JP2007040865A - Nondestructive measuring method for determining depth of hardened layer, unhardened state and foreign material - Google Patents

Nondestructive measuring method for determining depth of hardened layer, unhardened state and foreign material Download PDF

Info

Publication number
JP2007040865A
JP2007040865A JP2005226313A JP2005226313A JP2007040865A JP 2007040865 A JP2007040865 A JP 2007040865A JP 2005226313 A JP2005226313 A JP 2005226313A JP 2005226313 A JP2005226313 A JP 2005226313A JP 2007040865 A JP2007040865 A JP 2007040865A
Authority
JP
Japan
Prior art keywords
coil
hardened layer
test piece
depth
inductance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005226313A
Other languages
Japanese (ja)
Inventor
Fumio Ogawa
二美夫 小川
Satoru Sakai
悟 坂井
Noriyoshi Takaoka
徳義 高岡
Takeshi Yoshikawa
毅 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Neturen Co Ltd
Original Assignee
NTN Corp
Neturen Co Ltd
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, Neturen Co Ltd, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005226313A priority Critical patent/JP2007040865A/en
Publication of JP2007040865A publication Critical patent/JP2007040865A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nondestructive measuring method for determining a depth of a hardened layer, an unhardened state and a foreign material of a steel product, which can carry out a precise measurement by using a simple and inexpensive apparatus. <P>SOLUTION: In the nondestructive measuring method for determining the depth of the hardened layer of the steel product, AC current having a frequency of 1 kHz or less is applied to a coil 2 into which a test piece 3 is inserted, or to the coil 2 disposed near the test piece 3, and an inductance value of the coil 2 is measured, thereby determining the depth of the hardened layer of the steel product. In order to determine the depth of the hardened layer of the steel product, a phase of impedance of the coil 2 may be measured instead of the inductance value. If the depth of the hardened layer is judged to be zero by using above method, the unhardened state of the steel product can be determined. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、鋼材の硬化層深さ・未焼入れ・異材判定を行う非破壊測定法に関する。   The present invention relates to a nondestructive measurement method for determining a hardened layer depth, unquenched, and a different material of a steel material.

鋼材は、用途に応じて熱処理を施すことで、表面あるいは中心部まで硬化させて使用されている。鋼材が量産品の場合、硬化層深さの確認は抜き取り検査によって行われており、鋼材を切断する破壊検査によっているのが現状である。また、一部では、渦電流法等による非破壊検査も試みられている。渦電流法等の非破壊検査では、硬化層深さを直接測定することはできないため、予め硬化層深さと非破壊検査測定値の関係を調査し、検量線を作成しておく必要がある。この検量線に、硬化層深さが未知の試験片の非破壊検査測定値を照合することで、硬化層深さを推定する。   Steel materials are used by being cured to the surface or the center by heat treatment depending on the application. When the steel material is a mass-produced product, the depth of the hardened layer is confirmed by a sampling inspection, and the current state is a destructive inspection for cutting the steel material. In some cases, non-destructive inspection by an eddy current method or the like is also attempted. In the nondestructive inspection such as the eddy current method, the depth of the hardened layer cannot be directly measured. Therefore, it is necessary to investigate the relationship between the hardened layer depth and the measured value of the nondestructive inspection in advance and prepare a calibration curve. The hardened layer depth is estimated by comparing the calibration curve with the nondestructive inspection measurement value of the test piece whose hardened layer depth is unknown.

渦電流法による硬化層深さ測定では、励磁コイルと検出コイルによって構成される貫通コイルに供試材を挿入し、硬化層深さを測定するものが一般的である(例えば非特許文献1)。この場合、励磁コイルにより供試材に渦電流を誘導し、その渦電流によって検出コイルに電圧が誘導される。供試材に誘導される渦電流の状態は供試材の硬化層深さの違いによって異なるので、検出コイルに誘導された電圧の状態から硬化層深さを推定する。非特許文献1に開示の測定では、検出コイルに誘導される電圧波形の位相遅れに起因するX値により、硬化層深さを推定している。   In the measurement of the hardened layer depth by the eddy current method, it is common to measure the hardened layer depth by inserting a test material into a through coil constituted by an excitation coil and a detection coil (for example, Non-Patent Document 1). . In this case, an eddy current is induced in the specimen by the exciting coil, and a voltage is induced in the detection coil by the eddy current. Since the state of the eddy current induced in the test material differs depending on the difference in the hardened layer depth of the test material, the hardened layer depth is estimated from the state of the voltage induced in the detection coil. In the measurement disclosed in Non-Patent Document 1, the hardened layer depth is estimated from the X value resulting from the phase lag of the voltage waveform induced in the detection coil.

渦電流法による硬化層深さ測定の他の例として、比較測定による方法もある(例えば非特許文献2)。この場合、補正用の試験片と補正コイル、および検査対象の試験片と試験コイルが使用される。補正用コイルおよび試験コイルには、それぞれ励磁コイルと受信コイルが内蔵され、合計4個のコイルが使用される。この測定では、検査用の試験片と補正用の試験片に誘導された渦電流の差分を検出することで、XとYの信号(X:電圧ベクトルの抵抗成分、Y:電圧ベクトルのリアクタンス成分)として出力し、焼入深さを推定している。   As another example of the measurement of the hardened layer depth by the eddy current method, there is a method by comparative measurement (for example, Non-Patent Document 2). In this case, a test piece for correction and a correction coil, and a test piece and a test coil to be inspected are used. Each of the correction coil and the test coil includes an exciting coil and a receiving coil, and a total of four coils are used. In this measurement, a difference between eddy currents induced in the test specimen for inspection and the test specimen for correction is detected, so that the X and Y signals (X: resistance component of the voltage vector, Y: reactance component of the voltage vector) ) And the quenching depth is estimated.

非特許文献3では、非特許文献2の測定法の場合と同じ渦流測定器を使用し、X,Y信号のうちのY信号から硬化層深さを推定している。   In Non-Patent Document 3, the same eddy current measuring instrument as in the measurement method of Non-Patent Document 2 is used, and the hardened layer depth is estimated from the Y signal of the X and Y signals.

非特許文献4では、2つの励磁コイルと、これらコイルに挟まれた検出コイルとによって測定を行い、予め測定された鋼材の各硬度の導電率と初期磁化曲線を使用して解析を行うことにより、硬化層深さの推定を行う方法が開示されている。   In Non-Patent Document 4, measurement is performed using two excitation coils and a detection coil sandwiched between these coils, and analysis is performed using the conductivity and initial magnetization curve of each hardness of the steel material measured in advance. A method for estimating the hardened layer depth is disclosed.

非特許文献5では、磁気特性,電気特性(インダクタンス,インピーダンス)の測定で硬化層深さを推定する方法が開示されている。しかし、硬化層深さを推定するまでに至っていない。   Non-Patent Document 5 discloses a method of estimating the hardened layer depth by measuring magnetic characteristics and electrical characteristics (inductance, impedance). However, the hardened layer depth has not yet been estimated.

特許文献1には、500kHz 以上の高周波を用い、インダクタンスの変化に起因して電流値が変化する独自の回路を用いることで、回路の電流値と硬化層の厚みの関係から硬化層の厚みを測定する方法が開示されている。
阪野明著,「焼入品質評価計測技術の開発」,自動車技術会 学術講演会前刷集,2004年10月27日,No.82-04, 鈴木仁志著,「渦流検査法による硬化層深さの推定手法」,(株)ケンオートメーション,2003年8月5日 ロブコザー(Rov Kozar)、外4名著,「鍛造車軸の誘導焼入品質制御手法としての渦電流試験の信頼性改善(Improving the Reliability of Eddy Current Testing as a Means of Induction Hardening Quality Control of Forged Axle Shafts ),ミシガン工業大学物質科学工学部(Michigan Technological University Department of Materials Science Engineering ),2002年 4月22日 後藤雄治,野村龍司,田中穣,矢野博明,桝井憲嗣共著,「高周波焼入れ深さの電磁気的検査法における磁化特性のばらつきを考慮した数値解析評価」,職業能力開発報文誌,2001 年 Vol.13 No.1(25) 井上栄一著,「非破壊による表面硬化処理材の表面硬化層深さの計測手法に関する研究−浸炭焼入れ材−(予備研究)」 特公昭40−23956号公報
Patent Document 1 uses a high frequency of 500 kHz or higher and uses a unique circuit in which the current value changes due to a change in inductance, so that the thickness of the hardened layer can be determined from the relationship between the current value of the circuit and the thickness of the hardened layer. A method of measuring is disclosed.
Akira Sakano, “Development of Quenching Quality Evaluation and Measurement Technology”, Preprint of Academic Lecture Meeting of the Society of Automotive Engineers of Japan, October 27, 2004, No.82-04, Suzuki Hitoshi, “Method of Estimating Hardened Layer Depth by Eddy Current Inspection Method”, Ken Automation Co., Ltd., August 5, 2003 Rov Kozar, 4 other authors, “Improving the Reliability of Eddy Current Testing as a Means of Induction Hardening Quality Control of Forged Axle Shafts” , Michigan Technological University Department of Materials Science Engineering, April 22, 2002 Yuji Goto, Ryuji Nomura, Atsushi Tanaka, Hiroaki Yano, Kengo Sakurai, “Numerical Analysis Evaluation Considering Variation of Magnetization Characteristics in Electromagnetic Inspection Method of Induction Hardening Depth”, Journal of Vocational Ability Development, 2001 Vol. 13 No.1 (25) Eiichi Inoue, “Study on Measurement Method of Surface Hardened Layer Depth of Non-destructive Surface Hardened Material—Carburized Quenching Material— (Preliminary Study)” Japanese Patent Publication No. 40-23956

しかし、上記した渦流法では、最低でも励磁コイルと検出コイルの2個のコイルが必要であり、また一般に測定装置が特殊で各メーカ独自の信号処理を行っており、装置も高価となる。
また、非特許文献2のような渦流の比較測定法では、補正用コイルに挿入する試験片が変わると、測定値そのものが変わってしまうという問題がある。
また、非特許文献4による測定法では、予め鋼材の各硬度における導電率、初期磁化曲線の測定をしておく必要があるなど、前準備に多大な時間と費用を要する。
特許文献1による測定法では、やはり独自の測定回路を製作し、回路調整を行ったうえで測定する必要があり、測定作業が煩雑である。
However, the above-described eddy current method requires at least two coils, ie, an excitation coil and a detection coil. Generally, the measuring device is special and performs signal processing unique to each manufacturer, and the device is expensive.
Further, in the eddy current comparative measurement method as in Non-Patent Document 2, there is a problem that if the test piece inserted into the correction coil changes, the measurement value itself changes.
Further, in the measurement method according to Non-Patent Document 4, it is necessary to measure the electrical conductivity and the initial magnetization curve at each hardness of the steel material in advance, and much preparation and time are required.
In the measurement method according to Patent Document 1, it is necessary to manufacture an original measurement circuit and perform measurement after adjusting the circuit, and the measurement work is complicated.

この発明の目的は、簡単かつ安価な装置で精度の良い測定が可能な鋼材の硬化層深さ・未焼入れ・異材判定の非破壊測定法を提供することである。   An object of the present invention is to provide a nondestructive measurement method for determining the depth of a hardened layer, unquenched, and different materials of a steel material that can be measured with high accuracy with a simple and inexpensive apparatus.

この発明の第1の発明にかかる鋼材の硬化層深さ非破壊測定法は、試験片が挿入されたコイル、または試験片の近傍に配置したコイルに、周波数1kHz以下の交流電流を流し、コイルのインダクタンス値を測定することによって、鋼材の硬化層深さを測定する方法である。
この場合に、例えば、コイルに試験片を挿入し、またはコイルの近傍に試験片を配置して交流電流を流したときのコイルのインダクタンス値をLCRメータ等で測定し、硬化層深さとインダクタンス値の関係を調査し、検量線を作成しておく。硬化層深さが未知の試験片のインダクタンス値を検量線と照合して硬化層深さを求める。
According to a first aspect of the present invention, there is provided a method for measuring a depth of a hardened layer of a steel material by passing an alternating current having a frequency of 1 kHz or less through a coil in which a test piece is inserted or a coil disposed in the vicinity of a test piece. This is a method of measuring the depth of the hardened layer of the steel material by measuring the inductance value.
In this case, for example, when the test piece is inserted into the coil or the test piece is arranged in the vicinity of the coil and an alternating current flows, the inductance value of the coil is measured with an LCR meter or the like, and the hardened layer depth and the inductance value are measured. Investigate the relationship and create a calibration curve. The inductance value of the test piece with the unknown hardened layer depth is collated with a calibration curve to obtain the hardened layer depth.

この方法によると、コイルに周波数1kHz以下の交流電流を流し、コイルのインダクタンス値を測定することによって鋼材の硬化層深さを求めるので、市販されているLCRメータに1個のコイルを接続した測定系だけで硬化層深さを測定できる。そのため、独自の電子回路を製作する必要がなく、測定系が非常に簡単なものとなり安価に測定できる。また、製品を切断することなく、非破壊検査で測定できるため、製品を廃棄せずに済む。そのため、これまで抜き取りでしか行えなかった硬化層深さの測定を全数検査することが可能となって、硬化層深さが不適切な製品を排除でき、製品の品質保証精度を向上させることができる。さらに、全数検査が可能になることにより、熱処理工程の工程管理にも役立ち、より安定した熱処理工程の構築に活用できる。   According to this method, an AC current having a frequency of 1 kHz or less is passed through the coil, and the hardened layer depth of the steel material is obtained by measuring the inductance value of the coil. Therefore, a measurement in which one coil is connected to a commercially available LCR meter. Hardened layer depth can be measured only with the system. Therefore, it is not necessary to manufacture an original electronic circuit, and the measurement system becomes very simple and can be measured at low cost. Further, since the product can be measured by nondestructive inspection without cutting the product, it is not necessary to discard the product. Therefore, it is possible to inspect all the measurements of the depth of the hardened layer, which could only be done by sampling, so that products with an inappropriate hardened layer depth can be eliminated and the quality assurance accuracy of the product can be improved. it can. Furthermore, since 100% inspection is possible, it is useful for process management of the heat treatment process, and can be used to construct a more stable heat treatment process.

この発明の第2の発明にかかる鋼材の硬化層深さ非破壊測定法は、第1の発明方法において、インダクタンス値の代わりに、コイルのインピーダンスの位相を測定することによって、鋼材の硬化層深さを測定する方法である。LCRメータ等でインピーダンスの位相を測定することによっても、硬化層深さを測定することが可能である。   The hardened layer depth nondestructive measuring method of the steel material according to the second invention of the present invention is the method of the first invention method, in which instead of the inductance value, the phase of the impedance of the coil is measured to measure the hardened layer depth of the steel material. This is a method for measuring the thickness. The cured layer depth can also be measured by measuring the impedance phase with an LCR meter or the like.

この発明の第3の発明にかかる鋼材の未焼入れ非破壊測定法は、第1の発明方法において、コイルのインダクタンス値を測定することによって、鋼材の未焼入を判定する方法である。インダクタンス値を検量線に照合し、硬化層深さが0mmと求まった場合、鋼材を未焼入と判定できる。   A non-hardened nondestructive measuring method for steel according to a third aspect of the present invention is a method for determining whether the steel is unquenched by measuring an inductance value of a coil in the first inventive method. When the inductance value is collated with a calibration curve and the hardened layer depth is found to be 0 mm, the steel material can be determined to be unquenched.

この発明の第4の発明にかかる鋼材の未焼入れ非破壊測定法は、第1の発明方法において、インダクタンス値の代わりに、コイルのインピーダンスの位相を測定することによって、鋼材の未焼入を判定する方法である。インピーダンスの位相を検量線に照合し、硬化層深さが0mmと求まった場合、鋼材を未焼入と判定できる。   The non-hardened nondestructive measuring method for steel according to the fourth invention of the present invention is the method of determining the unhardened steel by measuring the phase of the coil impedance instead of the inductance value in the first invention method. It is a method to do. When the impedance phase is collated with a calibration curve and the hardened layer depth is found to be 0 mm, the steel material can be determined to be unquenched.

これら第2ないし第4の発明においても、第1の発明につき説明したと同様に、市販されているLCRメータに1個のコイルを接続した測定系だけで測定できて、独自の電子回路を製作する必要がなく、測定系が非常に簡単なものとなり安価に測定ないし判定ができる。また、第1の発明につき説明したと同様に、非破壊検査で測定ないし判定できることによる各効果を得ることができる。   In these second to fourth inventions as well, as described with respect to the first invention, measurement can be performed only with a measurement system in which one coil is connected to a commercially available LCR meter, and an original electronic circuit is manufactured. Therefore, the measurement system becomes very simple and can be measured or judged at low cost. Further, as described with respect to the first invention, it is possible to obtain each effect by being able to measure or determine by nondestructive inspection.

この発明の第5の発明にかかる鋼材の異材非破壊測定法は、試験片が挿入されたコイル、または試験片の近傍に配置したコイルに交流電流を流し、コイルのインダクタンス値を測定することによって、鋼材の異材を判定する方法である。
この場合、例えば、コイルに試験片を挿入し、またはコイルの近傍に試験片を配置したときのコイルのインダクタンス値をLCRメータ等で予め測定しておく。次に、材質が未知の鋼材をコイル挿入し、またはコイルの近傍に配置してインダクタンス値を測定し、既知の材質とインダクタンス値が異なれば、異材と判定する。
なお、異材判定を行う場合は、硬化層深さを測定する場合と違って、磁界の浸透深さをあまり気にする必要はないので、コイルに流す電流の周波数の選択は、硬化層深さを測定する場合に比べて自由度が高くなる。
According to a fifth aspect of the present invention, a non-destructive measuring method for a dissimilar material of steel is such that an alternating current is passed through a coil in which a test piece is inserted or a coil disposed in the vicinity of the test piece, and the inductance value of the coil is measured. This is a method for judging a different steel material.
In this case, for example, the inductance value of the coil when the test piece is inserted into the coil or the test piece is arranged in the vicinity of the coil is measured in advance with an LCR meter or the like. Next, a steel material whose material is unknown is inserted into a coil, or placed in the vicinity of the coil and the inductance value is measured. If the inductance value is different from the known material, it is determined that the material is different.
Unlike the case of measuring the depth of the hardened layer, there is no need to worry too much about the penetration depth of the magnetic field. The degree of freedom is higher than when measuring.

この発明の第6の発明にかかる鋼材の特定成分量非破壊測定法は、試験片が挿入されたコイル、または試験片の近傍に配置したコイルに交流電流を流し、コイルのインダクタンス値を測定することによって、鋼材中の特定成分量を判定するものである。
この方法の場合は、例えば、予め特定成分量が既知で互いに特定成分量が異なる複数の鋼材試験片について、試験片が挿入されたコイル、または試験片の近傍に配置したコイルに交流電流を流し、コイルのインダクタンス値を測定することによって、各特定成分量とコイルのインダクタンス値の関係を調査しておく。同じ手順で特定成分量が未知な鋼材試験片についてコイルのインダクタンス値を測定し、そのインダクタンス値を上記測定結果に照合させることにより未知の特定成分量を求める。
これら第5,第6の発明においても、第1の発明につき説明したと同様に、市販されているLCRメータに1個のコイルを接続した測定系だけで測定できて、独自の電子回路を製作する必要がなく、測定系が非常に簡単なものとなり安価に判定できる。また、第1の発明につき説明したと同様に、非破壊検査で測定できることによる各効果を得ることができる。
The specific component amount nondestructive measuring method for a steel material according to a sixth aspect of the present invention is such that an alternating current is passed through a coil in which a test piece is inserted or a coil disposed in the vicinity of the test piece, and the inductance value of the coil is measured. Thus, the specific component amount in the steel material is determined.
In the case of this method, for example, with respect to a plurality of steel material test pieces whose specific component amounts are known in advance and different from each other in specific component amounts, an alternating current is passed through a coil in which the test piece is inserted or a coil disposed in the vicinity of the test piece. The relationship between each specific component amount and the inductance value of the coil is investigated by measuring the inductance value of the coil. In the same procedure, the inductance value of the coil is measured for a steel specimen having an unknown specific component amount, and the unknown specific component amount is obtained by comparing the inductance value with the measurement result.
In these fifth and sixth inventions as well, as described with respect to the first invention, measurement can be performed only with a measurement system in which one coil is connected to a commercially available LCR meter, and an original electronic circuit is manufactured. Therefore, the measurement system becomes very simple and can be determined inexpensively. Moreover, each effect by being able to measure by a nondestructive inspection can be acquired similarly to having demonstrated about 1st invention.

この発明の第1の発明にかかる鋼材の硬化層深さ非破壊測定法は、試験片が挿入されたコイル、または試験片の近傍に配置したコイルに、周波数1kHz以下の交流電流を流し、コイルのインダクタンス値を測定することによって、鋼材の硬化層深さを測定する方法であるため、簡単かつ安価な装置で鋼材の硬化層深さを精度良く測定できる。
この発明の第2の発明にかかる鋼材の硬化層深さ非破壊測定法は、試験片が挿入されたコイル、または試験片の近傍に配置したコイルに、周波数1kHz以下の交流電流を流し、コイルのインピーダンスの位相を測定することによって、鋼材の硬化層深さを測定する方法であるため、簡単かつ安価な装置で鋼材の硬化層深さを精度良く測定できる。
この発明の第3の発明にかかる鋼材の未焼入れ非破壊測定法は、試験片が挿入されたコイル、または試験片の近傍に配置したコイルに、周波数1kHz以下の交流電流を流し、コイルのインダクタンス値を測定することによって、鋼材の未焼入を判定する方法であるため、簡単かつ安価な装置で鋼材の未焼入れを精度良く判定できる。
この発明の第4の発明にかかる鋼材の未焼入れ非破壊測定法は、試験片が挿入されたコイル、または試験片の近傍に配置したコイルに、周波数1kHz以下の交流電流を流し、コイルのインピーダンスの位相を測定することによって、鋼材の未焼入を判定する方法であるため、簡単かつ安価な装置で鋼材の未焼入れを精度良く判定できる。
この発明の第5の発明にかかる鋼材の異材非破壊測定法は、試験片が挿入されたコイル、または試験片の近傍に配置したコイルのインダクタンス値を測定することによって、鋼材の異材を判定する方法であるため、簡単かつ安価な装置で鋼材が異材かどうかを精度良く判定できる。
この発明の第6の発明にかかる鋼材の特定成分量非破壊測定法は、試験片が挿入されたコイル、または試験片の近傍に配置したコイルのインダクタンス値を測定することによって、鋼材中の特定成分量を測定する方法であるため、簡単かつ安価な装置で鋼材中の特定成分量を精度良く測定できる。
According to a first aspect of the present invention, there is provided a method for measuring a depth of a hardened layer of a steel material by passing an alternating current having a frequency of 1 kHz or less through a coil in which a test piece is inserted or a coil disposed in the vicinity of a test piece. This is a method of measuring the depth of the hardened layer of the steel material by measuring the inductance value of the steel material. Therefore, the depth of the hardened layer of the steel material can be accurately measured with a simple and inexpensive apparatus.
According to a second aspect of the present invention, there is provided a method for measuring a depth of a hardened layer of a steel material by passing an alternating current having a frequency of 1 kHz or less through a coil in which a test piece is inserted or a coil disposed in the vicinity of a test piece. This is a method for measuring the depth of the hardened layer of the steel material by measuring the phase of the impedance of the steel. Therefore, the depth of the hardened layer of the steel material can be accurately measured with a simple and inexpensive device.
In the non-hardened nondestructive measuring method of a steel material according to the third aspect of the present invention, an alternating current having a frequency of 1 kHz or less is passed through a coil in which a test piece is inserted or a coil disposed in the vicinity of the test piece, and the coil inductance By measuring the value, it is a method of determining whether the steel material has not been hardened. Therefore, it is possible to accurately determine whether the steel material has not been hardened with a simple and inexpensive device.
In the non-hardened nondestructive measuring method for steel material according to the fourth aspect of the present invention, an alternating current having a frequency of 1 kHz or less is passed through a coil in which a test piece is inserted or a coil disposed in the vicinity of the test piece, and the impedance of the coil In this method, the unquenched steel material can be accurately determined with a simple and inexpensive device.
In the non-destructive measuring method for dissimilar steel materials according to the fifth aspect of the present invention, the dissimilar steel material is determined by measuring the inductance value of the coil in which the test piece is inserted or the coil disposed in the vicinity of the test piece. Since this is a method, it is possible to accurately determine whether a steel material is a different material with a simple and inexpensive device.
The specific component amount nondestructive measurement method for steel according to the sixth aspect of the present invention is a method for determining the specific value in a steel by measuring the inductance value of a coil in which a test piece is inserted or a coil disposed in the vicinity of the test piece. Since it is a method of measuring the component amount, the specific component amount in the steel can be accurately measured with a simple and inexpensive apparatus.

この発明の第1の実施形態を図1ないし図5と共に説明する。この実施形態の鋼材の硬化層深さ非破壊測定法は、図1に示すように、LCRメータ1にコイル2を接続し、コイル2にシャフト状の鋼材の試験片3を挿入した状態で、LCRメータ1からコイル2に周波数1kHz以下の交流電流を流し、そのときのコイル2のインダクタンス値LをLCRメータ1で測定することによって、鋼材試験片3の硬化層深さを測定する方法である。   A first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the hardened layer depth nondestructive measurement method of the steel material of this embodiment is a state in which a coil 2 is connected to the LCR meter 1 and a test piece 3 of a shaft-shaped steel material is inserted into the coil 2. In this method, an AC current having a frequency of 1 kHz or less is passed from the LCR meter 1 to the coil 2 and the inductance value L of the coil 2 at that time is measured by the LCR meter 1 to measure the hardened layer depth of the steel specimen 3. .

具体的には、この硬化層深さ非破壊測定法においては、硬化層深さが既知でその硬化層深さが互いに異なる複数の各鋼材試験片3について、上記構成の測定系によってインダクタンス値Lを予め測定して、それら各鋼材試験片3の硬化層深さと測定されたインダクタンス値Lの関係を調査し、検量線を作成しておく。硬化層深さは、上記測定系によってインダクタンス値Lを測定した後に、破壊検査によって求めても良い。図2は、その検量線の一例を示す。
次に、硬化層深さが未知の鋼材試験片3について、上記構成の測定系によってインダクタンス値Lを測定し、そのインダクタンス値Lを前記検量線と照合することで、未知の硬化層深さを求める。
図3は、上記コイル2に角周波数ωの交流電流を流したときのコイル2のインピーダンスZと、その抵抗成分Rおよびリアクタンス成分ωLの関係を示す模式図である。上記硬化層深さ非破壊測定法では、リアクタンス成分ωLのインダクタンス値Lを測定する。
Specifically, in this hardened layer depth nondestructive measurement method, the inductance value L is measured by the measuring system having the above-described configuration for each of the plurality of steel material test pieces 3 having a known hardened layer depth and different hardened layer depths. Is measured in advance, the relationship between the hardened layer depth of each steel material test piece 3 and the measured inductance value L is investigated, and a calibration curve is created. The hardened layer depth may be obtained by destructive inspection after the inductance value L is measured by the measurement system. FIG. 2 shows an example of the calibration curve.
Next, with respect to the steel specimen 3 with the unknown hardened layer depth, the inductance value L is measured by the measurement system having the above configuration, and the unknown hardened layer depth is determined by checking the inductance value L with the calibration curve. Ask.
FIG. 3 is a schematic diagram showing the relationship between the impedance Z of the coil 2 and the resistance component R and reactance component ωL when an alternating current having an angular frequency ω is passed through the coil 2. In the hardened layer depth nondestructive measurement method, the inductance value L of the reactance component ωL is measured.

図2の検量線は、図1の測定系において、コイル2に流す交流電流の周波数を5Hzとして、硬化層深さとコイル2のインダクタンス値Lの関係を調査した結果(一次回帰式)を示す。この一次回帰式は、概略の数値例で示すが、次式
y=−1.50x+110 ……(1)
但し x:インダクタンス値(mH)
y:硬化層深さ(mm)
で表され、硬化層深さが増すごとにコイル2のインダクタンス値Lが減少する傾向を示している。この一次回帰式では、相関係数Rの2乗値が約0.989と良好で、非常に高い相関が認められる。
なお、この検量線から硬化層深さが0mmと求まった場合、鋼材試験片3は未焼入れと判定できる。
The calibration curve of FIG. 2 shows the result (primary regression equation) of investigating the relationship between the hardened layer depth and the inductance value L of the coil 2 when the frequency of the alternating current flowing through the coil 2 is 5 Hz in the measurement system of FIG. This linear regression equation is shown by a rough numerical example. The following equation is y = −1.50x + 110 (1)
Where x: inductance value (mH)
y: Hardened layer depth (mm)
The inductance value L of the coil 2 tends to decrease as the hardened layer depth increases. In this linear regression equation, the square value of the correlation coefficient R is as good as about 0.989, and a very high correlation is recognized.
In addition, when the hardened layer depth is obtained as 0 mm from this calibration curve, it can be determined that the steel specimen 3 is not quenched.

ここで、測定したインダクタンス値Lから硬化層深さを求めることができる理由を説明する。
コイル2のインダクタンス値Lは、その巻き数をNとすると、次式
インダクタンス値L=μαN2 ……(2)
但し μ:コイル周りの透磁率
α:コイルの形状によって決まる係数
で表すことができる。
式(2)より、コイル2のインダクタンス値Lの変化は、コイル周りの透磁率μが変化することによってもたらされることが分かる。そして、鋼材の硬化層部分と未硬化層部分とでは透磁率μが異なるため、コイル2に鋼材試験片3を挿入することによって、硬化層深さに応じたインダクタンス値Lの変化が生じる。これにより、インダクタンス値Lから硬化層深さを求めることができる。但し、コイル2に流す電流の周波数を適切に選定しなければ、インダクタンス値Lから硬化層深さを正しく求めることはできない。
Here, the reason why the hardened layer depth can be obtained from the measured inductance value L will be described.
The inductance value L of the coil 2 is represented by the following equation when the number of turns is N: inductance value L = μαN 2 (2)
Where μ: permeability around the coil α: coefficient determined by the shape of the coil.
From the equation (2), it can be seen that the change in the inductance value L of the coil 2 is caused by the change in the magnetic permeability μ around the coil. Since the magnetic permeability μ is different between the hardened layer portion and the uncured layer portion of the steel material, when the steel material test piece 3 is inserted into the coil 2, a change in the inductance value L according to the hardened layer depth occurs. Thereby, the hardened layer depth can be obtained from the inductance value L. However, unless the frequency of the current flowing through the coil 2 is appropriately selected, the hardened layer depth cannot be obtained correctly from the inductance value L.

例えば、硬化層深さを7mm程度まで測定する場合、コイル2に流す電流として、概ね1Hz〜15Hzの低周波のものを使用する必要がある。この理由を以下に述べる。   For example, when the depth of the hardened layer is measured to about 7 mm, it is necessary to use a low frequency of approximately 1 Hz to 15 Hz as the current flowing through the coil 2. The reason for this will be described below.

鋼材試験片3の透磁率μの違いは、コイル2から発せられる交流磁界を介して、コイル2のインダクタンス値Lに反映される。したがって、硬化層深さを測定する場合には、コイル2から発せられる交流磁界を鋼材試験片3の硬化層の最深部よりも深く浸透させる必要がある。
交流磁界の場合、その周波数が高いほど、表皮効果によって導体の表面近くにしか浸透しないが、交流磁界が導体内部にどれだけ浸透するかは、一般に次式
浸透深さδ=1/(√(πfμσ)) ……(3)
但し π:円周率
f:磁界(コイルの電流)の周波数
μ:導体の透磁率
σ:導体の導電率
を用いて評価されている。
The difference in the magnetic permeability μ of the steel material test piece 3 is reflected in the inductance value L of the coil 2 through an alternating magnetic field generated from the coil 2. Therefore, when measuring the depth of the hardened layer, it is necessary to penetrate the AC magnetic field generated from the coil 2 deeper than the deepest portion of the hardened layer of the steel material test piece 3.
In the case of an AC magnetic field, the higher the frequency, the more it penetrates only near the surface of the conductor due to the skin effect, but how much the AC magnetic field penetrates into the inside of the conductor is generally expressed by the following equation penetration depth δ = 1 / (√ ( πfμσ)) …… (3)
However, π: Circumference ratio f: Frequency of magnetic field (coil current) μ: Conductivity of conductor σ: Conductivity of conductor is evaluated.

導体外部における磁界の大きさをHo とした場合、浸透深さδとは、導体内部における磁界の大きさHX がHo の約37%になる深さをいう。
発明者らが鋼材の硬化層の透磁率と導電率を測定した結果によると、透磁率が1.005E−04(H/m)、導電率が3.85E+06(S/m)であった。この透磁率と導電率を用いて、磁界の浸透深さδを計算した結果を図4に示す。この結果によると、硬化層深さを7mmまで測定したい場合には、浸透深さδが7mmのときの周波数17Hzより低い周波数が使用すべき周波数の目安となる。
When the magnitude of the magnetic field outside the conductor is H o , the penetration depth δ is a depth at which the magnitude H X of the magnetic field inside the conductor is about 37% of H o .
According to the results of the inventors measuring the magnetic permeability and electrical conductivity of the hardened layer of steel, the magnetic permeability was 1.005E-04 (H / m) and the electrical conductivity was 3.85E + 06 (S / m). FIG. 4 shows the result of calculating the penetration depth δ of the magnetic field using this permeability and conductivity. According to this result, when it is desired to measure the depth of the hardened layer up to 7 mm, a frequency lower than the frequency of 17 Hz when the penetration depth δ is 7 mm is an indication of the frequency to be used.

図5(A)〜(F)には、コイル2に流す電流の周波数を変えて、硬化層深さとコイル2のインダクタンス値Lの関係を調べた結果(一次回帰式)を示す。この結果から、周波数15Hzでは、硬化層深さが増すごとにインダクタンス値Lが減少する傾向が現れ、周波数10Hz以下では、インダクタンス値Lから硬化層深さを一次回帰式により求めても問題ない精度が得られていることが分かる。   5A to 5F show the results (primary regression equation) of examining the relationship between the hardened layer depth and the inductance value L of the coil 2 by changing the frequency of the current flowing through the coil 2. From this result, at a frequency of 15 Hz, there is a tendency that the inductance value L decreases as the hardened layer depth increases. At a frequency of 10 Hz or less, there is no problem even if the hardened layer depth is obtained from the inductance value L by a linear regression equation. It can be seen that

また、硬化層深さを7mmまで深く測定する必要がない場合、例えば深さ1mmまでの測定でよい場合、最適な周波数は高くなることが容易に推察されるが、それでも図4より1kHz以下であると考えられる。   In addition, when it is not necessary to measure the depth of the hardened layer to 7 mm deeply, for example, when measurement to a depth of 1 mm is sufficient, it is easily inferred that the optimum frequency becomes high. It is believed that there is.

このように、この実施形態の鋼材の硬化層深さ非破壊測定法では、鋼材試験片3が挿入されたコイル2に、周波数1kHz以下の交流電流を流し、コイル2のインダクタンス値Lを測定することによって鋼材の硬化層深さを求めるので、市販されているLCRメータ1に1個のコイル2を接続した測定系だけで硬化層深さを測定でき、独自の電子回路を製作する必要がなく、測定系が非常に簡単なものとなり安価に測定できる。また、製品を切断することなく、非破壊検査で測定できるため、製品を廃棄せずに済み、これまで抜き取りでしか行えなかった硬化層深さの測定を全数検査することが可能となり、硬化層深さが不適切な製品を排除でき、製品の品質保証精度を向上させることができる。さらに、全数検査が可能になることにより、熱処理工程の工程管理にも役立ち、より安定した熱処理工程の構築に活用できる。   Thus, in the hardened layer depth nondestructive measuring method of the steel material of this embodiment, an alternating current having a frequency of 1 kHz or less is passed through the coil 2 in which the steel material test piece 3 is inserted, and the inductance value L of the coil 2 is measured. Therefore, the hardened layer depth can be measured only with a measurement system in which one coil 2 is connected to a commercially available LCR meter 1, and there is no need to manufacture an original electronic circuit. The measurement system becomes very simple and can be measured at low cost. In addition, since the product can be measured by nondestructive inspection without cutting the product, it is not necessary to dispose of the product, and it is possible to inspect all the cured layer depth measurements that could only be done by sampling. Products with an inappropriate depth can be eliminated, and the quality assurance accuracy of the product can be improved. Furthermore, since 100% inspection is possible, it is useful for process management of the heat treatment process, and can be used to construct a more stable heat treatment process.

この発明の他の実施形態を図6に示す。この鋼材の硬化層深さ非破壊測定法は、図1〜図5に示した第1の実施形態において、コイル2のインダクタンス値Lを測定したのに代えて、コイル2のインピーダンスZの位相θ(図3)を測定することによって、鋼材試験片3の硬化層深さを測定する方法である。
測定系は図1の場合と同じであり、インピーダンスZの位相θをLCRメータ1で測定することにより硬化層深さが未知の鋼材試験片3の硬化層深さを求める。そのための準備として、予め硬化層深さが既知の複数の鋼材試験片3について、上記測定系によりコイル2のインピーダンスZの位相θをそれぞれ測定し、硬化層深さとコイル2のインピーダンスZの位相θの関係を調査して検量線を作成する。
Another embodiment of the present invention is shown in FIG. The steel layer hardened layer depth nondestructive measurement method is the same as the first embodiment shown in FIGS. 1 to 5 except that the inductance value L of the coil 2 is measured and the phase θ of the impedance Z of the coil 2 is determined. This is a method of measuring the hardened layer depth of the steel specimen 3 by measuring (FIG. 3).
The measurement system is the same as in FIG. 1, and the hardened layer depth of the steel material test piece 3 whose hardened layer depth is unknown is obtained by measuring the phase θ of the impedance Z with the LCR meter 1. As a preparation for this, the phase θ of the impedance Z of the coil 2 and the phase θ of the impedance Z of the coil 2 are measured for each of the plurality of steel specimens 3 whose hardening layer depths are known in advance by the measurement system. A calibration curve is created by investigating the relationship.

図6に、その検量線の一例を示す。この検量線は、図1の測定系において、コイル2に流す交流電流の周波数を5Hzとして、硬化層深さとコイル2のインピーダンスZの位相θの関係を調査した結果(一次回帰式)を示す。この一次回帰式は次式
y=−11.08x+124 ……(4)
但し x:インピーダンスの位相(°)
y:硬化層深さ(mm)
で表され、硬化層深さが増すごとにコイル2のインピーダンスZの位相θが減少する傾向を示している。この一次回帰式では、相関係数Rの2乗値が0.999と良好で、非常に高い相関が認められる。
FIG. 6 shows an example of the calibration curve. This calibration curve shows the result (primary regression equation) of investigating the relationship between the hardened layer depth and the phase θ of the impedance Z of the coil 2 when the frequency of the alternating current flowing through the coil 2 is 5 Hz in the measurement system of FIG. This linear regression equation is expressed by the following equation: y = -11.08x + 124 (4)
Where x: phase of impedance (°)
y: Hardened layer depth (mm)
As the hardened layer depth increases, the phase θ of the impedance Z of the coil 2 tends to decrease. In this linear regression equation, the square value of the correlation coefficient R is as good as 0.999, and a very high correlation is recognized.

このように、硬化層深さとコイル2のインピーダンスZの位相θとの関係を調査して検量線(一次回帰式)を作成した上で、硬化層が未知の鋼材試験片3についてコイル2のインピーダンスZの位相θを測定し、その位相θを前記検量線(一次回帰式)と照合することで、未知の硬化層深さを求める。
この実施形態の場合も、上記検量線から硬化層深さが0mmと求まった場合、鋼材試験片3は未焼入れと判定できる。
Thus, after investigating the relationship between the depth of the hardened layer and the phase θ of the impedance Z of the coil 2, a calibration curve (primary regression equation) was created, and the impedance of the coil 2 for the steel specimen 3 whose hardened layer was unknown. The phase θ of Z is measured, and the phase θ is compared with the calibration curve (primary regression equation) to determine the unknown hardened layer depth.
Also in this embodiment, when the hardened layer depth is determined to be 0 mm from the calibration curve, the steel material test piece 3 can be determined to be unquenched.

なお、上記各実施形態では、鋼材試験片3をコイル2に挿入した状態で、コイル2のインダクタンス値LやインピーダンスZの位相θを測定する場合について説明したが、鋼材試験片3が巨大である等の理由によりコイル2に挿入することが困難な場合には、図7のように鋼材試験片3をコイル2の近傍に配置して、上記と同様の測定を行うようにしても良い。その他の構成は先の実施形態の場合と同じであり、作用・効果も先の実施形態の場合と同様である。   In each of the above embodiments, the case where the inductance value L of the coil 2 and the phase θ of the impedance Z are measured in a state where the steel material test piece 3 is inserted into the coil 2 has been described. However, the steel material test piece 3 is huge. If it is difficult to insert the coil 2 into the coil 2 for reasons such as the above, the steel material test piece 3 may be disposed in the vicinity of the coil 2 as shown in FIG. Other configurations are the same as those of the previous embodiment, and the operations and effects are the same as those of the previous embodiment.

図8および図9は、この発明の鋼材の異材非破壊測定法の実施形態を示す。この鋼材の異材非破壊測定法は、非破壊検査により鋼材の異材を測定するものであって、第1の実施形態と同じ測定系(図1)が用いられる。材質が未知な鋼材試験片3を測定するための準備として、予め材質が既知で互いに異材の複数の鋼材試験片3について、上記測定系によりコイル2のインダクタンス値Lをそれぞれ測定し、各材質とコイル2のインダクタンス値Lの関係を調査する。上記測定において、各鋼材試験片3をコイル2に挿入すること、コイル2にLCRメータ1から交流電流を流し、このときのコイル2のインダクタンス値Lを測定することは第1の実施形態の場合と同じである。なお、この場合も、各鋼材試験片3が巨大等の理由でコイル2に挿入できないときは、コイル2の近傍に鋼材試験片3を配置して測定しても良い。図8は上記測定により得られた各材質とコイル2のインダクタンス値Lとの関係を示す。   FIG. 8 and FIG. 9 show an embodiment of the non-destructive measuring method for dissimilar steel materials according to the present invention. This foreign material nondestructive measurement method of steel material measures a foreign material of steel material by nondestructive inspection, and the same measurement system (FIG. 1) as the first embodiment is used. As a preparation for measuring the steel material test piece 3 whose material is unknown, the inductance value L of the coil 2 is measured for each of the plurality of steel material test pieces 3 whose material is known and different from each other by the above measurement system. The relationship of the inductance value L of the coil 2 is investigated. In the case of the first embodiment, in the above measurement, each steel material test piece 3 is inserted into the coil 2, an alternating current is passed from the LCR meter 1 to the coil 2, and the inductance value L of the coil 2 at this time is measured. Is the same. In this case as well, when each steel material test piece 3 cannot be inserted into the coil 2 due to its huge size, the steel material test piece 3 may be disposed in the vicinity of the coil 2 for measurement. FIG. 8 shows the relationship between each material obtained by the above measurement and the inductance value L of the coil 2.

このように、各材質とインダクタンス値Lの関係を調査した上で、材質が未知の鋼材試験片3についてコイル2のインダクタンス値Lを測定し、そのインダクタンス値Lを図8の結果と照合することで、未知の材質を求める。材質によりインダクタンス値Lが異なるので、材質の判定が行える。
この実施形態の鋼材の異材非破壊測定法においても、先の各実施形態における鋼材の硬化層深さ非破壊測定法と同様に、市販されているLCRメータに1個のコイルを接続した測定系だけで測定できて、独自の電子回路を製作する必要がなく、測定系が非常に簡単なものとなり安価に測定できる。また、非破壊検査で測定できることによる、第1の実施形態で説明したと同様の各効果を得ることができる。
Thus, after investigating the relationship between each material and the inductance value L, the inductance value L of the coil 2 is measured for the steel specimen 3 whose material is unknown, and the inductance value L is collated with the result of FIG. In order to find an unknown material. Since the inductance value L differs depending on the material, the material can be determined.
Even in the non-destructive measurement method for dissimilar steel materials according to this embodiment, a measurement system in which one coil is connected to a commercially available LCR meter, similarly to the nondestructive measurement method for the hardened layer depth of each steel material in the previous embodiments. It is possible to perform measurement with a simple measurement system, and it is not necessary to manufacture an original electronic circuit. Moreover, each effect similar to having demonstrated in 1st Embodiment by being able to measure by a nondestructive inspection can be acquired.

なお、SC材は炭素量に応じて呼び方が変わり、例えば炭素量が0.15%の場合にS15C、炭素量が0.35%の場合にS35Cと呼ばれる。図8の測定結果から、SC材の炭素量とインダクタンス値Lの関係をまとめて作成した検量線の一例(一次回帰式)を図9に示す。この一次回帰式は次式
y=−2.43x+14.8 ……(5)
但し x:インダクタンス値(mH)
y:炭素量(%)
で表され、炭素量が増すごとにコイル2のインダクタンス値Lが減少する傾向を示している。この一次回帰式では、相関係数Rの2乗値が0.986と良好で、非常に高い相関が認められる。
The SC material is called differently depending on the carbon content. For example, the SC material is called S15C when the carbon content is 0.15% and S35C when the carbon content is 0.35%. FIG. 9 shows an example of a calibration curve (primary regression equation) created by collectively gathering the relationship between the carbon content of the SC material and the inductance value L from the measurement results of FIG. This linear regression equation is expressed by the following equation: y = −2.43x + 14.8 (5)
Where x: inductance value (mH)
y: Carbon content (%)
The inductance value L of the coil 2 tends to decrease as the amount of carbon increases. In this linear regression equation, the square value of the correlation coefficient R is as good as 0.986, and a very high correlation is recognized.

このように、炭素量とコイル2のインダクタンス値Lの関係の検量線(一次回帰式)を作成した上で、炭素量が未知の鋼材試験片3についてコイル2のインダクタンス値Lを測定し、そのインダクタンス値Lを前記検量線(一次回帰式)と照合することで、未知の炭素量をを求めることもできる。
この実施形態の鋼材の特定成分量非破壊測定法においても、第1の実施形態における鋼材の硬化層深さ非破壊測定法と同様に、市販されているLCRメータに1個のコイルを接続した測定系だけで測定できて、独自の電子回路を製作する必要がなく、測定系が非常に簡単なものとなり安価に測定できる。また、非破壊検査で測定できることによる、第1の実施形態で説明したと同様の各効果を得ることができる。
Thus, after creating a calibration curve (primary regression equation) of the relationship between the amount of carbon and the inductance value L of the coil 2, the inductance value L of the coil 2 is measured for the steel material specimen 3 whose carbon amount is unknown, By comparing the inductance value L with the calibration curve (primary regression equation), the unknown carbon amount can be obtained.
In the non-destructive measurement method for the specific component amount of the steel material of this embodiment, one coil was connected to a commercially available LCR meter as in the nondestructive measurement method of the hardened layer depth of the steel material in the first embodiment. Measurements can be made only with the measurement system, and it is not necessary to manufacture an original electronic circuit. The measurement system is very simple and can be measured at low cost. Moreover, each effect similar to having demonstrated in 1st Embodiment by being able to measure by a nondestructive inspection can be acquired.

図8では、SC材に含まれる炭素量を測定する場合について説明したが、コイル2のインダクタンス値Lを測定することで、鋼材に含まれる鋼材の透磁率に影響を与える他の物質の成分量についても同様の手法によって推定することができる。このように、鋼材に含まれるある成分量の推定にも、このインダクタンス値Lの測定による方法が利用できる。   Although the case where the amount of carbon contained in the SC material is measured has been described with reference to FIG. 8, the component amount of other substances that affect the magnetic permeability of the steel material contained in the steel material by measuring the inductance value L of the coil 2. Can be estimated by a similar method. Thus, the method based on the measurement of the inductance value L can also be used to estimate the amount of a certain component contained in the steel material.

なお、異材判定を行う場合は、硬化層深さを測定する場合と違って、磁界の浸透深さをあまり気にする必要はないので、コイル2に流す電流の周波数の選択は、硬化層深さを測定する場合に比べて自由度が高くなる。しかし、鋼材試験片3の表面粗さが粗い場合などには、あまり高周波を使用すると浸透深さδが非常に浅くなるので、粗さの影響を受ける可能性があり注意が必要である。
また、判別したい材質によっては、周波数によって判別できる場合と判別できない場合があるので、注意が必要である。
In the case of performing the different material determination, unlike the case of measuring the hardened layer depth, it is not necessary to worry too much about the penetration depth of the magnetic field. The degree of freedom is higher than in the case of measuring the thickness. However, when the surface roughness of the steel material test piece 3 is rough, the penetration depth δ becomes very shallow if too much high frequency is used.
In addition, depending on the material to be discriminated, there are cases where it can be discriminated depending on the frequency, and attention is necessary.

図10は、図8で示した5種類の材質について、1Hz〜1000Hzの範囲でインダクタンス値Lを測定した結果を示す。同図から、周波数によっては、材質が異なっていてもインダクタンス値Lが等しくなる場合があり、判別できない場合があることが分かる。図8および図9に示したインダクタンス値Lは、周波数8Hzのときのインダクタンス値Lであり、この場合には上記5種類の材質を判別することができる。
このような理由から、硬化層深さの測定の場合と違って、異材判定を行う場合は、磁界の浸透深さδから周波数を選択していくのではなく、それらの材質のインダクタンス値Lがすべて異なる周波数を選択する必要がある。しかしながら、判別したい材質が多い場合、一つの周波数ですべての材質のインダクタンス値を判別することが困難な場合も予想されるので、その場合には複数の周波数のインダクタンス値Lで総合的に判定を行うようにしても良い。
FIG. 10 shows the results of measuring the inductance value L in the range of 1 Hz to 1000 Hz for the five types of materials shown in FIG. From the figure, it can be seen that, depending on the frequency, even if the materials are different, the inductance value L may be equal and may not be discriminated. The inductance value L shown in FIGS. 8 and 9 is the inductance value L when the frequency is 8 Hz. In this case, the above five types of materials can be discriminated.
For this reason, unlike the case of measurement of the hardened layer depth, when different materials are determined, the frequency is not selected from the penetration depth δ of the magnetic field, but the inductance value L of those materials is determined. All need to select a different frequency. However, if there are many materials to be identified, it may be difficult to determine the inductance values of all the materials at one frequency. In that case, comprehensive determination is performed using the inductance values L of a plurality of frequencies. You may make it do.

この発明の第1の実施形態にかかる鋼材の硬化層深さ非破壊測定法に用いられる測定系の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the measurement system used for the hardened layer depth nondestructive measuring method of the steel materials concerning 1st Embodiment of this invention. 同測定法により求められる検量線の一例を示す図である。It is a figure which shows an example of the calibration curve calculated | required by the same measuring method. 同測定法おけるコイルのインピーダンスと、その抵抗成分およびリアクタンス成分との関係を示す模式図である。It is a schematic diagram which shows the relationship between the impedance of the coil in the same measuring method, its resistance component, and reactance component. 磁界の浸透深さと周波数の関係を示すグラフである。It is a graph which shows the relationship between the penetration depth of a magnetic field, and a frequency. 各周波数に対応する検量線の各例を示す図である。It is a figure which shows each example of the calibration curve corresponding to each frequency. この発明の他の実施形態にかかる鋼材の硬化層深さ非破壊測定法により求められる検量線の一例を示す図である。It is a figure which shows an example of the analytical curve calculated | required by the hardened layer depth nondestructive measuring method of the steel materials concerning other embodiment of this invention. この発明の鋼材の硬化層深さ非破壊測定法に用いられる測定系の他の一例を示す概略構成図である。It is a schematic block diagram which shows another example of the measurement system used for the hardened layer depth nondestructive measuring method of the steel material of this invention. この発明の他の実施形態にかかる鋼材の異材非破壊測定法により求められる材質とインダクタンスとの関係を示す図である。It is a figure which shows the relationship between the material calculated | required by the different material nondestructive measuring method of the steel materials concerning other embodiment of this invention, and an inductance. この発明の他の実施形態にかかる鋼材の特定成分量非破壊測定法により求められる検量線の一例を示す図である。It is a figure which shows an example of the calibration curve calculated | required by the specific component amount nondestructive measuring method of the steel materials concerning other embodiment of this invention. 各材質によるコイルのインダクタンス値の周波数に応じた変化を示すグラフである。It is a graph which shows the change according to the frequency of the inductance value of the coil by each material.

符号の説明Explanation of symbols

1…LCRメータ
2…コイル
3…鋼材試験片
DESCRIPTION OF SYMBOLS 1 ... LCR meter 2 ... Coil 3 ... Steel material test piece

Claims (6)

試験片が挿入されたコイル、または試験片の近傍に配置したコイルに、周波数1kHz以下の交流電流を流し、コイルのインダクタンス値を測定することによって、鋼材の硬化層深さを測定する鋼材の硬化層深さ非破壊測定法。   Curing of steel material that measures the hardened layer depth of steel material by passing an alternating current with a frequency of 1 kHz or less through a coil in which the test piece is inserted or a coil arranged in the vicinity of the test piece and measuring the inductance value of the coil Layer depth nondestructive measurement method. 試験片が挿入されたコイル、または試験片の近傍に配置したコイルに、周波数1kHz以下の交流電流を流し、コイルのインピーダンスの位相を測定することによって、鋼材の硬化層深さを測定する鋼材の硬化層深さ非破壊測定法。   A steel material for measuring the depth of the hardened layer of the steel material by passing an alternating current having a frequency of 1 kHz or less through a coil in which the test piece is inserted or a coil disposed in the vicinity of the test piece and measuring the phase of the impedance of the coil. Hardened layer depth nondestructive measurement method. 試験片が挿入されたコイル、または試験片の近傍に配置したコイルに、周波数1kHz以下の交流電流を流し、コイルのインダクタンス値を測定することによって、鋼材の未焼入を判定する鋼材の未焼入れ非破壊測定法。   An unquenched steel material that determines whether the steel material has not been hardened by passing an alternating current with a frequency of 1 kHz or less through a coil in which the test piece has been inserted or a coil disposed in the vicinity of the test piece, and measuring the inductance value of the coil Nondestructive measurement method. 試験片が挿入されたコイル、または試験片の近傍に配置したコイルに、周波数1kHz以下の交流電流を流し、コイルのインピーダンスの位相を測定することによって、鋼材の未焼入を判定する鋼材の未焼入れ非破壊測定法。   An AC current having a frequency of 1 kHz or less is passed through a coil in which the test piece is inserted or a coil disposed in the vicinity of the test piece, and the phase of the impedance of the coil is measured to determine whether the steel material is not hardened. Quenching nondestructive measurement method. 試験片が挿入されたコイル、または試験片の近傍に配置したコイルに交流電流を流し、コイルのインダクタンス値を測定することによって、鋼材の異材を判定する鋼材の異材非破壊測定法。   A non-destructive measuring method for different materials of steel, in which an alternating current is passed through a coil in which a test piece is inserted or a coil disposed in the vicinity of the test piece and the inductance value of the coil is measured to determine the different materials of the steel. 試験片が挿入されたコイル、または試験片の近傍に配置したコイルに交流電流を流し、コイルのインダクタンス値を測定することによって、鋼材中の特定成分量を測定する、鋼材の特定成分量非破壊測定法。   Nondestructive amount of specific component of steel, measuring the amount of specific component in steel by measuring the inductance value of the coil by passing an alternating current through the coil in which the test piece is inserted or the coil placed near the test piece Measurement method.
JP2005226313A 2005-08-04 2005-08-04 Nondestructive measuring method for determining depth of hardened layer, unhardened state and foreign material Pending JP2007040865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005226313A JP2007040865A (en) 2005-08-04 2005-08-04 Nondestructive measuring method for determining depth of hardened layer, unhardened state and foreign material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005226313A JP2007040865A (en) 2005-08-04 2005-08-04 Nondestructive measuring method for determining depth of hardened layer, unhardened state and foreign material

Publications (1)

Publication Number Publication Date
JP2007040865A true JP2007040865A (en) 2007-02-15

Family

ID=37798982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005226313A Pending JP2007040865A (en) 2005-08-04 2005-08-04 Nondestructive measuring method for determining depth of hardened layer, unhardened state and foreign material

Country Status (1)

Country Link
JP (1) JP2007040865A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014531A (en) * 2007-07-05 2009-01-22 Isao Murakami Different material determination device
JP2009031112A (en) * 2007-07-26 2009-02-12 Toyota Motor Corp Device and method for measuring quenching depth
JP2009109358A (en) * 2007-10-30 2009-05-21 Toyota Motor Corp Method for measuring hardening pattern
WO2011135872A1 (en) 2010-04-27 2011-11-03 トヨタ自動車株式会社 Eddy current measuring sensor
WO2011158098A1 (en) 2010-06-17 2011-12-22 Toyota Jidosha Kabushiki Kaisha Eddy current sensor and eddy current measurement method
JP2012083247A (en) * 2010-10-13 2012-04-26 Shimomura Tokushu Kako Kk Dissimilar material detection system
WO2013061667A1 (en) * 2011-10-25 2013-05-02 新日鐵住金株式会社 Carburizing sensing method
WO2016208382A1 (en) * 2015-06-25 2016-12-29 新東工業株式会社 Surface characteristic evaluation apparatus and surface characteristic evaluation method for steel material
WO2017081879A1 (en) * 2015-11-09 2017-05-18 新東工業株式会社 Steel surface characteristic evaluation method

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014531A (en) * 2007-07-05 2009-01-22 Isao Murakami Different material determination device
JP2009031112A (en) * 2007-07-26 2009-02-12 Toyota Motor Corp Device and method for measuring quenching depth
JP2009109358A (en) * 2007-10-30 2009-05-21 Toyota Motor Corp Method for measuring hardening pattern
WO2011135872A1 (en) 2010-04-27 2011-11-03 トヨタ自動車株式会社 Eddy current measuring sensor
US8890517B2 (en) 2010-04-27 2014-11-18 Toyota Jidosha Kabushiki Kaisha Eddy current measuring sensor
WO2011158098A1 (en) 2010-06-17 2011-12-22 Toyota Jidosha Kabushiki Kaisha Eddy current sensor and eddy current measurement method
US8593137B2 (en) 2010-06-17 2013-11-26 Toyota Jidosha Kabushiki Kaisha Eddy current sensor and eddy current measurement method
JP2012083247A (en) * 2010-10-13 2012-04-26 Shimomura Tokushu Kako Kk Dissimilar material detection system
WO2013061667A1 (en) * 2011-10-25 2013-05-02 新日鐵住金株式会社 Carburizing sensing method
KR101604935B1 (en) 2011-10-25 2016-03-18 신닛테츠스미킨 카부시키카이샤 Carburizing sensing method
US9304110B2 (en) 2011-10-25 2016-04-05 Nippon Steel & Sumitomo Metal Corporation Carburization sensing method
EP3299805A4 (en) * 2015-06-25 2018-12-26 Sintokogio, Ltd. Surface characteristic evaluation apparatus and surface characteristic evaluation method for steel material
WO2016208382A1 (en) * 2015-06-25 2016-12-29 新東工業株式会社 Surface characteristic evaluation apparatus and surface characteristic evaluation method for steel material
KR102504193B1 (en) 2015-06-25 2023-02-28 신토고교 가부시키가이샤 Steel surface property evaluation device and surface property evaluation method
CN107709982A (en) * 2015-06-25 2018-02-16 新东工业株式会社 The surface characteristic evaluating apparatus and surface characteristic evaluation method of steel
KR20180018814A (en) * 2015-06-25 2018-02-21 신토고교 가부시키가이샤 Apparatus for evaluating surface properties of steel and method for evaluating surface properties
JPWO2016208382A1 (en) * 2015-06-25 2018-04-05 新東工業株式会社 Steel surface property evaluation apparatus and surface property evaluation method
CN107709982B (en) * 2015-06-25 2021-10-22 新东工业株式会社 Surface property evaluation device and surface property evaluation method for steel material
US10768144B2 (en) 2015-06-25 2020-09-08 Sintokogio, Ltd. Surface characteristics evaluation apparatus and surface characteristics evaluation method for steel material
TWI691710B (en) * 2015-06-25 2020-04-21 日商新東工業股份有限公司 Device and method for evaluating surface properties of steel members
EP3299806A4 (en) * 2015-11-09 2018-12-26 Sintokogio, Ltd. Steel surface characteristic evaluation method
US10768129B2 (en) 2015-11-09 2020-09-08 Sintokogio, Ltd. Surface characteristics evaluation method for steel material
WO2017081879A1 (en) * 2015-11-09 2017-05-18 新東工業株式会社 Steel surface characteristic evaluation method
JPWO2017081879A1 (en) * 2015-11-09 2018-07-26 新東工業株式会社 Method for evaluating the surface properties of steel
CN107709981B (en) * 2015-11-09 2022-02-25 新东工业株式会社 Method for evaluating surface characteristics of steel material
CN107709981A (en) * 2015-11-09 2018-02-16 新东工业株式会社 The surface characteristic evaluation method of steel

Similar Documents

Publication Publication Date Title
JP2007040865A (en) Nondestructive measuring method for determining depth of hardened layer, unhardened state and foreign material
JP5892341B2 (en) Hardening depth measuring method and quenching depth measuring device
EP2707705B1 (en) Surface property inspection device and surface property inspection method
EP2320224A1 (en) Magnetic measuring method and device
JP4998821B2 (en) Eddy current inspection method and eddy current inspection apparatus for implementing the eddy current inspection method
Dziczkowski Elimination of coil liftoff from eddy current measurements of conductivity
JP4975142B2 (en) Eddy current measuring sensor and eddy current measuring method
JP6968791B2 (en) Methods and devices for observing magnetic fields in the material area, as well as the use of the device.
KR20200020939A (en) Surface property evaluation method, surface property evaluation device and surface property evaluation system
KR20190106305A (en) Contrast test specimens for measuring defects in tube expansion using eddy current test and method for measuring defects using the same
JP2009036682A (en) Eddy current sensor, and device and method for inspecting depth of hardened layer
JP2011185623A (en) Device for evaluation of surface treatment
JP2014062745A (en) Thickness inspection device of magnetic heterogeneous layer formed over the surface of base material
JP6285893B2 (en) Method for measuring hardness of steel plate after quenching
Brauer et al. Defect detection in conducting materials using eddy current testing techniques
JPH06271926A (en) Non-destructive measuring method of depth of quench-hardened layer
JP2002014081A (en) Method and device for measuring hardness penetration
JP5857649B2 (en) Method for measuring the amount of retained austenite
JP2006337250A (en) Method for measuring depth of treatment using eddy current, and measuring apparatus using the same
JP2001133441A (en) Non-destructive hardness measurement method
JP2018132426A (en) Reinforcement diameter of ferroconcrete, measuring device of covering, and reinforcement arrangement direction measuring method
Santa-aho et al. Case depth verification of hardened samples with Barkhausen noise sweeps
CN108267502A (en) The eddy detection system and detection method of case depth
Song et al. Detecting internal defects of a steel plate by using low-frequency magnetic flux leakage method
CN107064219B (en) Ferromagnetic conductor surface hardness measurement method and system based on skin effect