JP2002014081A - Method and device for measuring hardness penetration - Google Patents
Method and device for measuring hardness penetrationInfo
- Publication number
- JP2002014081A JP2002014081A JP2000199640A JP2000199640A JP2002014081A JP 2002014081 A JP2002014081 A JP 2002014081A JP 2000199640 A JP2000199640 A JP 2000199640A JP 2000199640 A JP2000199640 A JP 2000199640A JP 2002014081 A JP2002014081 A JP 2002014081A
- Authority
- JP
- Japan
- Prior art keywords
- steel material
- magnetic field
- depth
- output voltage
- coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、焼入深度測定方法
及びその装置に係わり、更に詳しくは鋼材の焼入硬化層
の深さを非破壊で測定する焼入深度測定方法及びその装
置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quenching depth measuring method and apparatus, and more particularly to a quenching depth measuring method and apparatus for non-destructively measuring the depth of a hardened layer of steel. It is.
【0002】[0002]
【従来の技術】自動車部品を始めとして多くの装置部品
には、高周波焼入鋼材が多く使用されている。高周波焼
入鋼材は、強度保障のため硬化層の深さ評価が必要不可
欠である。この深さ測定には、従来から超音波法や渦電
流法等の非破壊計測法が検討されているが、測定精度や
信頼性が低いことから未だ普及には至っておらず、現状
では焼入鋼材を部分的に切断し、断面強度をビッカース
硬度計など各種硬度計で測定する方法が主流となってい
る。しかし、この手法は多くの測定時間を要し、さらに
サンプル材が必要であるとともに、原理的に全数検査が
不可能であるといった問題がある。2. Description of the Related Art Induction hardened steel is often used for many equipment parts including automobile parts. For induction hardened steel, it is essential to evaluate the depth of the hardened layer to ensure strength. For this depth measurement, non-destructive measurement methods such as the ultrasonic method and the eddy current method have been studied.However, due to the low measurement accuracy and reliability, they have not yet become widespread. The mainstream method is to partially cut a steel material and measure the cross-sectional strength with various hardness meters such as a Vickers hardness meter. However, this method requires a lot of measurement time, requires a sample material, and has a problem that 100% inspection is impossible in principle.
【0003】前述の渦電流法による焼入れ硬化層の深さ
測定の原理は、励磁コイルで発生させた低周波交流磁場
によって鋼材を磁化すると、硬化層の深さによって鋼材
の磁化遅れ特性が変化することを利用したものである。
つまり、励磁コイルで発生させた低周波交流磁場によっ
て鋼材を表面に沿った方向に磁化し、それによって発生
する渦電流で誘起される誘導磁場を検出コイルで検出
し、励磁電流波形のピーク値と検出コイルの出力電圧の
積分波形(磁束波形)のピーク値の間の位相角(磁化遅
れ)が硬化層の深さによって変化する現象を利用したも
のである。しかし、前記位相角はある硬化層の深さのと
ころで極大を示すので、位相角の値だけでは硬化層の深
さを一義的に決定できない。The principle of measuring the depth of a hardened hardened layer by the eddy current method is that when a steel material is magnetized by a low-frequency AC magnetic field generated by an exciting coil, the magnetization lag characteristic of the steel material changes depending on the depth of the hardened layer. It is a thing that utilizes that.
In other words, the steel material is magnetized in the direction along the surface by the low-frequency AC magnetic field generated by the excitation coil, the induced magnetic field induced by the eddy current generated by the magnet is detected by the detection coil, and the peak value of the excitation current waveform and This utilizes a phenomenon in which the phase angle (magnetization delay) between the peak values of the integral waveform (magnetic flux waveform) of the output voltage of the detection coil changes depending on the depth of the hardened layer. However, since the phase angle shows a maximum at a certain depth of the hardened layer, the depth of the hardened layer cannot be uniquely determined only by the value of the phase angle.
【0004】一方、鋼材焼入れ後のマルテンサイトと、
元組織の初磁化曲線と導電率は共に差が生じ、高周波焼
入れ材の場合、これらの差は低周波交流磁場下で、焼入
れ深さ変化に伴い、鋼材表面に配置した検出コイルの出
力電圧振幅値に変化を生じさせる。検出コイルの出力電
圧は、硬化層の深さの増加とともに単調に減少する特性
を有していることから、従来はこの検出コイルの出力電
圧を位相角の同定に利用して、位相角の値から硬化層の
深さを決定していたのである。On the other hand, martensite after quenching steel,
Both the initial magnetization curve and the conductivity of the original structure cause a difference.In the case of induction hardened materials, these differences are caused by the change in the output voltage amplitude of the detection coil placed on the steel surface with the change in quenching depth under a low-frequency AC magnetic field. Causes a change in the value. Since the output voltage of the detection coil has a characteristic that monotonously decreases as the depth of the hardened layer increases, conventionally, the output voltage of the detection coil is used for identification of the phase angle, and the value of the phase angle is conventionally used. Thus, the depth of the hardened layer was determined.
【0005】[0005]
【発明が解決しようとする課題】従来の渦電流法におい
て特に焼入れ深さが深い場合に測定精度が悪い原因を探
るため、本発明者らは実験と数値解析を繰り返した。そ
の結果、位相角はどの周波数においても励磁電流が大き
くなるほど変化が大きく現れ、また位相角はどの周波数
でもある焼入れ深さでピークが現れることを確認し、更
に励磁電流の周波数が高くなると、その位相角のピーク
値が現れる焼入れ深さは浅くなることを確認した。次
に、焼入れ深さに対する位相角変化は、元組織とマルテ
ンサイトの磁化曲線と導電率のどちらに大きく影響され
るかを確認するための解析を行った。その結果、導電率
に差を与えた場合、位相角変化は焼入れ深さの変化に対
して大きな差は見られないが、導電率を一定とし、磁化
曲線に差を与えると、大きな位相角変化が生じることが
確認できた。同時に、ある焼入れ深さで位相角のピーク
値が現れることも確認できた。以上より、高周波焼入れ
深さに対する位相角の変化は、元組織とマルテンサイト
部(硬化層)との磁化曲線の差に大きく影響されること
が確認できた。The present inventors have repeated experiments and numerical analysis in order to find out the cause of poor measurement accuracy in the conventional eddy current method especially when the quenching depth is deep. As a result, it was confirmed that the phase angle showed a larger change as the exciting current increased at any frequency, and that the phase angle showed a peak at a quenching depth at any frequency. It has been confirmed that the quenching depth at which the peak value of the phase angle appears becomes shallower. Next, an analysis was performed to confirm whether the change in the phase angle with respect to the quenching depth was significantly affected by the magnetization curve of the original structure, martensite, or conductivity. As a result, when a difference is given to the conductivity, the phase angle change does not show a large difference with respect to the change in the quenching depth, but when the conductivity is fixed and the difference is given to the magnetization curve, a large phase angle change occurs. Was confirmed to occur. At the same time, it was confirmed that a peak value of the phase angle appeared at a certain quenching depth. From the above, it was confirmed that the change in the phase angle with respect to the induction hardening depth was greatly affected by the difference in the magnetization curve between the original structure and the martensite portion (hardened layer).
【0006】また、周波数と励磁電流を一定として鋼材
内部の比透磁率、磁束密度、渦電流密度分布を解析し
た。その結果、焼入れ領域では元組織部に比べ比透磁率
が低く現れるため、鋼材内部の磁束密度分布は透磁率の
高い元組織部に集中していることが確認できた。一方、
渦電流密度分布は、鋼材表層が最も高い値を示し、また
焼入れ領域内での渦電流密度分布の傾きは元組織領域に
比べ小さく、鋼材表層における渦電流のピーク値は焼入
れ深さが深くなるにつれて減少傾向を示すことも確認で
きた。[0006] The relative permeability, magnetic flux density and eddy current density distribution inside the steel material were analyzed while keeping the frequency and the exciting current constant. As a result, since the relative magnetic permeability appeared lower in the quenched region than in the original structure, it was confirmed that the magnetic flux density distribution inside the steel material was concentrated in the original structure having higher magnetic permeability. on the other hand,
The eddy current density distribution shows the highest value in the steel surface layer, the gradient of the eddy current density distribution in the quenched region is smaller than that in the original structure region, and the peak value of the eddy current in the steel surface layer has a deeper quenching depth It was also confirmed that the tendency to decrease was shown.
【0007】励磁電流に対する出力電圧の位相角変化を
発生させる要因には、様々な物理現象が関与しているこ
とが考えられるが、最も大きな原因は鋼材内部に発生す
る渦電流であると思われる。周波数と励磁電流を一定と
して鋼材内部に生じる総渦電流量を各焼入れ深さについ
て解析した結果、ある焼入れ深さでピークが現れ、この
ピーク値に対応する焼入れ深さは位相角のピークが現れ
る焼入れ深さと略同じであり、総渦電流量の全体的な傾
向も位相角と同様であった。この結果から焼きいれ深さ
が変化するに伴い、鋼材内部に発生する渦電流量も変化
し、渦電流量が位相角に反映していることが理解でき
る。It is considered that various physical phenomena are involved in the cause of the change in the phase angle of the output voltage with respect to the exciting current, but the largest cause is considered to be the eddy current generated inside the steel material. . As a result of analyzing the total amount of eddy current generated inside the steel material for each quenching depth while keeping the frequency and excitation current constant, a peak appears at a certain quenching depth, and the quenching depth corresponding to this peak value has a phase angle peak The quenching depth was almost the same, and the overall tendency of the total eddy current was the same as the phase angle. From this result, it can be understood that the amount of eddy current generated inside the steel material changes with the change in the burn-in depth, and the amount of eddy current is reflected in the phase angle.
【0008】次に、焼入れ深さの変化に対する出力電圧
の積分波形(磁束密度)のピーク値の評価を行った。周
波数及び励磁電流をパラメータとし、焼入れ深さを変化
させたときの解析結果から、周波数が高くなるにつれ、
表皮効果が高まるため、焼入れ深さが深い領域では傾き
が小さくなるものの、深さに比例して振幅は減少傾向を
示していることが確認できた。これは、焼入れ深さが深
くなると、透磁率の低い領域が鋼材表層に広がり、鋼材
表層に集中する渦電流のピーク値が減るためであると考
えられる。Next, the peak value of the integrated waveform (magnetic flux density) of the output voltage with respect to the change in the quenching depth was evaluated. From the analysis results when the quenching depth was changed with the frequency and the excitation current as parameters, as the frequency increased,
Since the skin effect is enhanced, the slope becomes smaller in the region where the quenching depth is deep, but it can be confirmed that the amplitude shows a decreasing tendency in proportion to the depth. This is presumably because, as the quenching depth increases, the region with low magnetic permeability spreads over the steel surface layer, and the peak value of the eddy current concentrated on the steel surface layer decreases.
【0009】従来の渦電流法は、位相角と出力電圧の振
幅の2要素からなるリサージュ表示を利用したものであ
るが、その特徴を解析的にも実験的にも検証した結果、
同周波数では励磁電流が高くなると全体的なリサージュ
曲線の振幅及び位相が増加するので、焼入れ深さを判別
し易くなるのに対し、周波数変化では渦電流の浸透深さ
が関係するため、周波数が高くなるにつれ焼入れ深さが
浅い領域の判別は容易になるが、深い領域の判別は困難
になることが分かった。つまり、位相角の変化を利用す
る以上、焼入れ深さが深い場合には、測定精度が極端に
落ちて、信頼性に乏しい結果を表示することは避けられ
ないのである。The conventional eddy current method uses a Lissajous display consisting of two elements, a phase angle and an output voltage amplitude. As a result of verifying the characteristics both analytically and experimentally,
At the same frequency, the amplitude and phase of the overall Lissajous curve increase as the exciting current increases, making it easier to determine the quenching depth.On the other hand, the frequency change is related to the penetration depth of the eddy current. It was found that the higher the height, the easier it was to identify a region with a small quenching depth, but the more difficult it was to identify a deep region. In other words, if the change in phase angle is used, when the quenching depth is deep, it is inevitable that the measurement accuracy is extremely reduced and a result with poor reliability is displayed.
【0010】一方、磁性体は磁気特性の不均一性を持
ち、未飽和磁化領域では磁気ノイズの原因となるため、
検出コイルの出力電圧に大きなバラツキが発生すること
が予想されるので、常識的には検出コイルの出力電圧の
みを利用して焼入れ深さを測定することは考え難い。On the other hand, a magnetic material has non-uniformity in magnetic characteristics and causes magnetic noise in an unsaturated magnetization region.
Since it is expected that a large variation occurs in the output voltage of the detection coil, it is hardly possible to measure the quenching depth using only the output voltage of the detection coil.
【0011】そこで本発明者らは、検出コイルの出力電
圧が焼入れ深さに略比例することに注目し、敢えて出力
電圧のみで焼入れ深さを測定する方法の開発に挑み、各
硬度別におけるマルテンサイトの磁気特性のバラツキを
実験により評価し、磁気特性の不均一性を考慮した数値
解析により、低周波交流磁場を使用した高周波焼入れ深
さ非破壊検査手法の検討を行い、本発明を完成させるに
至ったのである。しかるに本発明は、鋼材の焼入硬化層
の深さを短時間で且つ非破壊で直接測定することが可能
であり、また測定精度、信頼性が高く、しかも安価に構
成できる焼入深度測定方法及びその装置を提供すること
を目的としている。The present inventors have paid attention to the fact that the output voltage of the detection coil is substantially proportional to the quenching depth, and dared to develop a method of measuring the quenching depth using only the output voltage. To evaluate the variation of the magnetic properties of the site by experiments and to examine the high frequency quenching depth non-destructive inspection method using a low frequency AC magnetic field by numerical analysis considering the non-uniformity of the magnetic properties to complete the present invention It was reached. However, the present invention is capable of directly measuring the depth of a quenched hardened layer of a steel material in a short time and nondestructively, and has a high measurement accuracy, high reliability, and a low cost quenching depth measuring method. And an apparatus therefor.
【0012】[0012]
【課題を解決するための手段】本発明は、前述の課題解
決のために、鋼材の焼入硬化層の深さを非破壊で測定す
る焼入深度測定方法であって、励磁コイルで発生させた
低周波交流磁場によって鋼材を表面に沿った方向に磁化
し、それによって発生する渦電流で誘起される誘導磁場
を検出コイルで検出し、該検出コイルの出力電圧を、同
種鋼材の既知の焼入硬化層の深さと出力電圧の相関デー
タと比較することによって、対象鋼材の焼入硬化層の深
さを算出してなる焼入深度測定方法を確立した。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a quenching depth measuring method for non-destructively measuring the depth of a quenched hardened layer of steel, wherein the method comprises the steps of: The steel material is magnetized in the direction along the surface by the low-frequency AC magnetic field, the induced magnetic field induced by the eddy current generated by the magnet is detected by a detection coil, and the output voltage of the detection coil is converted to the known firing of the same steel material. A quenching depth measurement method was established by calculating the quench hardened layer depth of the target steel by comparing the correlation data between the depth of the hardened layer and the output voltage.
【0013】ここで、前記励磁コイルで発生される空間
磁場を外部磁場検出手段で検出し、空間磁場が一定にな
るように励磁電流を制御してなることが精度向上におい
て好ましい。Here, it is preferable to improve the accuracy by detecting the spatial magnetic field generated by the exciting coil by an external magnetic field detecting means and controlling the exciting current so that the spatial magnetic field becomes constant.
【0014】また、本発明は、鋼材の焼入硬化層の深さ
を非破壊で測定する焼入深度測定装置であって、鋼材の
表面に沿った方向に磁化するための低周波交流磁場を発
生させる励磁コイルと、鋼材に発生した渦電流で誘起さ
れる誘導磁場を検出する検出コイルと、同種鋼材の既知
の焼入硬化層の深さと出力電圧の相関データが予め記憶
され、前記検出コイルの出力電圧と相関データとから対
象鋼材の焼入硬化層の深さを算出する演算手段とを備え
た焼入深度測定装置を構成した。The present invention also relates to a quenching depth measuring device for non-destructively measuring the depth of a quenched hardened layer of a steel material, wherein a low-frequency AC magnetic field for magnetizing in a direction along the surface of the steel material is provided. An excitation coil to be generated, a detection coil to detect an induction magnetic field induced by an eddy current generated in the steel material, and correlation data of a known quench hardened layer and output voltage of the same type of steel material are stored in advance, and the detection coil And a calculating means for calculating the depth of the quench hardened layer of the target steel material from the output voltage and the correlation data.
【0015】ここで、前記励磁コイルで発生される空間
磁場を検出するための外部磁場検出手段を、前記励磁コ
イルの近傍に配設するとともに、該外部磁場検出手段で
検出した空間磁場が一定になるように励磁電流を制御し
てなることが好ましい。Here, an external magnetic field detecting means for detecting a spatial magnetic field generated by the exciting coil is provided near the exciting coil, and the spatial magnetic field detected by the external magnetic field detecting means is kept constant. It is preferable to control the exciting current so that
【0016】また、鋼材表面に接触させる一対の平行な
接触芯を有する側面視コ字形のヨークの一方の接触芯に
前記励磁コイルを巻回するとともに、他方の接触芯に前
記検出コイルを巻回し、前記接触芯の先端部間に前記外
部磁場検出手段を配設した測定プローブを用いてなるこ
とも好ましい。Further, the exciting coil is wound around one contact core of a U-shaped yoke having a pair of parallel contact cores to be brought into contact with the surface of the steel material, and the detection coil is wound around the other contact core. It is preferable that a measuring probe having the external magnetic field detecting means disposed between the tip ends of the contact cores is used.
【0017】[0017]
【発明の実施の形態】次に本発明の実施の形態を添付図
面に基づき更に詳細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.
【0018】本発明の焼入深度測定装置は、鋼材の焼入
硬化層の深さを非破壊で測定する焼入深度測定装置であ
って、鋼材の表面に沿った方向に磁化するための低周波
交流磁場を発生させる励磁コイルと、鋼材に発生した渦
電流で誘起される誘導磁場を検出する検出コイルと、同
種鋼材の既知の焼入硬化層の深さと出力電圧の相関デー
タが予め記憶され、前記検出コイルの出力電圧と相関デ
ータとから対象鋼材の焼入硬化層の深さを算出する演算
手段とを備えたものである。更に、前記励磁コイルで発
生される空間磁場を検出するための外部磁場検出手段
を、前記励磁コイルの近傍に配設するとともに、該外部
磁場検出手段で検出した空間磁場が一定になるように励
磁電流を制御するのである。The quenching depth measuring apparatus of the present invention is a quenching depth measuring apparatus for non-destructively measuring the depth of a quenched hardened layer of a steel material, and has a low quenching depth for magnetizing in a direction along the surface of the steel material. An excitation coil for generating a high-frequency alternating magnetic field, a detection coil for detecting an induction magnetic field induced by an eddy current generated in a steel material, and a correlation data between a known quench hardened layer of the same type of steel material and an output voltage are stored in advance. Computing means for calculating the depth of the quench hardened layer of the target steel from the output voltage of the detection coil and the correlation data. Further, an external magnetic field detecting means for detecting a spatial magnetic field generated by the exciting coil is provided near the exciting coil, and the external magnetic field is excited so that the spatial magnetic field detected by the external magnetic field detecting means becomes constant. It controls the current.
【0019】本実施形態では、S45Cの鋼材を使用
し、この鋼材に高周波焼入れを施したものを用いた。先
ず、焼入れによる硬度変化に伴った導電率と初磁化特性
変化の評価、並びに焼入れ鋼材磁気特性の不均一性測定
を行った。In this embodiment, a steel material of S45C is used, and this steel material is subjected to induction hardening. First, the electrical conductivity and initial magnetization characteristic change accompanying the hardness change due to quenching were evaluated, and the non-uniformity of the quenched steel material magnetic characteristics was measured.
【0020】(S45C鋼材のマルテンサイト硬度評
価)図1に高周波焼入れにより深さ1、2、3mmまで
焼入れを施した円柱形鋼材(φ80mm×150mm)
のマルテンサイト硬度分布を示す。これは高周波焼入れ
鋼材を輪切りにし、表面より0.25mmピッチでビッ
カース硬度計により測定した硬度結果を示している。一
般的に焼入れ深さはHv450を境界としている。この
結果からS45Cの高周波焼入れの場合、マルテンサイ
ト部の硬度は、表面から約Hv700を維持し、それ以
降急激に硬度が減衰し、元組織の硬度Hv245に到達
することが理解できる。例えば焼入れ深さ3mm時で
は、表面より深さ約2mmまでHv700を維持し、そ
れ以降約1.5mm間で急激に硬度が減衰し、表面より
深さ3.5mmからHv245を維持していることが分
かる。(Evaluation of Martensite Hardness of S45C Steel) FIG. 1 shows a cylindrical steel material (φ80 mm × 150 mm) hardened by induction hardening to a depth of 1, 2, or 3 mm.
1 shows a martensite hardness distribution of This shows a hardness result measured by a Vickers hardness tester at a pitch of 0.25 mm from the surface by cutting an induction hardened steel into a slice. Generally, the quenching depth is Hv450. From this result, it can be understood that in the case of induction hardening of S45C, the hardness of the martensite portion is maintained at about Hv700 from the surface, and thereafter, the hardness rapidly decreases and reaches the hardness Hv245 of the original structure. For example, when the quenching depth is 3 mm, Hv700 is maintained from the surface to a depth of about 2 mm, and thereafter, the hardness is rapidly attenuated for about 1.5 mm, and Hv245 is maintained from the depth of 3.5 mm to the surface. I understand.
【0021】(各硬度における導電率評価)以上の結果
より本実施形態では、焼入れ領域の硬度をHv700と
し、焼入れ領域から元組織領域への減衰領域をHv57
0及びHv430と仮定して、鋼材全てに無心焼入れを
施した鋼材(09×210mm)計3本を作成した。ま
た、元組織領域を模擬するため、同形状の鋼材に焼鈍し
処理を施した鋼材(Hv245)を作成した。次に、こ
れら4本の鋼材を、ダブルブリッジ低抵抗測定回路によ
り、それぞれの導電率の測定を行った。その測定結果、
Hv245の鋼材では導電率が4.98×106S/
m、Hv430では4.00×106S/m、Hv57
0では3.97×106S/m、Hv700では3.7
4×106S/mとなった。硬度が増すに伴い、導電率
は減少傾向を示しており、例えば硬度Hv700鋼材で
は、元組織鋼材に比べ約25%導電率が減少している。(Evaluation of Conductivity at Each Hardness) Based on the above results, in this embodiment, the hardness of the quenched region is Hv700, and the attenuation region from the quenched region to the original structure region is Hv57.
Assuming 0 and Hv430, a total of three steel materials (09 × 210 mm) in which all steel materials were subjected to through-hardening were prepared. Further, in order to simulate the original microstructure region, a steel material (Hv245) in which a steel material having the same shape was annealed was prepared. Next, the conductivity of each of these four steel materials was measured by a double bridge low resistance measurement circuit. The measurement result,
The conductivity of Hv245 steel is 4.98 × 10 6 S /
m, Hv430: 4.00 × 10 6 S / m, Hv57
At 0, 3.97 × 10 6 S / m, at Hv700, 3.7.
It was 4 × 10 6 S / m. As the hardness increases, the conductivity shows a decreasing tendency. For example, in the case of a hardness Hv700 steel, the conductivity is reduced by about 25% as compared with the original structure steel.
【0022】(各硬度における磁化特性及び磁気ノイズ
評価)次に、各硬度における磁化特性及び磁気ノイズを
評価した。各硬度におけるS45C鋼材の初磁化特性及
び磁気特性のバラツキを評価するため、磁極間隔可変型
電磁石を励磁装置として用いる磁化特性測定装置の開発
を行った。この装置は、試験鋼材をヨーク材で隙間無く
挟み、一様に磁化させる構造である。試験鋼材に直接巻
いたコイル(Bコイル:200ターン)より磁束密度B
を測定し、また空間磁場Hは磁極間に垂直に配置させた
ホールプロープにより測定した。(Evaluation of Magnetic Characteristics and Magnetic Noise at Each Hardness) Next, the magnetic characteristics and magnetic noise at each hardness were evaluated. In order to evaluate the variation of the initial magnetization characteristics and the magnetic characteristics of the S45C steel material at each hardness, a magnetic characteristic measuring device using a variable magnetic pole interval electromagnet as an exciting device was developed. This device has a structure in which a test steel material is sandwiched by a yoke material without any gap and magnetized uniformly. Magnetic flux density B from coil directly wound on test steel (B coil: 200 turns)
Was measured, and the spatial magnetic field H was measured by a hole probe vertically arranged between the magnetic poles.
【0023】(各硬度における初磁化特性)前述の初磁
化特性測定装置を使用し、S45C鋼材の各硬度におけ
る初磁化特性の測定を行った。測定した鋼材は、φ9m
m×50mm円柱形状のS45C鋼材全てに、硬度Hv
700、Hv570、Hv430の無心焼入れを施した
鋼材と、焼鈍し処理を行ったHv245の鋼材4本を使
用した。なお無心焼入れ材の作成は、電気炉で900度
まで材料全体を加熱し、急冷温度を変化させることによ
り各硬度の値を得た。測定結果を図2(a)、(b)に
それぞれ示す。図2(a)はB−H曲線を、図2(b)
はH−μr曲線を示している。硬度が増すにつれ、透磁
率が減少することが分かる。例えば、硬度Hv700で
は、焼鈍し材に比べ約65%最大比透磁率が低くなって
いることが分かる。(Initial Magnetization Characteristics at Each Hardness) The initial magnetization characteristics at each hardness of the S45C steel were measured using the above-described initial magnetization characteristics measuring device. The measured steel material is φ9m
The hardness Hv is applied to all S45C steels of m × 50mm cylindrical shape.
700, Hv570, and Hv430, which were subjected to through-hardening, and four annealed Hv245 steel materials were used. In addition, the coreless hardened material was prepared by heating the entire material to 900 ° C. in an electric furnace and changing the quenching temperature to obtain the respective hardness values. The measurement results are shown in FIGS. 2 (a) and 2 (b). FIG. 2A shows a BH curve, and FIG.
Indicates an H-μr curve. It can be seen that as the hardness increases, the magnetic permeability decreases. For example, when the hardness is Hv700, it can be seen that the maximum relative magnetic permeability is about 65% lower than that of the annealed material.
【0024】(各硬度における磁気ノイズ評価)前述の
初磁化特性測定装置を使用し、各硬度における磁気特性
の不均一性を評価した。測定試料はそれぞれ硬度Hv2
45、Hv430、Hv570、Hv700のφ9mm
円柱形鋼材で、長さを180mmとした。測定はBコイ
ル(幅4mm、50ターン)とホールプロ−プの位置を
同じとし、また外部磁場Hの値は一定としたまま、試験
鋼材軸方向にBコイル及びホールブローブを2mmピッ
チで平行移動させ、各点における磁束密度を測定した。
測定範囲は、試験鋼材の長さ方向の中心点より±20m
m(2mmピッチ計21点)の測定を行った。各硬度に
おける測定結果を図3〜図6にそれぞれ示す。図3の焼
鈍し材では、外部磁場Hが300A/mでは、最大約8
%のバラツキがあるが、500A/mまで磁場を増やす
と2%程度まで低減されることが分かった。次に図4の
硬度Hv430の焼入れ材では、外部磁場Hが500A
/mでは、最大15%のバラツキがあるが、1000A
/mまで磁場を増やすと、約3%まで低減されることが
分かった。図5の硬度Hv570の焼入れ材では、外部
磁場Hが500A/mでは、最大28%のバラツキが計
測されたが、2000A/mまで磁場を増やすと、略均
一になることが分かった。最後に図6の硬度Hv700
の焼入れ材では、外部磁場Hが500A/mでは、最大
28%のバラツキがあるが、2000A/mまで磁場を
増やすと、略均一になることが計測された。(Evaluation of Magnetic Noise at Each Hardness) Using the above-described device for measuring initial magnetization characteristics, the nonuniformity of the magnetic characteristics at each hardness was evaluated. The measurement samples were each hardness Hv2
45, Hv430, Hv570, φ9mm of Hv700
It was a cylindrical steel material having a length of 180 mm. The measurement was performed with the same position of the B coil (width 4 mm, 50 turns) and the hole probe, and the B coil and the hole probe were translated in the axial direction of the test steel material at a pitch of 2 mm while the value of the external magnetic field H was kept constant. The magnetic flux density at each point was measured.
The measurement range is ± 20m from the center point in the length direction of the test steel.
m (21 points of 2 mm pitch meter) was measured. The measurement results at each hardness are shown in FIGS. 3, when the external magnetic field H is 300 A / m, the maximum is about 8
%, But when the magnetic field was increased to 500 A / m, it was found to be reduced to about 2%. Next, in the quenched material having a hardness of Hv430 shown in FIG.
/ M, there is a maximum variation of 15%, but 1000A
It was found that increasing the magnetic field to / m reduced it to about 3%. In the quenched material having the hardness Hv570 of FIG. 5, when the external magnetic field H was 500 A / m, the maximum variation was 28%. However, it was found that when the magnetic field was increased to 2000 A / m, the magnetic field became substantially uniform. Finally, the hardness Hv700 of FIG.
It was measured that the quenched material had a maximum of 28% variation when the external magnetic field H was 500 A / m, but became substantially uniform when the magnetic field was increased to 2000 A / m.
【0025】以上の結果から、焼鈍し材は外部磁場Hが
500A/m程度で、Hv430の焼入れ材では100
0A/m程度で磁気特性のバラツキが低減されるが、硬
度Hv570以上の焼入れ材では2000A/m程度ま
で磁化させなければ磁気特性のバラツキは低減されず,
またそのバラツキ率は最大で約80%程度生じることも
合わせて分かった。これらのバラツキは、磁気測定等で
の磁気ノイズの原因となりうることが予想される。From the above results, the annealed material has an external magnetic field H of about 500 A / m, and the Hv430 hardened material has an external magnetic field of 100 A / m.
The variation of the magnetic characteristics is reduced at about 0 A / m, but the variation of the magnetic properties is not reduced unless the magnetized material of hardness Hv570 or more is magnetized to about 2000 A / m.
It has also been found that the variation rate is about 80% at the maximum. It is expected that these variations can cause magnetic noise in magnetic measurements and the like.
【0026】(交流非線形解析)本発明は、低周波交流
磁場を使用し、非接触又は接触で高周波焼入れ深さを測
定できる方法を確立するものである。測定プローブは、
図7に示すように、へルムホルツ型励磁コイル1,1
と、2つの励磁コイル1,1の間に検出コイル2を配置
し、更に検出コイル2の内側に外部磁場検出手段3を配
した構造とした。このプローブ内に円柱形高周波焼入れ
材10を挿入した時の検出コイル2に得られる出力電圧
の評価を、等価正弦波交流非線形解析を用いて行なっ
た。尚、図7において、符号11は鋼材10の元組織部
を示し、12は焼入れ硬化層を示している。ここで、交
流励磁周波数は、渦電流の浸透深さを考慮に入れて20
Hzの低周波数を使用した。また非線形解析には前述の
測定した各硬度のS45C鋼材の導電率と初磁化曲線を
使用し、焼入れ深さが出力電圧の振幅に及ぼす影響の検
討を行った。(AC Nonlinear Analysis) The present invention is to establish a method for measuring the induction hardening depth in a non-contact or contact manner using a low-frequency AC magnetic field. The measuring probe is
As shown in FIG. 7, the Helmholtz type excitation coils 1, 1
And a detection coil 2 disposed between the two excitation coils 1 and 1, and an external magnetic field detection means 3 disposed inside the detection coil 2. The output voltage obtained from the detection coil 2 when the cylindrical induction hardened material 10 was inserted into the probe was evaluated using an equivalent sine wave AC nonlinear analysis. In FIG. 7, reference numeral 11 denotes an original microstructure of the steel material 10, and reference numeral 12 denotes a hardened hardened layer. Here, the AC excitation frequency is set to 20 in consideration of the penetration depth of the eddy current.
A low frequency of Hz was used. In addition, the effect of the quenching depth on the amplitude of the output voltage was examined by using the measured conductivity and initial magnetization curve of the S45C steel of each hardness described above in the nonlinear analysis.
【0027】(等価正弦波交流非線形解析法)本解析で
は、磁気ベクトルポテンシャルによる軸対称有限要素法
を用いた。強磁性体を交流で磁化させると非線形性のた
め磁束波形は歪むため、これを解析で評価するには非線
形磁気特性を考慮してステップ・バイ・ステップ法で解
く必要がある。しかし、この解析手法は多くの計算時間
が必要となる。一方、交流励磁において、材料内部の透
磁率が最大透磁率までの未飽和磁化領域では磁束密度は
歪まず、正弦波として扱えることが確かめられている。(Equivalent Sine Wave AC Nonlinear Analysis Method) In this analysis, an axisymmetric finite element method using a magnetic vector potential was used. When a ferromagnetic material is magnetized by alternating current, the magnetic flux waveform is distorted due to nonlinearity. To evaluate this by analysis, it is necessary to solve the problem by a step-by-step method in consideration of nonlinear magnetic characteristics. However, this analysis method requires a lot of calculation time. On the other hand, it has been confirmed that, in the AC excitation, the magnetic flux density is not distorted and can be handled as a sine wave in the unsaturated magnetization region where the magnetic permeability inside the material is up to the maximum magnetic permeability.
【0028】ここでは、計算時間の短縮や解析の容易性
を考慮し、未飽和磁化領域での交流非線形解析手法とし
て、等価正弦波交流非線形数値解析法の適用を行った。
この解析手法は、複素数近似解析法(jω法)を使用
し、非線形交流磁界で歪波形として現れる材料内の磁束
波形を振幅の等しい正弦波に近似する、等価正弦波を使
用した近似的交流非線形解析法である。その支配方程式
を以下に示す。Here, in consideration of shortening of calculation time and easiness of analysis, an equivalent sine wave AC nonlinear numerical analysis method was applied as an AC nonlinear analysis method in an unsaturated magnetization region.
This analysis method uses a complex number approximation analysis method (jω method) to approximate a magnetic flux waveform in a material that appears as a distorted waveform in a non-linear AC magnetic field to a sine wave having an equal amplitude. It is an analysis method. The governing equations are shown below.
【0029】rot(νrotA)=Jo−Je (1)[0029] rot (νrotA) = J o -J e (1)
【0030】divJe=0 (2)DivJ e = 0 (2)
【0031】ここで、A、Jo、Je、νは、それぞれ磁
気ベクトルポテンシャル、強制電流密度、禍電流密度、
磁気抵抗率である。渦電流密度Jeは、Je=jωσAで
あり、ここでのω、σは、角周波数及び導電率である。
これは(1)式の磁気抵抗率νを非緑形とした解析手法
である。また解析では、鋼材を等方性磁性材料として取
り扱っている。Here, A, J o , J e , and ν are magnetic vector potential, forced current density, damage current density,
The magnetic resistivity. The eddy current density J e is J e = jωσA, where ω and σ are angular frequency and conductivity.
This is an analysis method in which the magnetic resistivity ν in equation (1) is set to a non-green shape. In the analysis, steel is treated as an isotropic magnetic material.
【0032】(解析条件:焼入れ領域条件)図1の硬度
分布から、S45C鋼材の高周波焼入れでは、材料表面
から硬度Hv700を維持し、その後ある深さで急激に
硬度が低下し、元組織領域のHv245となることが分
かる。しかし、焼入れ硬度はHv700からHv245
まで急激に減衰するものの、その中間硬度領域が数mm
程度存在することも理解できる。一般的に高周波焼入れ
深さはHv450の値を境として判断しているため、H
v700領域の深さが焼入れ深さとはならない。そこ
で、本解析では焼入れ領域から急激に硬度が減衰する中
間領域を、Hv450を境にそれより硬度が高く、Hv
700未満の領域はHv570とし、またHv450よ
り硬度が低くHv245以上の硬度をもつ中間領域はH
v430と仮定し、硬度がHv700からHv245ま
で減衰する中間領域を2層に分け、評価を試みた。具体
的には、焼入れ深さ3mm時の場合、解析条件として表
面より2mmまでがHv700、2mmから3mmまで
の層はHv570、3mmから3.5mmまでの層はH
v430、そしてそれ以上深い層は全てHv245の層
と仮定し、それぞれの硬度の初磁化曲線と導電率を初期
条件として与え非線形解析を行うこととした。(Analysis conditions: quenching region conditions) From the hardness distribution in FIG. 1, in the induction hardening of the S45C steel material, the hardness Hv700 is maintained from the material surface, and then the hardness sharply decreases at a certain depth, and the hardness of the original structure region is reduced. It turns out that it becomes Hv245. However, the quenching hardness is from Hv700 to Hv245.
Although it attenuates rapidly, its middle hardness region is several mm
It can be understood that it exists to some degree. Generally, the induction hardening depth is determined based on the value of Hv450,
The depth of the v700 region is not the quenching depth. Therefore, in this analysis, the intermediate region where the hardness rapidly decreases from the quenched region is higher in hardness than Hv450,
A region less than 700 is Hv570, and an intermediate region having a hardness lower than Hv450 and a hardness higher than Hv245 is Hv.
Assuming v430, the intermediate region where the hardness attenuated from Hv700 to Hv245 was divided into two layers, and evaluation was attempted. Specifically, when the quenching depth is 3 mm, the analysis conditions are Hv700 up to 2 mm from the surface, Hv570 for the layers from 2 mm to 3 mm, and Hv570 for the layers from 3 mm to 3.5 mm.
Assuming that the layers v430 and deeper than that are all layers of Hv245, a non-linear analysis is performed by giving the initial magnetization curve and conductivity of each hardness as initial conditions.
【0033】(解析条件:各硬度における初磁化)鋼材
等の強磁性体は材料内の透磁率の不均一性を持ち、各種
磁気計測において磁気ノイズを発生する。本発明ではこ
の磁気ノイズの原因となる磁気特性のバラツキを図3〜
図6において、各硬度ごとに評価した。この結果を元
に、各硬度における磁気特性のバラツキを与え解析を行
った。Hv245領域では、500A/mまでの初期磁
化曲線に最大8%、Hv430領域では,1000A/
mまでの初期磁化曲線に最大15%、Hv570及びH
v700領域では、2000A/mまでの初期磁化曲線
に最大28%の範囲内で有限要素法の各分割領域内にラ
ンダムに磁気特性分布を与え、初期透磁率のバラツキを
与えた。以上の解析条件下で、励磁周波数を20Hz一
定としたとき、焼入れ深さが出力電圧の振幅値に及ぼす
影響の評価を行った。(Analysis Conditions: Initial Magnetization at Each Hardness) A ferromagnetic material such as a steel material has a non-uniform magnetic permeability in the material, and generates magnetic noise in various magnetic measurements. In the present invention, the variation of the magnetic characteristics causing the magnetic noise is shown in FIGS.
In FIG. 6, each hardness was evaluated. Based on this result, the magnetic characteristics were varied for each hardness and analyzed. In the Hv245 region, the initial magnetization curve up to 500 A / m has a maximum of 8%, and in the Hv430 region, it is 1000 A / m.
up to 15%, Hv 570 and H
In the region of v700, the initial magnetization curve up to 2000 A / m was given a magnetic property distribution at random within each divided region of the finite element method within a maximum range of 28%, thereby giving a variation in the initial magnetic permeability. Under the above analysis conditions, when the excitation frequency was kept constant at 20 Hz, the effect of the quenching depth on the amplitude value of the output voltage was evaluated.
【0034】(解析結果)図1の硬度分布を元に、鋼材
内を4層に分け、焼入れ深さを3mmとし、交流非線形
解析を行った。材料内部の比透磁率及び磁束密度分布の
解析結果を図8(a)、(b)にそれぞれ示す。これ
は、焼入れ鋼材とプローブの間の空間磁場Hが2000
A/m時の、z=0ライン上の比透磁率及び磁束密度分
布を示している。図8(a)の比透磁率解析結果から、
Hv245層の値は他の3層に比べ高く、またこの層の
表面は表皮効果の影響から最大比透磁率に近づいてお
り、透磁率のバラツキも低減していることがわかる。そ
れに対し、それ以外の3層ではHv245層に対し比透
磁率は極端に低いことが分かる。そのため、図8(b)
の磁束密度分布では透磁率の高いHv245層に値が集
中している様子が合わせて理解できる。Hv480、H
v570、Hv700の各層では、透磁率のバラツキは
あるものの、Hv245層内に比べ絶対的な透磁率の値
が小さいため、全体としては大きなバラツキにはならな
い。次に、図8(b)の磁束密度結果では、透磁率の高
い領域に最も高い値が得られていることが理解できる。
磁束密度は透磁率の値に比例するが、表皮効果の影響か
ら、鋼材内部まで磁束が侵入しないため、鋼材表層より
鋼材中心部の方が透磁率は高いが、磁束密度は表層の方
が中心部より高い値を示し、また、中心部の透磁率のバ
ラツキにはほとんど影響されていないことが理解でき
る。(Analysis Results) Based on the hardness distribution shown in FIG. 1, the inside of the steel material was divided into four layers, the quenching depth was set to 3 mm, and an AC nonlinear analysis was performed. The analysis results of the relative magnetic permeability and the magnetic flux density distribution inside the material are shown in FIGS. 8A and 8B, respectively. This is because the spatial magnetic field H between the hardened steel and the probe is 2000
The relative magnetic permeability and magnetic flux density distribution on the z = 0 line at A / m are shown. From the results of the relative magnetic permeability analysis of FIG.
It can be seen that the value of the Hv245 layer is higher than the other three layers, and the surface of this layer is close to the maximum relative magnetic permeability due to the effect of the skin effect, and the variation of the magnetic permeability is also reduced. On the other hand, it can be seen that the relative permeability of the other three layers is extremely lower than that of the Hv245 layer. Therefore, FIG.
In the magnetic flux density distribution, it can be understood that the values are concentrated in the Hv245 layer having high magnetic permeability. Hv480, H
In each of the layers v570 and Hv700, the magnetic permeability varies, but the absolute magnetic permeability is smaller than that in the Hv245 layer, so that there is no large variation as a whole. Next, from the results of the magnetic flux density shown in FIG. 8B, it can be understood that the highest value is obtained in the region where the magnetic permeability is high.
Although the magnetic flux density is proportional to the value of the magnetic permeability, the magnetic flux does not penetrate into the steel due to the effect of the skin effect.Therefore, the magnetic permeability is higher at the center of the steel than at the surface of the steel, but the magnetic flux density is higher at the surface It can be understood that the value is higher than that of the portion and that the variation of the magnetic permeability at the center is hardly affected.
【0035】これらの結果から、焼入れ領域の方が元組
織領域に比べ磁気特性のバラツキは大きいが(図3〜図
6参照)、透磁率が低いため、材料内部に侵入する磁束
は元組織領域に集中し、焼入れ領域の透磁率のバラツキ
にはほとんど影響されないことが予想できる。この現象
を明らかにするため本解析では、励磁‐検出コイル間隔
を一定に保ったまま、プロープ全体を円柱形鋼材軸方向
(z軸方向)に5mmピッチで平行移動した際の、各位
置における出力電圧を求め、磁気特性の不均一性に伴う
出力電圧のバラツキ率を求めた。結果を図9に示す。空
間磁場Hが100A/m時では、各位置における出力電
圧のバラツキ率は約7%ほどあるが、Hの値を上げるに
伴い磁気ノイズは減少する様子が理解できる。この結果
から、磁気特性の不均一により出力電圧の磁気ノイズは
計測されるものの、そのバラツキ率は元組織領域の透磁
率のバラツキが支配的となるため数%程度と小さく、実
際の焼入れ深さの測定では大きな障害にはならないこと
が示された。From these results, although the variation in the magnetic characteristics is larger in the quenched region than in the original structure region (see FIGS. 3 to 6), the magnetic flux penetrating into the material is lower due to the lower magnetic permeability. Can be expected to be hardly affected by the variation in the magnetic permeability of the quenched region. In order to clarify this phenomenon, in this analysis, the output at each position when the entire probe was translated at a pitch of 5 mm in the axial direction of the cylindrical steel material (z-axis direction) with the excitation-detection coil interval kept constant. The voltage was determined, and the variation rate of the output voltage due to the non-uniformity of the magnetic characteristics was determined. FIG. 9 shows the results. When the spatial magnetic field H is 100 A / m, the variation rate of the output voltage at each position is about 7%, but it can be understood that the magnetic noise decreases as the value of H increases. From this result, although the magnetic noise of the output voltage is measured due to the non-uniformity of the magnetic characteristics, the variation rate is as small as about several% because the variation of the magnetic permeability of the original structure region is dominant. Measurements showed no major obstacles.
【0036】(検証実験及び解析との比較)本発明で
は、図7のプローブ構造に対し検証実験及び解析値との
比較を行った。図7のプローブ構造に対し、予め励磁電
流を調節し、試験鋼材10とプローブの検出コイル2と
の間に設置した外部磁場検出コイル3により、空間磁場
Hの値が5000A/mまで増加させても、プロープ検
出コイル2に得られる出力電圧波形に歪みが発生しな
い、未飽和磁化領域であることを確認した上で、焼入れ
深さ変化が出力電圧波形の振幅値に及ぼす影響を評価し
た。実験にはφ30mm×150mmの円柱形S45C
鋼材で、鋼材表面より、深さ1、2、3、4、5mmで
高周波焼入れをした試験片5本、さらに焼き戻し処理を
施した試験片(深さ0mm)の合計6本を作成し評価を
行った。H=500及び2000A/m時の実験及び解
析結果を図10(a)、(b)にそれぞれ示す。(Comparison with Verification Experiment and Analysis) In the present invention, the probe structure of FIG. 7 was compared with verification experiment and analysis values. With respect to the probe structure of FIG. 7, the exciting current is adjusted in advance, and the value of the spatial magnetic field H is increased to 5000 A / m by the external magnetic field detecting coil 3 installed between the test steel material 10 and the detecting coil 2 of the probe. Also, after confirming that the output voltage waveform obtained from the probe detection coil 2 is in an unsaturated magnetization region where no distortion occurs, the effect of the change in quenching depth on the amplitude value of the output voltage waveform was evaluated. For the experiment, a cylindrical S45C of φ30mm x 150mm
A total of six specimens were prepared from steel, five specimens subjected to induction hardening at a depth of 1, 2, 3, 4, 5 mm from the surface of the steel, and five specimens subjected to a tempering treatment (depth 0 mm). Was done. The experimental and analytical results at H = 500 and 2000 A / m are shown in FIGS. 10 (a) and (b), respectively.
【0037】どの条件下でも焼入れ深さが深くなるにつ
れて出力電圧は減少傾向を示していることが理解でき
る。図8からも分かるが、材料内部に侵入する磁束密度
は透磁率の高い元組織領域に集中する。そのため、焼入
れ深さが深くなるにつれ、材料表面から透磁率の低い領
域が増し、透磁率の高い元組織領域が減少するため、出
力電圧は低下すると考えられる。次に解析値との比較で
あるが、H=2000A/m時で解析値の方が最大約8
%低く評価されているものの、H=500A/mでは全
体としてよく一致する結果を得ることができ、本解析手
法の有用性を示すと同時に、本発明の測定原理の有効性
が立証された。It can be understood that the output voltage shows a decreasing tendency as the quenching depth becomes deeper under any conditions. As can be seen from FIG. 8, the magnetic flux density penetrating into the material is concentrated in the original structure region having high magnetic permeability. Therefore, it is considered that as the quenching depth becomes deeper, the region with low magnetic permeability increases from the material surface, and the original structure region with high magnetic permeability decreases, so that the output voltage decreases. Next, the comparison with the analysis value shows that the analysis value is about 8 at the maximum when H = 2000 A / m.
Although the evaluation was lower by%, H = 500 A / m was able to obtain well-matched results as a whole, indicating the usefulness of the present analysis technique, and at the same time, verifying the effectiveness of the measurement principle of the present invention.
【0038】最後に、図11に基づいて、鋼材の表面に
沿えるだけで焼入れ深さを測定できる実用的なプローブ
Pの構造を簡単に説明する。図11(a)はプローブP
の簡略正面図、(b)は簡略側面図、(c)は簡略底面
図を示している。このプローブPは、鋼材表面に接触さ
せる一対の平行な接触芯4A,4Bを有する側面視コ字
形のヨーク4の一方の接触芯4Aに前記励磁コイル1を
巻回するとともに、他方の接触芯4Bに前記検出コイル
2を巻回し、前記接触芯4A,4Bの先端部間に前記外
部磁場検出手段3を配設した構造のものである。ここ
で、前記外部磁場検出手段3としては、コイルやホール
素子、その他の公知の磁気センサーを用いることがで
き、その設置位置も図示した位置に限定されず、前記励
磁コイル1で発生される低周波交流磁場(励磁電流)を
一定に制御するためのフィードバック信号が得られれば
良いのである。Finally, based on FIG. 11, the structure of a practical probe P capable of measuring the quenching depth only by following the surface of the steel material will be briefly described. FIG. 11A shows the probe P
, (B) is a simplified side view, and (c) is a simplified bottom view. The probe P is configured to wind the exciting coil 1 around one contact core 4A of a U-shaped yoke 4 having a pair of parallel contact cores 4A and 4B to be brought into contact with the surface of a steel material, and to contact the other contact core 4B. And the external magnetic field detecting means 3 is disposed between the distal ends of the contact cores 4A and 4B. Here, as the external magnetic field detecting means 3, a coil, a Hall element, or another known magnetic sensor can be used, and the installation position is not limited to the illustrated position. The only requirement is that a feedback signal for controlling the frequency alternating magnetic field (excitation current) to be constant can be obtained.
【0039】[0039]
【発明の効果】以上にしてなる発明の焼入深度測定方法
及びその装置は、鋼材の焼入硬化層の深さを短時間で且
つ非破壊で直接測定することが可能であり、また測定精
度、信頼性が高く、しかも安価に構成できるのである。
また、高周波焼入れ鋼材の各硬度別における磁気特性を
求め、磁気ノイズを解析的に評価し、磁気ノイズの影響
が無視できるので、高精度の測定ができる。そして、焼
入れ深さが増加するに伴い、出力電圧の振幅は深さに比
例して減少傾向を示すことが数値解析及び検証実験によ
り確かめたので、低周波交流磁場による高周波焼入れ深
さを、検出コイルの出力電圧のみを用いて測定すること
ができ、しかも焼入れ深さが深い鋼材をも精度良く測定
できることが立証できた。また、プローブを鋼材の方面
に沿って走査して測定することにより、焼入れ深さ分布
を出すことができる。The method and apparatus for measuring the quenching depth of the invention described above can directly and non-destructively measure the depth of a quenched hardened layer of a steel material in a short time and have a high measuring accuracy. Therefore, it can be constructed with high reliability and at low cost.
In addition, the magnetic characteristics of each induction hardened steel material for each hardness are obtained, the magnetic noise is analytically evaluated, and the influence of the magnetic noise can be ignored, so that highly accurate measurement can be performed. As the quenching depth increased, the amplitude of the output voltage showed a tendency to decrease in proportion to the depth, and it was confirmed by numerical analysis and verification experiments that the high-frequency quenching depth due to the low-frequency AC magnetic field was detected. It has been proved that the measurement can be performed using only the output voltage of the coil, and that a steel material having a deep quenching depth can be accurately measured. In addition, the hardening depth distribution can be obtained by scanning and measuring the probe along the surface of the steel material.
【図1】高周波焼入れにより深さ1、2、3mmまで焼
入れを施した円柱形鋼材のマルテンサイト硬度分布を示
すグラフである。FIG. 1 is a graph showing a martensite hardness distribution of a cylindrical steel material quenched to a depth of 1, 2, or 3 mm by induction hardening.
【図2】各硬度における初磁化特性を示し、(a)はB
−H曲線のグラフ、(b)はH−μr曲線のグラフであ
る。FIG. 2 shows initial magnetization characteristics at each hardness, and FIG.
FIG. 3B is a graph of an H-curve, and FIG. 3B is a graph of an H-μr curve.
【図3】Hv245の試験鋼材軸方向の各点における磁
束密度のバラツキを示すグラフである。FIG. 3 is a graph showing a variation in magnetic flux density at each point in the axial direction of a test steel material of Hv245.
【図4】Hv430の試験鋼材軸方向の各点における磁
束密度のバラツキを示すグラフである。FIG. 4 is a graph showing a variation in magnetic flux density at each point in the axial direction of a test steel material of Hv430.
【図5】Hv570の試験鋼材軸方向の各点における磁
束密度のバラツキを示すグラフである。FIG. 5 is a graph showing a variation in magnetic flux density at each point in the axial direction of a test steel material of Hv570.
【図6】Hv700の試験鋼材軸方向の各点における磁
束密度のバラツキを示すグラフである。FIG. 6 is a graph showing a variation in magnetic flux density at each point in the axial direction of a test steel material of Hv700.
【図7】へルムホルツ型励磁コイルと検出コイルからな
る測定プローブを一部破断して示した斜視図である。FIG. 7 is a perspective view showing a measurement probe including a Helmholtz-type excitation coil and a detection coil, partially cut away;
【図8】材料内部のz=0における比透磁率及び磁束密
度分布の解析結果を示し、(a)は鋼材半径に対する比
透磁率のグラフ、(b)は鋼材半径に対する磁束密度の
グラフである。8A and 8B show analysis results of relative magnetic permeability and magnetic flux density distribution at z = 0 inside the material, where FIG. 8A is a graph of relative magnetic permeability with respect to steel material radius, and FIG. 8B is a graph of magnetic flux density with respect to steel material radius. .
【図9】円柱形鋼材軸方向の各位置における出力電圧の
バラツキ率を示すグラフである。FIG. 9 is a graph showing a variation rate of an output voltage at each position in an axial direction of a cylindrical steel material.
【図10】高周波焼入れをした焼入れ深さの異なる試験
鋼材の実測結果と理論結果を示し、(a)は空間磁場H
が500A/mの場合のグラフ、(b)は空間磁場Hが
2000A/mの場合のグラフである。10A and 10B show actual measurement results and theoretical results of test steel materials having different quenching depths subjected to induction hardening, and FIG.
Is a graph when is 500 A / m, and (b) is a graph when the spatial magnetic field H is 2000 A / m.
【図11】実用的なプローブの構造を示し、(a)はプ
ローブの簡略正面図、(b)は簡略側面図、(c)は簡
略底面図を示している。11A and 11B show a practical probe structure, in which FIG. 11A is a simplified front view, FIG. 11B is a simplified side view, and FIG. 11C is a simplified bottom view.
【符号の説明】 1 励磁コイル 2 検出コイル 3 外部磁場検出手段(コイル) 4 ヨーク 4A,4B 接触芯 10 鋼材 11 元組織部 12 焼入れ硬化層[Description of Signs] 1 Excitation coil 2 Detection coil 3 External magnetic field detection means (coil) 4 Yoke 4A, 4B Contact core 10 Steel material 11 Original structure 12 Hardened hardened layer
Claims (5)
する焼入深度測定方法であって、励磁コイルで発生させ
た低周波交流磁場によって鋼材を表面に沿った方向に磁
化し、それによって発生する渦電流で誘起される誘導磁
場を検出コイルで検出し、該検出コイルの出力電圧を、
同種鋼材の既知の焼入硬化層の深さと出力電圧の相関デ
ータと比較することによって、対象鋼材の焼入硬化層の
深さを算出してなることを特徴とする焼入深度測定方
法。1. A quenching depth measuring method for non-destructively measuring the depth of a quench hardened layer of a steel material, wherein the steel material is magnetized in a direction along a surface by a low-frequency AC magnetic field generated by an exciting coil. , An induction magnetic field induced by the eddy current generated thereby is detected by a detection coil, and an output voltage of the detection coil is
A quenching depth measuring method, comprising calculating the depth of a quench-hardened layer of a target steel material by comparing the known quench-hardened layer depth of the same type of steel with correlation data of output voltage.
外部磁場検出手段で検出し、空間磁場が一定になるよう
に励磁電流を制御してなる請求項1記載の焼入深度測定
方法。2. A quenching depth measuring method according to claim 1, wherein a spatial magnetic field generated by said exciting coil is detected by an external magnetic field detecting means, and an exciting current is controlled so that the spatial magnetic field is constant.
する焼入深度測定装置であって、鋼材の表面に沿った方
向に磁化するための低周波交流磁場を発生させる励磁コ
イルと、鋼材に発生した渦電流で誘起される誘導磁場を
検出する検出コイルと、同種鋼材の既知の焼入硬化層の
深さと出力電圧の相関データが予め記憶され、前記検出
コイルの出力電圧と相関データとから対象鋼材の焼入硬
化層の深さを算出する演算手段とを備えたことを特徴と
する焼入深度測定装置。3. A quenching depth measuring device for non-destructively measuring the depth of a quenched hardened layer of a steel material, wherein the excitation coil generates a low-frequency AC magnetic field for magnetizing in a direction along a surface of the steel material. And, a detection coil for detecting an induction magnetic field induced by an eddy current generated in the steel material, correlation data of the depth and output voltage of a known quenched hardened layer of the same type of steel material is stored in advance, and the output voltage of the detection coil and A quenching depth measuring device comprising: calculating means for calculating the depth of the quench hardened layer of the target steel material from the correlation data.
検出するための外部磁場検出手段を、前記励磁コイルの
近傍に配設するとともに、該外部磁場検出手段で検出し
た空間磁場が一定になるように励磁電流を制御してなる
請求項3記載の焼入深度測定装置。4. An external magnetic field detecting means for detecting a spatial magnetic field generated by said exciting coil is provided near said exciting coil, and a spatial magnetic field detected by said external magnetic field detecting means becomes constant. 4. The quenching depth measuring apparatus according to claim 3, wherein the exciting current is controlled as described above.
芯を有する側面視コ字形のヨークの一方の接触芯に前記
励磁コイルを巻回するとともに、他方の接触芯に前記検
出コイルを巻回し、前記接触芯の先端部間に前記外部磁
場検出手段を配設した測定プローブを用いてなる請求項
4記載の焼入深度測定装置。5. The exciting coil is wound around one contact core of a U-shaped yoke having a pair of parallel contact cores to be brought into contact with the steel material surface, and the detection coil is wound around the other contact core. 5. The quenching depth measuring apparatus according to claim 4, wherein a measuring probe having the external magnetic field detecting means disposed between the tips of the contact cores is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000199640A JP2002014081A (en) | 2000-06-30 | 2000-06-30 | Method and device for measuring hardness penetration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000199640A JP2002014081A (en) | 2000-06-30 | 2000-06-30 | Method and device for measuring hardness penetration |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002014081A true JP2002014081A (en) | 2002-01-18 |
Family
ID=18697624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000199640A Pending JP2002014081A (en) | 2000-06-30 | 2000-06-30 | Method and device for measuring hardness penetration |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002014081A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006337250A (en) * | 2005-06-03 | 2006-12-14 | Non-Destructive Inspection Co Ltd | Method for measuring depth of treatment using eddy current, and measuring apparatus using the same |
JP2007510916A (en) * | 2003-11-10 | 2007-04-26 | フラウンホファー ゲセルシャフトツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. | A method for quantitative determination of the width of the soft zone region of partially cured workpieces. |
JP2009047664A (en) * | 2007-08-23 | 2009-03-05 | Toyota Motor Corp | Method and apparatus for nondestructive measurement |
JP2009109358A (en) * | 2007-10-30 | 2009-05-21 | Toyota Motor Corp | Method for measuring hardening pattern |
JP2009186433A (en) * | 2008-02-08 | 2009-08-20 | Chiba Univ | Eddy-current type sample measuring method, eddy-current sensor and eddy-current type sample measurement system |
WO2012057224A1 (en) | 2010-10-26 | 2012-05-03 | 高周波熱錬株式会社 | Quenching depth measuring method and quenching depth measuring device |
US8432161B2 (en) | 2008-10-28 | 2013-04-30 | Toyota Jidosha Kabushiki Kaisha | Frequency selection method and hardening depth measurement method of eddy current measurement |
WO2019087460A1 (en) | 2017-10-30 | 2019-05-09 | 新日鐵住金株式会社 | Device and method for detecting magnetic property changing part of elongated material |
US11577140B2 (en) * | 2019-05-24 | 2023-02-14 | Lucas Chen | Determining fencing blade quality using dynamic magnetic field measurements |
-
2000
- 2000-06-30 JP JP2000199640A patent/JP2002014081A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007510916A (en) * | 2003-11-10 | 2007-04-26 | フラウンホファー ゲセルシャフトツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. | A method for quantitative determination of the width of the soft zone region of partially cured workpieces. |
JP2006337250A (en) * | 2005-06-03 | 2006-12-14 | Non-Destructive Inspection Co Ltd | Method for measuring depth of treatment using eddy current, and measuring apparatus using the same |
JP2009047664A (en) * | 2007-08-23 | 2009-03-05 | Toyota Motor Corp | Method and apparatus for nondestructive measurement |
JP2009109358A (en) * | 2007-10-30 | 2009-05-21 | Toyota Motor Corp | Method for measuring hardening pattern |
JP2009186433A (en) * | 2008-02-08 | 2009-08-20 | Chiba Univ | Eddy-current type sample measuring method, eddy-current sensor and eddy-current type sample measurement system |
US8432161B2 (en) | 2008-10-28 | 2013-04-30 | Toyota Jidosha Kabushiki Kaisha | Frequency selection method and hardening depth measurement method of eddy current measurement |
WO2012057224A1 (en) | 2010-10-26 | 2012-05-03 | 高周波熱錬株式会社 | Quenching depth measuring method and quenching depth measuring device |
CN103238064A (en) * | 2010-10-26 | 2013-08-07 | 高周波热錬株式会社 | Quenching depth measuring method and quenching depth measuring device |
US9304108B2 (en) | 2010-10-26 | 2016-04-05 | Neturen Co., Ltd. | Quenching depth measurement method and quenching depth measurement apparatus |
WO2019087460A1 (en) | 2017-10-30 | 2019-05-09 | 新日鐵住金株式会社 | Device and method for detecting magnetic property changing part of elongated material |
JPWO2019087460A1 (en) * | 2017-10-30 | 2020-04-02 | 日本製鉄株式会社 | Apparatus and method for detecting magnetic property change portion of long material |
US11193910B2 (en) | 2017-10-30 | 2021-12-07 | Nippon Steel Corporation | Device and method of detecting magnetic characteristic change for long material |
US11577140B2 (en) * | 2019-05-24 | 2023-02-14 | Lucas Chen | Determining fencing blade quality using dynamic magnetic field measurements |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101941241B1 (en) | Electromagnetic sensor and calibration thereof | |
JP5892341B2 (en) | Hardening depth measuring method and quenching depth measuring device | |
Jomdecha et al. | Design of modified electromagnetic main-flux for steel wire rope inspection | |
JP2007040865A (en) | Nondestructive measuring method for determining depth of hardened layer, unhardened state and foreign material | |
JP5149562B2 (en) | Nondestructive measuring method and nondestructive measuring device | |
JP2004108873A (en) | Non-destructive measuring method for quenched surface hardness/depth and its device | |
EP2572175A1 (en) | System and method for determining stress of a component made of magnetizable material | |
CN106872565A (en) | The differential permeability curve detection method of ferromagnetic material metallographic volume components accounting | |
JP2002014081A (en) | Method and device for measuring hardness penetration | |
Bowler et al. | Alternating current potential-drop measurement of the depth of case hardening in steel rods | |
JP2011185623A (en) | Device for evaluation of surface treatment | |
RU2566416C1 (en) | Device for eddy-current magnetic examination of ferromagnetic objects | |
JP2000266727A (en) | Carburized depth measuring method | |
JP4029400B2 (en) | Method for measuring carburization depth on the inner surface of steel pipe | |
JP4192333B2 (en) | Method for measuring transformation layer thickness of steel | |
JP2003139745A (en) | Instrument for measuring quenching hardness, and designing method therefor | |
Cuffe et al. | Eddy current measurement of case hardened depth of steel components | |
JP7454165B2 (en) | Magnetic material measurement probe and magnetic material measurement device | |
Mangiorou et al. | Residual Stress Monitoring in Magnetostrictive Cylinders and Tubes | |
Vengrinovich et al. | The principles of depth analysis of surface hardened layers by the magnetic noise method | |
Munjal et al. | Non-Contact Evaluation of Hardened Steel Samples using Inductive Spectroscopy | |
JP2024018348A (en) | Quenching depth evaluation method, and quenching depth evaluation device | |
Khongpreechar et al. | Development of Barkhausen Noise measuring system for evaluating steel properties: Hardness | |
JP2024018347A (en) | Quenching depth evaluation method, and quenching depth evaluation device | |
Malikov et al. | Measurement system for studying steel-dielectric junctures by means of superminiature eddy-current probes |