JP2000304725A - Method for measuring thickness of transformation layer of steel material - Google Patents

Method for measuring thickness of transformation layer of steel material

Info

Publication number
JP2000304725A
JP2000304725A JP11167999A JP11167999A JP2000304725A JP 2000304725 A JP2000304725 A JP 2000304725A JP 11167999 A JP11167999 A JP 11167999A JP 11167999 A JP11167999 A JP 11167999A JP 2000304725 A JP2000304725 A JP 2000304725A
Authority
JP
Japan
Prior art keywords
thickness
magnetic field
frequency
transformation layer
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11167999A
Other languages
Japanese (ja)
Other versions
JP4192333B2 (en
Inventor
Yoshinori Fukuda
義徳 福田
Akio Nagamune
章生 長棟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP11167999A priority Critical patent/JP4192333B2/en
Publication of JP2000304725A publication Critical patent/JP2000304725A/en
Application granted granted Critical
Publication of JP4192333B2 publication Critical patent/JP4192333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make the change in the thickness of a transformation layer able to be tracked even in a thick plate by changing an application alternate magnetic field frequency and measuring the induction magnetic field on the surface of a steel material, and utilizing a frequency where a curve with the induction magnetic field frequency as a function is flexed for a specific expression for operation. SOLUTION: When an AC signal from a transmitter is amplified by a power amplifier 9 and an excitation coil 3 is excited, an eddy current is generated at the surface layer of a steel material 1 that is arranged vertical to a coil axis center close to the excitation coil 3 and has a transformation layer 2 on the surface layer. An induction magnetic field by the eddy current is detected as electromotive force by a detection coil 4 that is coaxial with the excitation coil 3, is converted to a DC signal through a lock-in amplifier 11, and is sent to an arithmetic operation device 13 incorporating an expression dt=α/(fc×μ) (dt: thickness of transformation layer, fc: flex point frequency, μ: permeability, α: constant). By changing the frequency and repeating the similar operation and sending the frequency and electromotive force data to the arithmetic operation device 13, fc is determined. Also, by inputting a known permeability μ to the arithmetic operation device, the thickness dt of a transformation layer 2 can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼材を加熱・冷却
したときに表層部に生じる変態層の厚さを計測する方
法、特に、磁気的性質を利用した計測方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the thickness of a transformation layer formed on a surface layer when a steel material is heated and cooled, and more particularly to a measurement method utilizing magnetic properties.

【0002】[0002]

【従来の技術】鋼材の加熱・冷却したときに起るオース
テナイト(γ)相ォフェライト(α)相の変態の様子を監視
することは、鋼材の機械的特性や物理的特性を管理する
上で極め重要である。
2. Description of the Related Art Monitoring the transformation of the austenite (γ) phase and the ferrite (α) phase that occurs when heating and cooling steel is important in managing the mechanical and physical properties of steel. Very important.

【0003】そのため、従来より、鋼材の磁気的性質を
利用してオンラインで変態率を計測する方法が種々提案
されている。例えば、特公平2-42402号公報、特開平3-1
23853号公報、特開平8-62181号公報などには、励磁コイ
ルと検出コイルを用い、鋼材の変態に伴なう磁気特性の
変化によって生じる磁束の変化から変態率を測定する方
法が開示されている。
For this reason, various methods for measuring the transformation rate online using the magnetic properties of steel have been proposed. For example, Japanese Patent Publication No. 2-42402,
No. 23853, JP-A-8-62181, etc., using an excitation coil and a detection coil, disclose a method of measuring a transformation rate from a change in magnetic flux caused by a change in magnetic characteristics accompanying transformation of steel. I have.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記公
報に記載された方法には、鋼材の板厚方向の平均的な変
態率しか測定できず、加熱・冷却時における表面から内
部へ向う変態層の厚さの変化を追跡することができな
い、また、板厚が厚い場合は磁束が表皮効果で表層部に
しか侵入できないため正確な変態率の測定ができないと
いった問題がある。
However, the method described in the above publication can measure only the average transformation rate of the steel material in the thickness direction, and the transformation layer from the surface toward the inside during heating and cooling can be measured. There is a problem that the change in thickness cannot be tracked, and when the plate thickness is large, the magnetic flux can penetrate only into the surface layer due to the skin effect, so that the transformation rate cannot be measured accurately.

【0005】本発明はこのような問題を解決するために
なされたもので、鋼材の板厚が厚くても、表面から内部
へ向かう変態層の厚さの変化を追跡できる鋼材の変態層
厚さ計測方法を提供することを目的とする。
The present invention has been made in order to solve such a problem, and even if the thickness of the steel material is large, the change in the thickness of the transformation layer from the surface to the inside can be tracked. It is intended to provide a measurement method.

【0006】[0006]

【課題を解決するための手段】上記課題は、鋼材に交流
磁化を印加し、渦電流によって鋼材表面近傍に発生する
誘導磁界を、前記交流磁界の周波数を変化させて測定
し、得られた前記誘導磁界の前記周波数を関数とする曲
線が大きく屈曲するときの周波数を求め、前記曲線が大
きく屈曲するときの周波数が渦電流の表皮効果現象によ
り変態層の厚さにより変化することを利用して計測する
鋼材の変態層厚さ計測方法により解決される。
The object of the present invention is to obtain a magnetic recording medium by applying an alternating current magnetization to a steel material and measuring an induced magnetic field generated near the steel material surface by an eddy current by changing the frequency of the alternating magnetic field. Determine the frequency when the curve having the frequency of the induction magnetic field as a function is largely bent, utilizing the fact that the frequency when the curve is largely bent changes with the thickness of the transformation layer due to the skin effect phenomenon of the eddy current. The problem is solved by a method for measuring the thickness of a transformation layer of a steel material to be measured.

【0007】鋼材に交流磁界を印加したとき表層部に発
生する渦電流の浸透深さは、交流磁界の周波数f、鋼材
の透磁率μ、鋼材の導電率sに依存し、f1/2、μ1/2、s
1/2に反比例する。ここで、導電率sは変態の影響を受け
難いため、変態挙動を追跡するには周波数fと透磁率μ
を考えればよい。すなわち、渦電流の浸透深さは交流磁
界の周波数が高くなり、鋼材の透磁率μが大きくなると
浅くなる。また、渦電流による誘導磁界は周波数が高い
ほど強くなるという特性がある。
[0007] depth of penetration of the eddy current generated in the surface portion upon application of alternating magnetic field in the steel, the AC magnetic field having a frequency of f, the permeability of the steel mu, depending on the conductivity s of steel materials, f 1/2, μ 1/2 , s
It is inversely proportional to 1/2 . Here, since the conductivity s is hardly affected by the transformation, to track the transformation behavior, the frequency f and the permeability μ
Should be considered. That is, the penetration depth of the eddy current becomes shallower as the frequency of the AC magnetic field increases and the magnetic permeability μ of the steel material increases. Further, there is a characteristic that the induced magnetic field due to the eddy current becomes stronger as the frequency becomes higher.

【0008】いま、有限の厚さの変態層が存在したとき
の渦電流による誘導磁界を考えると、渦電流の浸透深さ
が変態層の厚さに比べて十分に深い場合、すなわち、周
波数が低い場合は、誘導磁界そのものが弱いが、渦電流
の浸透深さに対する変態層の厚さの比も小さいため、変
態層に依存した誘導磁界も弱くなり、その周波数による
変化も小さい。一方、渦電流の浸透深さが変態層の厚さ
に比べて浅くなる高い周波数の場合は、誘導磁界そのも
のが強くなるが、変態層に依存した誘導磁界も強くな
り、その周波数による変化が大きくなる。
Considering the induced magnetic field due to the eddy current when a transformation layer having a finite thickness exists, if the penetration depth of the eddy current is sufficiently deeper than the thickness of the transformation layer, that is, if the frequency is When it is low, the induction magnetic field itself is weak, but since the ratio of the thickness of the transformation layer to the penetration depth of the eddy current is small, the induction magnetic field depending on the transformation layer is also weak, and its frequency-dependent change is small. On the other hand, at a high frequency where the penetration depth of the eddy current is shallower than the thickness of the transformation layer, the induced magnetic field itself becomes stronger, but the induced magnetic field depending on the transformation layer also becomes stronger, and the change due to the frequency is large. Become.

【0009】したがって、図2に模式的に示すように、
誘導磁界による起電力を周波数に対してプロットして得
られる曲線には屈曲点が存在し、その周波数fcにおいて
渦電流の浸透深さが変態層の厚さに対応することにな
る。なお、図2の縦軸は印加磁界と誘導磁界の複合磁界
により検出コイルに発生する起電力を示しているが、起
電力が周波数とともに減少しているのは、周波数ととも
に渦電流による誘導磁界が増大し印加磁界による起電力
を減少させているためである。
Therefore, as schematically shown in FIG.
A curve obtained by plotting the electromotive force due to the induced magnetic field with respect to the frequency has a bending point, and the penetration depth of the eddy current at that frequency fc corresponds to the thickness of the transformation layer. The vertical axis in FIG. 2 shows the electromotive force generated in the detection coil by the composite magnetic field of the applied magnetic field and the induction magnetic field. This is because the electromotive force due to the applied magnetic field is reduced.

【0010】具体的には、周波数fcにおいては下記式
(1)が成り立つので、表層に生じる変態層の透磁率μが
既知の場合は、fcの値から変態層の厚さdtが求まること
になる。
Specifically, at the frequency fc,
Since (1) holds, if the magnetic permeability μ of the transformation layer generated on the surface layer is known, the thickness dt of the transformation layer can be obtained from the value of fc.

【0011】dt=α/(fc×μ)1/2 …(1) ここで、αは定数である。Dt = α / (fc × μ) 1/2 (1) where α is a constant.

【0012】また、鋼材を磁化し、鋼材表面から漏洩す
る漏洩磁界φを測定し、下記の式(2)から変態層の厚さd
tを求めることもできる。
Further, the leakage magnetic field φ leaking from the surface of the steel material is measured by magnetizing the steel material, and the thickness d of the transformation layer is calculated from the following equation (2).
You can also find t.

【0013】dt=F1(μ、φ) …(2) ここで、F1は鋼材の強磁性体層と磁化装置の間に形成さ
れる磁気回路に依存する関数、μは変態層の透磁率であ
る。
Dt = F 1 (μ, φ) (2) where F 1 is a function dependent on a magnetic circuit formed between the ferromagnetic layer made of steel and the magnetizing device, and μ is the permeability of the transformation layer. The magnetic susceptibility.

【0014】例えば、表層に変態層を有する鋼材をU字
形の磁化器により交流磁化する磁気回路を考えた場合、
U字形のヨーク間で磁化側に変態層と平行に漏洩する磁
界は変態層の磁気抵抗の増加に応じて増加する。すなわ
ち、変態層の磁気抵抗が増すと磁束は変態層内を流れ難
くなり漏洩磁界は増加する。一方、変態層の磁気抵抗が
減ると磁束は変態層内を流れ易くなり漏洩磁界は減少す
る。この磁気回路においては、磁気抵抗は変態層の透磁
率μと厚さdtの積に反比例するので、漏洩磁界φは下記
の式(4)で表せる。
For example, when considering a magnetic circuit in which a steel material having a transformation layer on its surface is AC-magnetized by a U-shaped magnetizer,
The magnetic field leaking between the U-shaped yokes on the magnetization side in parallel with the transformation layer increases as the magnetoresistance of the transformation layer increases. That is, when the magnetic resistance of the transformation layer increases, the magnetic flux hardly flows in the transformation layer, and the leakage magnetic field increases. On the other hand, when the magnetic resistance of the transformation layer decreases, the magnetic flux easily flows in the transformation layer, and the leakage magnetic field decreases. In this magnetic circuit, since the magnetic resistance is inversely proportional to the product of the magnetic permeability μ of the transformation layer and the thickness dt, the leakage magnetic field φ can be expressed by the following equation (4).

【0015】φ=φ0/(1+β・μ・dt)…(4) ここで、φ0は変態層がないときの磁界、βは定数Φ = φ 0 / (1 + β · μ · dt) (4) where φ 0 is a magnetic field when there is no transformation layer, and β is a constant

【0016】したがって、変態層の厚さdtは上記式(2)
のように漏洩磁界φと透磁率μの関数で表せるので、表
層に生じる変態層の透磁率μが既知の場合は、漏洩磁界
φを測定することにより変態層の厚さdtを求めることが
できる。
Therefore, the thickness dt of the transformation layer is given by the above equation (2)
Can be expressed as a function of the leakage magnetic field φ and the magnetic permeability μ, so if the permeability μ of the transformation layer generated on the surface layer is known, the thickness dt of the transformation layer can be obtained by measuring the leakage magnetic field φ .

【0017】なお、式(2)の関数形は、式(4)で一義的に
表せなく、装置構成により変わるのでその都度決定する
必要がある。
The function form of the equation (2) cannot be uniquely expressed by the equation (4) and varies depending on the device configuration, so it must be determined each time.

【0018】一般に、鋼材の透磁率は成分や温度により
大きく変化するので、上述したような変態層の透磁率が
既知の場合はむしろ希である。しかし、変態層の透磁率
が未知の場合でも、上記した周波数fcと漏洩磁界φを求
め、上記式(1)と式(2)から透磁率μを消去した下記の式
(3)から変態層の厚さdtを求めることができる。
In general, the magnetic permeability of a steel material greatly changes depending on components and temperature, and it is rather rare that the magnetic permeability of the above-mentioned transformation layer is known. However, even when the magnetic permeability of the transformation layer is unknown, the following equation is obtained in which the above-mentioned frequency fc and the leakage magnetic field φ are obtained, and the magnetic permeability μ is eliminated from the above equations (1) and (2).
From (3), the thickness dt of the transformation layer can be obtained.

【0019】dt=F2(fc、φ) …(3) 式(2)の関数形として式(4)を用いる場合は、下記の式
(5)から変態層の厚さdtを求めることができる。
Dt = F 2 (fc, φ) (3) When the equation (4) is used as a function form of the equation (2), the following equation is used.
From (5), the thickness dt of the transformation layer can be obtained.

【0020】dt=γ/fc/(φ0/φ-1) …(5) ここで、γは定数である。Dt = γ / fc / (φ 0 / φ−1) (5) where γ is a constant.

【0021】ところで、式(1)から周波数fcの変態層の
厚さdtに対する変化はdtの3乗のオーダーで小さくな
り、また、式(4)から漏洩磁界φの変態層の厚さdtに対
する変化はdtの2乗のオーダーで小さくなることがわか
る。これは、計測の観点からは、変態層の厚さdtが厚く
なるにしたがい周波数fcや漏洩磁界φの測定精度が低下
することを意味する。そこで、変態層の厚さdtが厚い場
合でも周波数fcや漏洩磁界φの変態層の厚さdtに対する
変化を大きして測定精度を上げるための検討を行ったと
ころ、変態層の透磁率μ自体を小さくすればよく、その
ためには、上記の方法で印加する交流磁界に直流磁界を
重畳すればよいことを見出した。特に、式(3)を用いて
変態層の厚さdtを測定する場合は、透磁率μによらず測
定できるので非常に有効である。なお、変態層の厚さdt
が薄い場合には透磁率μが大きい方が測定精度が上がる
ので、変態層の厚さdtに応じて直流磁界の強さを適宜選
択することが好ましい。
From the equation (1), the change of the frequency fc with respect to the thickness dt of the transformation layer becomes smaller on the order of the third power of dt, and from the equation (4), the change of the leakage magnetic field φ with respect to the thickness dt of the transformation layer is obtained. It can be seen that the change becomes smaller in the order of the square of dt. This means that from the viewpoint of measurement, as the thickness dt of the transformation layer increases, the measurement accuracy of the frequency fc and the leakage magnetic field φ decreases. Therefore, even when the thickness dt of the transformation layer was large, a study was conducted to increase the change in the frequency fc and the leakage magnetic field φ with respect to the thickness dt of the transformation layer to improve the measurement accuracy. Has been found to be small, and for this purpose, a DC magnetic field may be superimposed on the AC magnetic field applied by the above method. In particular, when the thickness dt of the transformation layer is measured by using the equation (3), it can be measured regardless of the magnetic permeability μ, which is very effective. The thickness dt of the transformation layer
When the thickness is small, the higher the permeability μ, the higher the measurement accuracy. Therefore, it is preferable to appropriately select the intensity of the DC magnetic field according to the thickness dt of the transformation layer.

【0022】[0022]

【発明の実施の形態】図1に、本発明法の1実施の形態を
示す。
FIG. 1 shows an embodiment of the method of the present invention.

【0023】発信器(図示されてない)から送られてくる
交流信号を電力増幅器9で増幅し、感度向上のためにフ
ェライトヨーク5を有する励磁コイル3を励磁すると、こ
の励磁コイル3に近接し、コイル軸芯に垂直に配置さ
れ、表層に変態層2を有する鋼材1の表層には渦電流が発
生する。この渦電流により誘導磁界が発生するが、その
磁界はフェライトヨーク5を有し、励磁コイル3と同一の
軸上にある検出コイル4に発生する起電力として検出さ
れる。この起電力はロックインアンプ11へ送られ、発信
器から送られてくる交流信号に基づき同期検波され直流
信号に変換されて、上記式(1)の組み込まれた演算処理
装置13に送られる。交流信号の周波数を変えて同様な操
作を繰り返し、周波数と起電力のデータを演算処理装置
13に送ればfcが求まり、変態層2の透磁率μが既知の場
合は、μを演算処理装置13に入力することにより変態層
2の厚さdtが求まる。
When an AC signal sent from a transmitter (not shown) is amplified by a power amplifier 9 and an exciting coil 3 having a ferrite yoke 5 is excited to improve the sensitivity, the AC coil 3 becomes close to the exciting coil 3. An eddy current is generated on the surface of the steel material 1 which is arranged perpendicular to the coil axis and has the transformation layer 2 on the surface. An induced magnetic field is generated by the eddy current, and the magnetic field is detected as an electromotive force generated in the detection coil 4 having the ferrite yoke 5 and on the same axis as the excitation coil 3. This electromotive force is sent to the lock-in amplifier 11, synchronously detected based on the AC signal sent from the transmitter, converted into a DC signal, and sent to the arithmetic processing unit 13 in which the above equation (1) is incorporated. The same operation is repeated by changing the frequency of the AC signal, and the frequency and electromotive force data are processed by the arithmetic processing unit.
When fc is sent to the transformation layer 13 and the magnetic permeability μ of the transformation layer 2 is known, the transformation coefficient
The thickness dt of 2 is obtained.

【0024】また、発信器から送られてくる交流信号を
電力増幅器10で増幅し、鋼材1に近接させたU字形ヨーク
7を有する励磁コイル6を励磁すると、鋼材1の表面に
平行に磁界が漏洩するが、この漏洩磁界φをたとえばホ
ール素子のような磁気センサー8で起電力として検出し
ロックインアンプ12へ送り、変態層2の透磁率μが既知
の場合は、μを例えば上記式(4)の組み込まれた演算処
理装置13に入力することにより変態層2の厚さdtを求め
ることもできる。
When the AC signal sent from the transmitter is amplified by the power amplifier 10 and the exciting coil 6 having the U-shaped yoke 7 close to the steel material 1 is excited, a magnetic field is generated in parallel to the surface of the steel material 1. Although leakage occurs, this leakage magnetic field φ is detected as an electromotive force by a magnetic sensor 8 such as a Hall element and sent to the lock-in amplifier 12, and when the magnetic permeability μ of the transformation layer 2 is known, μ is expressed by, for example, the above equation ( The thickness dt of the transformation layer 2 can also be obtained by inputting to the arithmetic processing unit 13 in which 4) is incorporated.

【0025】変態層2の透磁率μが未知の場合は、上記
両方の測定を行い、周波数と起電力のデータと漏洩磁界
のデータを例えば上記式(5)の組み込まれた演算処理装
置13に入力することにより変態層2の厚さdtを求めるこ
とができる。
When the magnetic permeability μ of the transformation layer 2 is unknown, both of the above measurements are performed, and the data of the frequency and the electromotive force and the data of the leakage magnetic field are sent to, for example, the arithmetic processing unit 13 in which the above equation (5) is incorporated. By inputting, the thickness dt of the transformation layer 2 can be obtained.

【0026】発信器から送られてくる交流信号に直流成
分を重畳すると変態層の透磁率μ自体を小さくできるの
で、変態層の厚さdtが厚い場合でも、周波数fcや漏洩磁
界φを精度よく測定できる。
When the DC component is superimposed on the AC signal sent from the transmitter, the magnetic permeability μ itself of the transformation layer can be reduced. Therefore, even when the thickness dt of the transformation layer is large, the frequency fc and the leakage magnetic field φ can be accurately determined. Can be measured.

【0027】[0027]

【実施例】鋼とほぼ同じ導電率を有する非磁性体である
青銅の上に、厚さが2.0〜8.0mm、透磁率μが25〜150の
強磁性体である鋼板を重ね、鋼材がオーステナイト相→
フェライト相に変態しているときの表層における変態層
厚さの推移をシミュレートした試料を作製した。そし
て、図1に示した構成の装置を用い、周波数fc、漏洩磁
界φ(起電力)、鋼板厚さ(変態層厚さ)を測定した。な
お、漏洩磁界φの測定には0.2A、10Hzの交流信号を用
い、また、いずれの測定においても、交流信号に2.08A
の直流成分を重畳した。
EXAMPLE A ferromagnetic steel plate having a thickness of 2.0 to 8.0 mm and a magnetic permeability μ of 25 to 150 is laminated on bronze, a nonmagnetic material having substantially the same conductivity as steel, and the steel material is austenitic. Phase →
A sample was prepared which simulated the transition of the thickness of the transformed layer in the surface layer during the transformation to the ferrite phase. Then, using the apparatus having the configuration shown in FIG. 1, the frequency fc, the leakage magnetic field φ (electromotive force), and the thickness of the steel sheet (transformation layer thickness) were measured. Note that a 0.2 A, 10 Hz AC signal was used for the measurement of the leakage magnetic field φ.
Are superimposed.

【0028】図3に、鋼板厚さを変えた場合の誘導起電
力比と周波数との関係を示す。ここで、誘導起電力比と
は、起電力を鋼板のないときの起電力に対する比で表し
たものである。また、透磁率μが一定の鋼板を用いたと
きの結果である。
FIG. 3 shows the relationship between the induced electromotive force ratio and the frequency when the thickness of the steel sheet is changed. Here, the induced electromotive force ratio is a ratio of the electromotive force to the electromotive force without a steel plate. The results are obtained when a steel plate having a constant magnetic permeability μ is used.

【0029】各鋼板厚さにおいても、誘導起電力と周波
数の関係には屈曲点が存在しており、鋼板厚さが厚くな
るにしたがい屈曲点の周波数が低下する、すなわち、変
態層の厚さが厚くなるにしたがいfcが小さくなることが
わかる。周波数fcと鋼板厚さの関係をプロットすると、
図4に示すように、鋼板の厚さ、すなわち、変態層の厚
さとfc-1/2とには直線関係があり、上記式(1)により変
態層の厚さが計算できることがわかる。
At each steel sheet thickness, there is a bending point in the relationship between the induced electromotive force and the frequency, and the frequency at the bending point decreases as the steel sheet thickness increases, ie, the thickness of the transformation layer. It can be seen that fc decreases as the thickness increases. When plotting the relationship between frequency fc and steel plate thickness,
As shown in FIG. 4, it can be seen that there is a linear relationship between the thickness of the steel sheet, that is, the thickness of the transformation layer and fc -1/2, and the thickness of the transformation layer can be calculated by the above equation (1).

【0030】図5に、漏洩磁界φと鋼板厚さとの関係を
示す。ここで、漏洩磁界は起電力として測定されてい
る。また、透磁率μが一定の鋼板を用いたときの結果で
ある。
FIG. 5 shows the relationship between the leakage magnetic field φ and the thickness of the steel sheet. Here, the leakage magnetic field is measured as an electromotive force. The results are obtained when a steel plate having a constant magnetic permeability μ is used.

【0031】漏洩磁界φは鋼板厚さが厚くなるにしたが
い直線的に低下しており、図1の装置構成の場合の上記
式(4)により変態層の厚さが計算できることがわかる。
The leakage magnetic field φ decreases linearly as the thickness of the steel sheet increases, and it can be seen that the thickness of the transformation layer can be calculated by the above equation (4) in the case of the apparatus configuration of FIG.

【0032】鋼板の透磁率μを種々変化させて測定した
周波数fcと漏洩磁界φから、上記式(5)を用いて鋼板厚
さを計算した結果を表1に示す。
Table 1 shows the results of calculating the thickness of the steel sheet from the frequency fc and the leakage magnetic field φ measured by variously changing the magnetic permeability μ of the steel sheet using the above equation (5).

【0033】このように、式(5)を用いて計算した厚さ
は実際の厚さと0.3mm以内で一致しており、透磁率μが
未知の場合でも本発明法により変態層の厚さを精度よく
求めることができる。
As described above, the thickness calculated using the equation (5) matches the actual thickness within 0.3 mm, and even when the magnetic permeability μ is unknown, the thickness of the transformation layer can be reduced by the method of the present invention. It can be obtained with high accuracy.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】本発明は以上説明したように構成されて
いるので、鋼材の板厚が厚くても、表面から内部へ向か
う変態層の厚さの変化を追跡できる鋼材の変態層厚さ計
測方法を提供できる。
Since the present invention is configured as described above, even if the thickness of the steel material is large, the change in the thickness of the transformation layer from the surface to the inside can be tracked, and the thickness of the transformation layer of the steel material can be measured. We can provide a method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明法の1実施の形態を示す図である。FIG. 1 is a diagram showing one embodiment of the method of the present invention.

【図2】誘導起電力と周波数との関係を模式的に示す図
である。
FIG. 2 is a diagram schematically illustrating a relationship between an induced electromotive force and a frequency.

【図3】鋼板厚さを変えた場合の誘導起電力比と周波数
との関係を示す図である。
FIG. 3 is a diagram illustrating a relationship between an induced electromotive force ratio and a frequency when a thickness of a steel sheet is changed.

【図4】周波数fcと鋼板厚さとの関係を示す図である。FIG. 4 is a diagram illustrating a relationship between a frequency fc and a steel sheet thickness.

【図5】漏洩磁界φと鋼板厚さとの関係を示す図であ
る。
FIG. 5 is a diagram illustrating a relationship between a leakage magnetic field φ and a steel sheet thickness.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 鋼材に交流磁化を印加し、渦電流によって
鋼材表面近傍に発生する誘導磁界を、前記交流磁界の周
波数を変化させて測定し、得られた前記誘導磁界の前記
周波数を関数とする曲線が大きく屈曲するときの周波数
を求め、前記曲線が大きく屈曲するときの周波数が渦電
流の表皮効果現象により変態層の厚さにより変化するこ
とを利用して計測する鋼材の変態層厚さ計測方法。
An AC magnetic field is applied to a steel material, and an induced magnetic field generated near the steel material surface due to an eddy current is measured by changing a frequency of the AC magnetic field, and the obtained frequency of the induced magnetic field is defined as a function. Determine the frequency at which the curve to be bent greatly bends, the thickness of the transformation layer of the steel material measured by utilizing the fact that the frequency at which the curve is greatly bent changes with the thickness of the transformation layer due to the skin effect phenomenon of eddy current Measurement method.
【請求項2】 変態層の透磁率をμ、誘導磁界の周波数
を関数とする曲線が大きく屈曲するときの周波数をfcと
したとき、下記の式(2)から変態層の厚さdtを求める請
求項1に記載の鋼材の変態層厚さ計測方法。 dt=a/(fc×μ)1/2 …(2) ここで、aは定数
2. When the magnetic permeability of the transformation layer is μ and the frequency at which the curve having the function of the frequency of the induced magnetic field is greatly bent is fc, the thickness dt of the transformation layer is obtained from the following equation (2). 2. The method for measuring the thickness of a transformation layer of a steel material according to claim 1. dt = a / (fc × μ) 1 / 2 … (2) where a is a constant
【請求項3】 鋼材を磁化し、前記鋼材表面から漏洩す
る漏洩磁界φを測定し、下記の式(1)から変態層の厚さd
tを求める鋼材の変態層厚さ計測方法。 dt=F1(μ、φ) …(1) ここで、F1は鋼材の強磁性体層と磁化装置の間に形成さ
れる磁気回路に依存する関数、μは変態層の透磁率
3. A steel material is magnetized, a leakage magnetic field φ leaking from the steel material surface is measured, and the thickness d of the transformation layer is calculated from the following equation (1).
A method for measuring the thickness of the transformed layer of a steel material for which t is to be determined. dt = F 1 (μ, φ)… (1) where F 1 is a function that depends on the magnetic circuit formed between the ferromagnetic layer of steel and the magnetizing device, and μ is the magnetic permeability of the transformation layer
【請求項4】 上記周波数fcと漏洩磁界φを求め、下記
の式(3)から変態層の厚さdtを求める鋼材の変態層厚さ
計測方法。 dt=F2(fc、φ) …(3) ここで、F2は上記式(1)と式(2)から透磁率μを消去した
関数
4. A method for measuring the thickness of a transformation layer of a steel material, wherein the frequency fc and the leakage magnetic field φ are determined, and the thickness dt of the transformation layer is determined from the following equation (3). dt = F 2 (fc, φ) (3) where F 2 is a function obtained by eliminating the magnetic permeability μ from the above equations (1) and (2).
【請求項5】 交流磁界に直流磁界を重畳する請求項2か
ら請求項4のいずれか1項に記載の鋼材の変態層厚さ計測
方法。
5. The method according to claim 2, wherein a DC magnetic field is superimposed on an AC magnetic field.
JP11167999A 1999-04-20 1999-04-20 Method for measuring transformation layer thickness of steel Expired - Fee Related JP4192333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11167999A JP4192333B2 (en) 1999-04-20 1999-04-20 Method for measuring transformation layer thickness of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11167999A JP4192333B2 (en) 1999-04-20 1999-04-20 Method for measuring transformation layer thickness of steel

Publications (2)

Publication Number Publication Date
JP2000304725A true JP2000304725A (en) 2000-11-02
JP4192333B2 JP4192333B2 (en) 2008-12-10

Family

ID=14567444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11167999A Expired - Fee Related JP4192333B2 (en) 1999-04-20 1999-04-20 Method for measuring transformation layer thickness of steel

Country Status (1)

Country Link
JP (1) JP4192333B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010901A (en) * 2001-06-26 2003-01-15 Nkk Corp Method and apparatus for manufacturing steel plate
JP2007510916A (en) * 2003-11-10 2007-04-26 フラウンホファー ゲセルシャフトツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. A method for quantitative determination of the width of the soft zone region of partially cured workpieces.
WO2012146930A2 (en) 2011-04-27 2012-11-01 The University Of Manchester Improvements in sensors
CN105675657A (en) * 2016-01-12 2016-06-15 中国地质大学(武汉) Skin effect-based sample surface coating nondestructive test method and system
CN113465658A (en) * 2021-05-24 2021-10-01 湖南大学 Non-contact temperature measurement and material component detection device and method based on magnetic conductivity

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010901A (en) * 2001-06-26 2003-01-15 Nkk Corp Method and apparatus for manufacturing steel plate
JP4691839B2 (en) * 2001-06-26 2011-06-01 Jfeスチール株式会社 Steel plate manufacturing method and steel plate manufacturing equipment
JP2007510916A (en) * 2003-11-10 2007-04-26 フラウンホファー ゲセルシャフトツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. A method for quantitative determination of the width of the soft zone region of partially cured workpieces.
WO2012146930A2 (en) 2011-04-27 2012-11-01 The University Of Manchester Improvements in sensors
US9404992B2 (en) 2011-04-27 2016-08-02 The University Of Manchester Sensors
US10144987B2 (en) 2011-04-27 2018-12-04 The University Of Manchester Sensors
CN105675657A (en) * 2016-01-12 2016-06-15 中国地质大学(武汉) Skin effect-based sample surface coating nondestructive test method and system
CN113465658A (en) * 2021-05-24 2021-10-01 湖南大学 Non-contact temperature measurement and material component detection device and method based on magnetic conductivity
CN113465658B (en) * 2021-05-24 2023-03-31 湖南大学 Non-contact temperature measurement and material component detection device and method based on magnetic conductivity

Also Published As

Publication number Publication date
JP4192333B2 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
US4528856A (en) Eddy current stress-strain gauge
RU2593677C2 (en) Electromagnetic sensor and calibration thereof
Kosmas et al. Non-destructive evaluation of magnetic metallic materials using Hall sensors
JP4512079B2 (en) Apparatus and method for measuring magnetic properties and mechanical strength of thin steel sheet
CN103238064B (en) Depth of quenching assay method and depth of quenching determinator
JP2007040865A (en) Nondestructive measuring method for determining depth of hardened layer, unhardened state and foreign material
JPH0466863A (en) Residual stress measuring method by steel working
JP4192333B2 (en) Method for measuring transformation layer thickness of steel
JP2841153B2 (en) Weak magnetism measurement method and device, and nondestructive inspection method using the same
JPS6352345B2 (en)
JP3707547B2 (en) Method for measuring Si concentration in steel material and method for producing electrical steel sheet
JP3948594B2 (en) Method for measuring Si concentration in steel
JP2000266727A (en) Carburized depth measuring method
JP2002014081A (en) Method and device for measuring hardness penetration
JP2005315732A (en) Instrument for measuring displacement of ferromagnetic body
Gotoh et al. Proposal of electromagnetic inspection method of hardened depth of steel using 3-D nonlinear FEM taking account of hysteresis
JP6659444B2 (en) Magnetic property measuring probe, magnetic property measuring system, magnetic property measuring method and deterioration evaluation method
RU2480708C2 (en) Method and device for measuring thickness of layer of partially crystallised melts
Artetxe et al. A new technique to obtain an equivalent indirect hysteresis loop from the distortion of the voltage measured in the excitation coil
Gotoh et al. Examination of electromagnetic inspection of surface hardness: 3-D nonlinear FEM analysis considering nonuniform permeability and conductivity
JP2012184931A (en) Method of measuring fraction of structure in steel plate
JP2005315734A (en) Method and instrument for measuring displacement of ferromagnetic body
OKA et al. Examination of the inductance method for non-destructive testing in structural metallic material by means of the pancake-type coil
JP2024018348A (en) Quenching depth evaluation method and quenching depth evaluation device
JP3755403B2 (en) Method for measuring transformation state of magnetic material and measuring device for transformation state of magnetic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060314

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees