening quality and method thereof
JP4831298B2 (en) Hardening depth measuring device
KR20130089430A (en) Apparatus and method for detecting the defects of reverse side using pulsed eddy current
JP5857649B2 (en) Method for measuring the amount of retained austenite
JP2011252787A (en) Hardening quality inspection device
JP2009031224A (en) Eddy current sensor, quench depth inspection apparatus, and quench depth inspection method
RU2586261C2 (en) Device for magnetic flaw detector and method of reducing error in determining size of defects of pipeline magnetic flaw detectors
JP2010243173A (en) Device and method for inspecting hardening quality
KR102224117B1 (en) Magnetic nondestructive inspection device using magnetic hysteresis property estimation method
JP3606438B2 (en) Magnetic flux leakage inspection method
JPH01269049A (en) Method of inspecting deterioration of metallic material
RU103926U1 (en) ELECTROMAGNETIC CONVERTER TO DEFECTOSCOPE
Pelkner et al. Local magnetization unit for GMR array based magnetic flux leakage inspection
Decitre et al. Detection of Grinder Burn Area on Surfaces of Ferromagnetic Material by Eddy Current, Barkhausen Noise and Multi Technical 3MA Methods
JP4267389B2 (en) Non-contact flow rate measuring method and apparatus