JPH0117535B2 - - Google Patents

Info

Publication number
JPH0117535B2
JPH0117535B2 JP57089319A JP8931982A JPH0117535B2 JP H0117535 B2 JPH0117535 B2 JP H0117535B2 JP 57089319 A JP57089319 A JP 57089319A JP 8931982 A JP8931982 A JP 8931982A JP H0117535 B2 JPH0117535 B2 JP H0117535B2
Authority
JP
Japan
Prior art keywords
point
pipe
sectional
cross
view
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57089319A
Other languages
Japanese (ja)
Other versions
JPS58205852A (en
Inventor
Keiichi Hirose
Takayoshi Yamamoto
Yukihiro Terada
Hiroshi Hamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP57089319A priority Critical patent/JPS58205852A/en
Publication of JPS58205852A publication Critical patent/JPS58205852A/en
Publication of JPH0117535B2 publication Critical patent/JPH0117535B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 この発明は、管相貫継手の超音波探傷方法に関
し、管相貫継手の溶接欠陥の肉厚方向位置を容易
かつ正確に検出できるようにすることを目的とす
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic flaw detection method for a pipe-through joint, and an object thereof is to easily and accurately detect the position of a welding defect in a pipe-through joint in the wall thickness direction.

一般に、海洋構造物等の格点部の管相貫継手に
対して超音波探傷試験を行なう場合、3次元的に
複雑に変化する継手の探傷部の断面形状を知り、
超音波の伝幡経路を正確に把握することが必要と
なる。
Generally, when conducting an ultrasonic flaw detection test on a pipe-penetrating joint at a critical point such as an offshore structure, it is necessary to know the cross-sectional shape of the flaw detection part of the joint, which changes in a complex three-dimensional manner.
It is necessary to accurately understand the propagation path of ultrasonic waves.

そこで、従来、試験対象となる管相貫継手の縮
小試験体をつくり、該試験体を実際に切断してそ
の切断面の形状を把握する方法や、櫛ゲージまた
はパテを継手外面に当て、前記櫛ゲージまたはパ
テにより継手外面の一部の形状を型取つて探傷部
の断面形状を作成する方法が実施されているが、
前者の場合、管の肉厚や外径の異なる多種類の継
手の縮小試験体を作らねばならず、多くの費用と
時間を要し、後者の場合、得られた断面形状が不
正確で、溶接欠陥の位置を正確に知ることができ
ないという欠点がある。
Conventionally, there have been methods of creating a reduced specimen of a pipe-through joint to be tested, and actually cutting the specimen to determine the shape of the cut surface, or applying a comb gauge or putty to the outer surface of the joint to determine the shape of the cut surface. A method is used in which the cross-sectional shape of the flaw detection part is created by molding a part of the outer surface of the joint using a comb gauge or putty.
In the former case, it is necessary to make reduced-scale test specimens of many types of joints with different pipe wall thicknesses and outer diameters, which requires a lot of money and time; in the latter case, the obtained cross-sectional shape is inaccurate, The disadvantage is that the location of the welding defect cannot be accurately determined.

この発明は、前記の点に留意してなされたもの
であり、管相貫継手の取付管の外面および前記継
手の被取付管の外面により形成される管相貫曲線
を含む前記両管それぞれの展開図を作成し、前記
両展開図に、前記管相貫曲線上の各点における接
線に直交する直交線を描き起こし、前記管相貫曲
線に前記両展開図の管相貫曲線を一致させて前記
両展開図を前記両管にそれぞれ巻き付け、前記各
直交線を前記両管の表面にそれぞれ転写して前記
両管の表面に探触子の走査ガイドとなるらせんを
形成し、前記各点における前記両管のらせんの曲
率および捩率のうち該捩率を無視して曲率のみに
着目し、前記両らせんの曲率の逆数を半径とする
外側円弧と、該外側円弧の半径より前記両管の肉
厚だけ小なる半径の同心の内側円弧とにより、前
記各点における前記両らせんの捩りを取つた前記
各点ごとの第1断面図を作成し、前記各第1断面
図の前記両管それぞれの断面図成分に法線を付加
して前記両管それぞれの前記各点ごとの第2断面
図を作成しておき、探触子を前記各らせんに沿い
走査させて前記継手の溶接部の超音波探傷を行
い、欠陥検出時に、探傷波形からビーム路程を測
定し、当該らせんを特定する前記点における前記
第2断面図に、前記法線に対称に前記探触子によ
る超音波の屈折角度の超音波伝幡経路を描くとと
もに、前記伝幡経路に沿い超音波の入射点から前
記ビーム路程の位置に欠陥点をプロツトし、当該
らせんを特定する前記点における前記第1断面図
の欠陥検出時の前記探触子の位置を示す点に、前
記第2断面図の前記入射点を一致させて前記両断
面図を重ね合わせ、前記第2断面図の前記欠陥点
から前記溶接部の欠陥の肉厚方向位置を判定する
ことを特徴とする管相貫継手の超音波探傷方法を
提供するものである。
This invention has been made with the above-mentioned points in mind, and includes a pipe interpenetration curve formed by the outer surface of the attached pipe of the pipe interpenetration joint and the outer surface of the pipe to which the joint is attached. Create a developed view, draw orthogonal lines perpendicular to tangents at each point on the pipe interpenetration curve on both developed views, and match the pipe interpenetration curve of both developed views with the pipe interpenetration curve. wrap the developed views around the tubes, transfer the orthogonal lines to the surfaces of the tubes to form a spiral that serves as a scanning guide for the probe, and Of the curvature and torsion of the helices of both the pipes, the torsion is ignored and only the curvature is focused on. A first sectional view for each point is created by removing the torsion of both helices at each point by a concentric inner circular arc with a radius smaller by the wall thickness, and the two pipes in each first sectional view are A normal line is added to each cross-sectional view component to create a second cross-sectional view for each point of each of the pipes, and the probe is scanned along each of the spirals to detect the welded portion of the joint. When performing ultrasonic flaw detection and detecting a defect, the beam path length is measured from the flaw detection waveform, and the refraction angle of the ultrasonic wave by the probe is symmetrical to the normal line in the second cross-sectional view at the point where the helix is specified. drawing an ultrasonic propagation path, plotting a defective point along the propagation path at a position within the beam path from the ultrasonic incident point, and detecting a defect in the first cross-sectional view at the point to identify the helix; The incident point of the second sectional view is made to coincide with the point indicating the position of the probe at the time, and both sectional views are superimposed, and the defect in the welded portion is detected from the defect point of the second sectional view. The present invention provides an ultrasonic flaw detection method for a pipe-penetrating joint, which is characterized by determining the position in the wall thickness direction.

したがつて、この発明の管相貫継手の超音波探
傷方法によると、両管の表面に形成したらせんに
沿つて探触子を走査させて探傷を行い、欠陥を検
出したときに、当該らせんを特定する点の第2断
面図を第1断面図に重ね合わせるのみで、管相貫
継手の溶接部の欠陥の肉厚方向位置を容易かつ正
確に判定することができる。
Therefore, according to the ultrasonic flaw detection method for a pipe-penetrating joint of the present invention, flaw detection is performed by scanning a probe along a spiral formed on the surfaces of both pipes, and when a defect is detected, By simply superimposing the second cross-sectional view of the point specifying on the first cross-sectional view, it is possible to easily and accurately determine the position in the wall thickness direction of the defect in the welded portion of the pipe-penetrating joint.

つぎに、この発明を、その1実施例を示した図
面とともに詳細に説明する。
Next, the present invention will be described in detail with reference to drawings showing one embodiment thereof.

(原理) まず、実施例の説明に先立ち、この発明の原理
について第1図および第2図を用いて説明する。
(Principle) First, before explaining the embodiments, the principle of the present invention will be explained using FIG. 1 and FIG. 2.

図面において、1は外径D、肉厚Tの被取付管
である第1管、2は第1管1に取付角度δで取付
けられた外径d、肉厚tの取付管である第2管、
Sは第1管1の外面と第2管2の外面とにより形
成された管相貫曲線、3は探触子である。
In the drawings, reference numeral 1 indicates a first pipe to be attached, which has an outer diameter D and a wall thickness T, and 2 indicates a second pipe, which has an outer diameter d and a wall thickness T, and which is attached to the first tube 1 at an attachment angle δ. tube,
S is a tube interpenetration curve formed by the outer surface of the first tube 1 and the outer surface of the second tube 2, and 3 is a probe.

そして、超音波探傷試験を行なう場合、超音波
を入射する方向は、検出しようとする欠陥の方向
性を考慮して欠陥と直交させる必要があるととも
に、溶接部の縦割れ、溶込み不足、融合不良、ス
ラグ巻込み等の欠陥が溶接線方向に長さを有する
ため、溶接線に直角に超音波を入射させなければ
ならず、管相貫継手に対して超音波探傷試験を行
なう場合においても、溶接線である管相貫曲線S
の各点における接線に直交するように超音波を入
射させる必要があり、多種類の管相貫継手に対し
て超音波を前記接線に正確に直交するように入射
させて探傷するために、各管相貫継手を、外径比
d/D、取付角度δをパラメータとして大分類す
るとともに、さらに、肉厚、外径比t/d、T/
Dをパラメータとして小分類する。
When conducting an ultrasonic flaw detection test, the direction of ultrasonic wave incidence must be perpendicular to the defect, taking into consideration the directionality of the defect to be detected. Because defects such as defects and slag entrainment have a length in the direction of the weld line, it is necessary to apply ultrasonic waves at right angles to the weld line. , pipe interpenetration curve S which is the welding line
It is necessary to make the ultrasonic wave incident perpendicular to the tangent line at each point. Pipe-penetrating joints are broadly categorized using parameters such as outer diameter ratio d/D and mounting angle δ, and furthermore, wall thickness, outer diameter ratio t/d, and T/
D is subclassified as a parameter.

いま、第1図aに示すように、管相貫曲線S上
に、前記曲線S上の点を第2管2の管軸に直交す
る第1平面Lに投影したときの角度が=P
で表わされる点Pを仮定すると、曲線S上の点P
における接線Mを設定し、点Pにおける第2管2
の接平面内の接線Mに直交する直交線と、前記接
平面内の管軸を示す線Kとのなす第1角Aの角度
αは、 により表わされ、管相貫曲線Sの任意の点におけ
る角度αは管の外径比d/D、取付角度δおよび
角度に伴つて変化する。
Now, as shown in Figure 1a, on the pipe interpenetration curve S, the angle when a point on the curve S is projected onto the first plane L perpendicular to the pipe axis of the second pipe 2 is = P
Assuming a point P expressed as , a point P on the curve S
Set the tangent M at point P, and the second pipe 2 at point P
The angle α of the first angle A between an orthogonal line perpendicular to the tangent line M in the tangential plane and a line K indicating the tube axis in the tangential plane is: The angle α at any point of the pipe interpenetration curve S changes according to the pipe outer diameter ratio d/D, the mounting angle δ, and the angle.

このとき、点Pは第2管2の外面上の点であ
り、一般的に管の外面上に1点を設定すると、当
該点における管の接平面は一義的に定まり、しか
もこの接平面には前記1点を通る前記管の外面上
の母線を必ず含むため、点Pにおける第2管2の
接平面も一義的に定まり、しかし第2管2の前記
接平面には、点Pを通る母線に相当する線Kと、
点Pにおける曲線Sの接線Mとの双方が含まれ
る。
At this time, point P is a point on the outer surface of the second pipe 2, and generally, when one point is set on the outer surface of the pipe, the tangential plane of the pipe at that point is uniquely determined, and this tangential plane Since always includes the generatrix on the outer surface of the tube that passes through the one point, the tangential plane of the second tube 2 at the point P is also uniquely defined, but the tangential plane of the second tube 2 includes a generatrix that passes through the point P. A line K corresponding to the bus line,
Both the tangent M of the curve S at the point P and the curve S are included.

また、同様に、点Pにおける第1管1の接平面
内の接線Mに直交する直交線と、前記接平面内の
管軸を示す線とのなす第2角Bの角度βは、 により表わされ、前記第1角Aの角度αと同様
に、管の外径比d/D、取付角度δおよび角度
に伴つて変化するとともに、前記接線Mに直交す
る点Pにおける第1管1の接平面と第2管2の接
平面とのなす第3角Cの角度γは、 γ=cos-1{cosδ・cos・√1−(・
2−d/D・sin2… により表わされ、前記第1、第2角A,Bの角度
α,βと同様に、管の外径比d/D、取付角度δ
および角度に伴つて変化する。
Similarly, the angle β of the second angle B between the orthogonal line perpendicular to the tangent M in the tangential plane of the first tube 1 at point P and the line indicating the tube axis in the tangential plane is: , which, like the angle α of the first angle A, changes with the outside diameter ratio d/D of the pipe, the installation angle δ, and the angle, and the first pipe at a point P perpendicular to the tangent M. The angle γ of the third angle C between the tangent plane of pipe 1 and the tangent plane of second pipe 2 is as follows: γ=cos -1 {cosδ・cos・√1−(・
) 2 - d/D・sin 2 ... Similar to the angles α and β of the first and second angles A and B, the outer diameter ratio d/D of the pipe and the installation angle δ
and changes with angle.

このとき、点Pにおける第1管1の接平面に
は、前記した第2管2の場合と同様に、点Pを通
り第1管1の外面上の管軸に平行な母線Nと、点
Pにおける曲線Sの接線Mとの双方が含まれる。
At this time, the tangential plane of the first tube 1 at the point P includes a generatrix N that passes through the point P and is parallel to the tube axis on the outer surface of the first tube 1, and a point Both the curve S and the tangent M at P are included.

なお、、式において、d/Dを(d−
2t)/Dに読換えることにより、第1管1の外面
と第2管2の内面とにより形成される管相貫曲線
の点における接線に直交する方向、すなわち前記
点における第2、第1管2,1の各接平面内の前
記接線の直交線と、第2管2および第1管1の管
軸を示す線とのなす角の角度α′,β′がそれぞれ表
わされる。
In addition, in the formula, d/D is (d-
2t)/D, the direction perpendicular to the tangent at the point of the pipe interpenetration curve formed by the outer surface of the first pipe 1 and the inner surface of the second pipe 2, that is, the second and first The angles α' and β' between the perpendicular lines of the tangent lines in the respective tangential planes of the tubes 2 and 1 and the lines indicating the tube axes of the second tube 2 and the first tube 1 are represented, respectively.

したがつて、第2管2側から探傷する場合に
は、超音波の点Pへの入射方向と管軸を示す線K
とのなす角の角度が前記式で表わされる角度α
になるように超音波を入射させるとともに、第1
管1側から探傷する場合には、超音波の点Pへの
入射方向と管軸を示す線とのなす角の角度が前記
式で表わされる角度βになるように超音波を入
射させればよいことになり、管の外径比d/D、
取付角度δの異なる種々の管相貫曲線について、
角度を所定の角度ごとに変化させたときの角度
α,β,α′,β′を前記、式により予め算出し
ておくことにより、超音波の入射方向を容易に決
定することができる。
Therefore, when performing flaw detection from the second tube 2 side, the direction of incidence of ultrasonic waves on point P and the line K indicating the tube axis
The angle formed by the angle α is expressed by the above formula.
Inject the ultrasonic wave so that the first
When performing flaw detection from the tube 1 side, the ultrasonic wave should be incident so that the angle between the direction of incidence of the ultrasonic wave at point P and the line indicating the tube axis is the angle β expressed by the above formula. Therefore, the outer diameter ratio of the tube d/D,
Regarding various pipe interpenetration curves with different installation angles δ,
By calculating the angles α, β, α', and β' in advance using the above equations when the angles are changed by predetermined angles, the direction of incidence of the ultrasonic waves can be easily determined.

つぎに、第1、第2管1,2等の管中の超音波
の伝幡に注目すると、管の外面から細いビームの
超音波をある屈折角度λで管軸に対して角度をも
つて入射させた場合、超音波の伝幡経路は模式的
に第2図に示すようになり、同図中のx軸、y
軸、z軸の各座標軸からなる3次元空間における
座標x1,y1,z1の管外面の点P1から屈折角度λで
入射された超音波は、座標x2,y2,z2の管内面の
点Q1で反射されて座標x3,y3,z3の管外面の点
R1に到達する。そして、各点P1,Q1,R1におけ
る管の外面、内面の接平面をそれぞれ第2〜第4
平面D,E,Fとし、第2平面Dと第3平面Eお
よび第3平面Eと第4平面Fとのなす角度をそれ
ぞれμ,μ′とするとともに、各点P1,Q1,R1
x−y平面および第3平面Eへの投影点をそれぞ
れ点P2,Q2,R2および点P3,Q3,R3としたとき
のベクトルOP2→とx軸とのなす角度および、∠
P2OQ2(∠R2OQ2)をそれぞれν,εとし、点Q1
における第3平面Eの法線と管の外面との交点を
座標x4,y4,z4の点Uとすると、ベクトルP1Q1→,
Q1R1→およびQ1U→はすべて第5平面G内にあり、
第5平面Gと第3平面Eとが直交し、第5平面G
内で∠P1Q1U=∠R1Q1Uとなるとともにμ=μ′=
εとなり、第5平面Gと第3平面Eとの交線がx
−y平面に対してtanξの傾きがあるとすると、
ベクトルOP1→,OQ1→,OR1→はそれぞれ、 OP1→=(x1、y1、z1)=(d/2.cosν、d/2・si
nν、z1)… OQ→1=(x2、y2、z2) =((d/2−t)・cos(ε+ν)、(d/2−
t)・sin(ε+ν)、ltanξ+z1)… OR→1=(x3、y3、z3) =(d/2・cos(2ε+ν)、d/2・sin(2ε+
ν)、2ltanξ+z1)… となり、ここで、l=|P3Q3→|=|Q3R3→|であ
り、〜式より OU→=(x4、y4、z4) =(d/2・cos(ε+ν)、d/2・sin(ε+ν)
、ltanξ+z1)… となり、ベクトルP1Q1→およびQ1R1→のx軸および
y軸に対する方向余弦が異なるとともにz軸に対
する方向余弦が等しくなり、管の外面から管軸に
対して角度をもつて入射された超音波の入射点、
反射点の外面への投影点、外面への到達点を管の
外面で結んだ場合、結んだ線がらせんを描くこと
になる。
Next, if we pay attention to the propagation of ultrasonic waves in tubes such as the first and second tubes 1 and 2, we can see that a thin beam of ultrasonic waves is transmitted from the outer surface of the tube at a certain refraction angle λ with respect to the tube axis. When the ultrasonic wave is incident, the propagation path of the ultrasonic wave is schematically shown in Figure 2, and the x-axis and y-axis in the figure are
Ultrasonic waves incident at a refraction angle λ from a point P 1 on the outer surface of the tube with coordinates x 1 , y 1 , z 1 in a three-dimensional space consisting of the coordinate axes x 1 , y 1 , z 1 have coordinates x 2 , y 2 , z 2 is reflected at point Q 1 on the inner surface of the tube and points on the outer surface of the tube with coordinates x 3 , y 3 , z 3
Reach R 1 . Then, the tangential planes of the outer surface and inner surface of the pipe at each point P 1 , Q 1 , R 1 are set to the second to fourth points, respectively.
Let the planes D, E, and F be the angles formed by the second plane D and the third plane E, and the angles formed by the third plane E and the fourth plane F as μ and μ', respectively, and each point P 1 , Q 1 , and R When the projection points of 1 onto the x-y plane and the third plane E are respectively points P 2 , Q 2 , R 2 and points P 3 , Q 3 , R 3 , the formation of the vector OP 2 → and the x-axis angle and ∠
Let P 2 OQ 2 (∠R 2 OQ 2 ) be ν and ε, respectively, and point Q 1
If the intersection of the normal to the third plane E and the outer surface of the tube is a point U with coordinates x 4 , y 4 , z 4 , vector P 1 Q 1 →,
Q 1 R 1 → and Q 1 U → are all in the fifth plane G,
The fifth plane G and the third plane E are orthogonal to each other, and the fifth plane G
∠P 1 Q 1 U=∠R 1 Q 1 U and μ=μ′=
ε, and the line of intersection between the fifth plane G and the third plane E is x
Assuming that there is a slope of tanξ with respect to the −y plane,
The vectors OP 1 →, OQ 1 →, OR 1 → are respectively OP 1 →=(x 1 , y 1 , z 1 )=(d/2.cosν, d/2・si
nν, z 1 )... OQ → 1 = (x 2 , y 2 , z 2 ) = ((d/2-t)・cos(ε+ν), (d/2-
t)・sin (ε+ν), ltanξ+z 1 )... OR→ 1 = (x 3 , y 3 , z 3 ) = (d/2・cos (2ε+ν), d/2・sin (2ε+
ν), 2ltanξ+z 1 )..., where l=|P 3 Q 3 →|=|Q 3 R 3 →|, and from the ~ formula, OU→=(x 4 , y 4 , z 4 ) = ( d/2・cos(ε+ν), d/2・sin(ε+ν)
, ltanξ+z 1 )..., and the direction cosines of the vectors P 1 Q 1 → and Q 1 R 1 → with respect to the x and y axes are different, and the direction cosines with respect to the z axis are the same, and the angle from the outer surface of the tube to the tube axis is The incident point of the ultrasonic wave incident with
If you connect the projection point of the reflection point onto the outside surface and the point where it reaches the outside surface with the outside surface of the tube, the connected line will draw a spiral.

即ち、逆に言えば、管の外面に設定したらせん
に沿つて超音波を入射したときに、管の内面で反
射した超音波は前記らせん上に到達することにな
り、前記らせん上の1点において前記らせんと直
交する仮想線を想定すると、前記らせんに沿つて
超音波を入射すれば、必ず前記仮想線に入射超音
波が直交する。
In other words, when an ultrasonic wave is incident along a helix set on the outer surface of a tube, the ultrasonic wave reflected from the inner surface of the tube will reach the helix, and one point on the helix will be reflected. Assuming an imaginary line perpendicular to the spiral, if an ultrasonic wave is incident along the helix, the incident ultrasonic wave will always be orthogonal to the imaginary line.

したがつて、第2図の結果から、第1図aに示
す管相貫曲線Sの点Pに、超音波を点Pの接線M
に対して直交するように入射させるには、第2管
2側から入射させる場合、点Pにおける第2管2
の接平面内の接線Mに直交する線と第2管2の管
軸を示す線Kとのなす第1角Aの角度αが前記
式により算出された値に等しくなるように、進み
角度(90゜−α)のらせんに沿つて探触子を前後
走査させればよいとともに第1管1側から入射さ
せる場合、点Pにおける第1管1の接平面内の接
線Mに直交する線と第1管1の管軸を示す線との
なす第2角Bの角度βが前記式により算出され
た値に等しくなるように、進み角度(90゜−β)
のらせんに沿つて探触子を前後走査させればよ
い。
Therefore, from the results shown in FIG.
In order to make the light enter from the second pipe 2 side, the second pipe 2 at the point P
The advance angle ( It is sufficient to scan the probe back and forth along a spiral of 90°-α), and when the probe is incident from the first tube 1 side, a line perpendicular to the tangent M in the tangential plane of the first tube 1 at point P and Adjust the advance angle (90° - β) so that the angle β of the second angle B with the line indicating the pipe axis of the first pipe 1 is equal to the value calculated by the above formula.
The probe can be scanned back and forth along the spiral.

(実施例) つぎに、実施例について説明する。(Example) Next, examples will be described.

いま、前記したらせんを実際に形成するため
に、管相貫曲線Sを含む両管1,2の展開図を作
成し、管相貫曲線Sの所定の角度ごとの各点に
おける接線に直交する直交線を描き起こし、両展
開図を,管相貫曲線を一致させて両管1,2に巻
き付け、描き起こした各直交線を両管1,2の表
面にそれぞれけがき等によつて転写し、探触子の
走査ガイドとなるらせんを形成する。
Now, in order to actually form the above-mentioned spiral, a developed view of both pipes 1 and 2 including the pipe interpenetration curve S is created, and the lines are perpendicular to the tangents at each point at each predetermined angle of the pipe interpenetration curve S. Draw orthogonal lines, wrap both developed views around both pipes 1 and 2, matching the pipe interpenetration curves, and transfer each drawn orthogonal line to the surface of both pipes 1 and 2 by marking, etc. This forms a spiral that serves as a scanning guide for the probe.

このとき、各点のらせんそれぞれと、前記各点
を通る両管1,2の母線とのなす角はα,βとな
り、両管1,2それぞれの各らせんの進み角度は
(90゜−α)、(90゜−β)となる。
At this time, the angles formed by each helix at each point and the generatrix of both tubes 1 and 2 passing through each point are α and β, and the advancing angle of each helix of both tubes 1 and 2 is (90° − α ), (90°−β).

そして、たとえば管相貫曲線Sの点Pにおける
両管1,2の進み角度(90゜−α)、(90゜−β)の
両らせんを含むように、肉厚方向に各管1,2を
切断したときの各管1,2の切断面のらせんを決
定する曲率および捩率のうち当該捩率を無視して
曲率のみに着目し、コンピユータ等により、点P
における各管1,2の接平面に直交する方向に半
径方向をとり、前記各らせんの曲率の逆数をそれ
ぞれ半径として外側円弧を描くとともに、両管
1,2の肉厚分だけ前記外側円弧の半径よりも小
さい半径で内側円弧を描き、点Pにおける両らせ
んの捩りを取り、肉厚一定でかつ第2管2側の端
部の切取角度を開先角度と同一にした第1断面図
を作成するとともに、0゜〜360゜にわたる所定角度
ごとの第1断面図を得て角度が異なる場合の
断面形状を予め把握しておき、各第1断面図の両
管1,2それぞれの断面図成分に法線を付加した
第1管1および第2管2の所定角度ごとの第2
断面図をそれぞれ作成する。
For example, the tubes 1 and 2 are arranged in the wall thickness direction so as to include both helices of the advancing angles (90°-α) and (90°-β) of the tubes 1 and 2 at the point P of the tube interpenetration curve S. Of the curvature and torsion that determine the helix of the cut surface of each tube 1 and 2 when cut, the torsion is ignored and only the curvature is focused, and a computer or the like is used to determine the point P.
The radial direction is taken in the direction orthogonal to the tangent plane of each tube 1, 2, and an outer arc is drawn with the radius being the reciprocal of the curvature of each spiral, and the outer arc is drawn by the wall thickness of both tubes 1, 2. A first sectional view in which an inner arc is drawn with a radius smaller than the radius, the twist of both helices at point P is removed, the wall thickness is constant, and the cutting angle of the end on the second pipe 2 side is made the same as the beveling angle. At the same time, obtain first cross-sectional views at each predetermined angle ranging from 0° to 360°, understand in advance the cross-sectional shapes when the angles are different, and create cross-sectional views of both pipes 1 and 2 in each first cross-sectional view. The second pipe for each predetermined angle of the first pipe 1 and the second pipe 2 with the normal added to the component.
Create a cross-sectional view of each.

このとき、管の外径比d/D=0.797、取付角
度δ=45゜、第1管1の肉厚外径比T/D=
0.049、第2管2の肉厚外径比t/d=0.062であ
る場合、たとえば0〜130゜の角度の10゜ごとの
第3図に示すような第1断面図が得られるととも
に、第4図に示すような第2管2の第2断面図が
得られる。また、得られた第1断面図から、所定
の角度およびαにおける探傷点に入射すべき超
音波の屈折角度λを選定することができ、たとえ
ば第5図に示すような各第1断面図が得られた場
合、=0゜、α=0゜の探傷点に対しては、λ=45゜
では直射法、1回反射法のいずれによつても超音
波を入射できない領域が生じるため、λ=70゜で
かつ1回反射法により超音波を入射すればよいこ
とが容易にわかるとともに、=90゜、α=46゜で
はλ=45゜でかつ1回反射法により超音波を入射
し、=180゜、α=0゜では1回反射法であれば屈
折角度λがλ=45゜またはλ=70゜のいずれであつ
てもよいことが容易にわかる。なお、第5図中の
〇印は欠陥、▽印は探触子接近限位置を示す。
At this time, the outer diameter ratio of the tube d/D=0.797, the mounting angle δ=45°, the wall thickness outer diameter ratio of the first tube 1 T/D=
0.049, and the wall thickness outer diameter ratio t/d of the second pipe 2 is 0.062, for example, the first cross-sectional view as shown in FIG. A second sectional view of the second tube 2 as shown in FIG. 4 is obtained. Further, from the obtained first cross-sectional view, it is possible to select the refraction angle λ of the ultrasonic wave to be incident on the flaw detection point at a predetermined angle and α. For example, each first cross-sectional view as shown in FIG. If obtained, for the flaw detection point of = 0° and α = 0°, there will be a region where ultrasonic waves cannot be incident at λ = 45° either by the direct method or the single reflection method, so λ It is easy to see that the ultrasonic wave should be incident at = 70° and using the single reflection method, and at = 90° and α = 46°, the ultrasonic wave should be incident at λ = 45° and using the single reflection method, It can be easily seen that when α=180° and α=0°, the refraction angle λ may be either λ=45° or λ=70° if the single reflection method is used. In addition, in FIG. 5, the mark ◯ indicates a defect, and the mark ▽ indicates the probe approach limit position.

さらに、探傷しようとする肉厚方向への位置の
相違に対処するため、第2管2側から探傷する場
合、第1管1の外面と第2管2の内面とにより形
成される管相貫曲線の点における接線に直交する
接平面内の線と第2管2の管軸とのなす角の角度
α′、および、超音波の伝幡経路を第2管2の内面
でのらせんの進み角度で表示する際の角度α″か
ら探触子の首振り角度(α″−α)を算出すると
ともに、第1管1側から探傷する場合にも、前記
と同様にして首振り角度を算出する。
Furthermore, in order to deal with the difference in the position in the wall thickness direction where flaws are to be detected, when flaws are detected from the second tube 2 side, the tube mutual contact formed by the outer surface of the first tube 1 and the inner surface of the second tube 2 is The angle α' between the line in the tangential plane orthogonal to the tangent at the point of the curve and the tube axis of the second tube 2, and the propagation path of the ultrasonic wave as the progress of the spiral on the inner surface of the second tube 2. Calculate the swing angle of the probe (α″-α) from the angle α″ when expressed as an angle, and also calculate the swing angle in the same manner as above when performing flaw detection from the first pipe 1 side. do.

そして、第2管2側から探傷する場合、第2管
2の外面の進み角度αのらせんに沿い、第6図に
示すように、探触子3を予め算出された首振り角
度(α″−α)ずつ首振りさせつつ前後走査させ
ることにより、管相貫曲線Sの点Pを含む肉厚方
向への線上の各点に所定の屈折角度λの超音波を
正確に精度よく入射させることができる。
When performing flaw detection from the second tube 2 side, the probe 3 is moved along the spiral of the advance angle α of the outer surface of the second tube 2, as shown in FIG. −α) By scanning back and forth while swinging the head at a time, ultrasonic waves with a predetermined refraction angle λ are accurately and precisely incident on each point on the line in the wall thickness direction including point P of the pipe interpenetration curve S. Can be done.

ところで、欠陥を検出した場合、探傷波形から
欠陥エコーまでのビーム路程を測定するととも
に、当該らせんを特定する角度の第2断面図
に、法線に対称に屈折角度入の超音波の伝幡経路
を描くとともに、伝幡経路に沿い超音波の入射点
から前記ビーム路程の位置に欠陥点をプロツト
し、同じ角度における第1断面図の欠陥検出時
の探触子3の位置を示す点に、第2断面図の超音
波の入射点を一致させて、第2断面図を第1断面
図に重ね合わせることにより、第2断面図の欠陥
点が第1断面図のどこに位置するかによつて、前
記両断面図から管相貫曲線の欠陥の肉厚方向位置
を判定することができ、0゜〜360゜にわたる角度
についてこれらの動作が繰り返されて管相貫継手
の溶接部の探傷が容易に行なわれる。
By the way, when a defect is detected, the beam path from the flaw detection waveform to the defect echo is measured, and the propagation path of the ultrasonic wave with a refraction angle symmetrical to the normal is plotted in the second cross-sectional view at the angle that specifies the helix. At the same time, a defect point is plotted along the propagation path at a position within the beam path from the point of incidence of the ultrasonic wave, and at the point indicating the position of the probe 3 at the time of defect detection in the first cross-sectional view at the same angle, By matching the incident points of the ultrasonic waves in the second cross-sectional view and superimposing the second cross-sectional view on the first cross-sectional view, it is possible to determine where the defective point in the second cross-sectional view is located in the first cross-sectional view. , the position of the defect in the pipe interpenetration curve in the wall thickness direction can be determined from both cross-sectional views, and these operations are repeated for angles ranging from 0° to 360°, making it easy to detect flaws in the welded part of the pipe interpenetration joint. It will be held in

すなわち、たとえば第1管1の肉厚外径比T/
D=0.084、第2管2の肉厚外径比t/d=
0.0341、取付角度δ=30゜の管相貫継手を探傷す
る場合、角度=120゜において欠陥を検出したと
きに、第7図中の1点鎖線で示された=120゜の
第1断面図上に欠陥を含む検出時の探触子の位置
を示す点Vをプロツトするとともに、同図中の2
点鎖線で示された第2管2の=120゜の第2断面
図に、屈折角度70゜の超音波の伝幡経路を描くと
ともに、ビーム路程から欠陥点mをプロツトし、
この第2断面図の超音波の入射点Wが、第1断面
図の点Vに一致するように第2断面図を第1断面
図に重ね合わせたときに、第2断面図上の点mが
第1断面図のどこに位置するかによつて、欠陥の
肉厚方向位置を容易に判定することができる。
That is, for example, the wall thickness outer diameter ratio T/
D=0.084, wall thickness outer diameter ratio t/d= of the second pipe 2
0.0341, when testing a pipe-penetrating joint with an installation angle δ = 30°, when a defect is detected at an angle = 120°, the first cross-sectional view at = 120° shown by the dashed-dotted line in Fig. 7. Point V indicating the position of the probe at the time of detection including a defect is plotted on the top, and 2 in the same figure is plotted.
On the second cross-sectional view of the second tube 2 at =120° indicated by the dotted chain line, the propagation path of the ultrasonic wave with a refraction angle of 70° is drawn, and the defect point m is plotted from the beam path.
When the second cross-sectional view is superimposed on the first cross-sectional view so that the incident point W of the ultrasonic wave in the second cross-sectional view coincides with the point V of the first cross-sectional view, the point m on the second cross-sectional view is The position of the defect in the wall thickness direction can be easily determined depending on where the defect is located in the first cross-sectional view.

なお、第1管1側から探傷する場合、前記と同
様に、同図中の細い実線で示された第1管1の第
2断面図を前記第1断面図に重ね合わせればよ
い。
In addition, when performing flaw detection from the first tube 1 side, the second sectional view of the first tube 1 indicated by the thin solid line in the figure may be superimposed on the first sectional view, as described above.

したがつて、前記実施例によると、欠陥検出時
の角度の前記第2断面図を第1断面図に重ね合
わせるのみで、管相貫継手の溶接部の欠陥の肉厚
方向位置を容易かつ正確に検出することができ
る。
Therefore, according to the embodiment, by simply superimposing the second cross-sectional view at the angle at which the defect was detected on the first cross-sectional view, it is possible to easily and accurately determine the position in the wall thickness direction of the defect in the welded portion of the pipe-penetrating joint. can be detected.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、この発明の管相貫継手の超音波探傷方
法の1実施例を示し、第1図aは正面図、同図b
は同図aの左側面図、第2図は管の外面から細い
ビームの超音波がある屈折角度で管軸に対して角
度をもつて入射した場合の伝幡経路を模式的に示
す図、第3図は角度がそれぞれ異なるときの第
1断面図、第4図は角度がそれぞれ異なるとき
の第2断面図、第5図は角度,αがそれぞれ異
なるときの超音波入射領域を示す図、第6図は探
傷時の一部の拡大断面図、第7図は欠陥位置の検
出時の動作説明図である。 1……第1管、2……第2管、3……探触子、
S……管相貫曲線。
The drawings show an embodiment of the ultrasonic flaw detection method for a pipe-penetrating joint according to the present invention, in which Fig. 1a is a front view and Fig. 1b is a front view.
is a left side view of Figure a, and Figure 2 is a diagram schematically showing the propagation path when a thin beam of ultrasonic waves is incident from the outer surface of the tube at a certain refraction angle and at an angle to the tube axis. FIG. 3 is a first sectional view when the angles are different, FIG. 4 is a second sectional view when the angles are different, and FIG. 5 is a diagram showing the ultrasound incident area when the angles and α are different. FIG. 6 is an enlarged cross-sectional view of a part during flaw detection, and FIG. 7 is an explanatory diagram of the operation when detecting a defect position. 1...First tube, 2...Second tube, 3...Probe,
S...Pipe interpenetration curve.

Claims (1)

【特許請求の範囲】[Claims] 1 管相貫継手の取付管の外面および前記継手の
被取付管の外面により形成される管相貫曲線を含
む前記両管それぞれの展開図を作成し、前記両展
開図に、前記管相貫曲線上の各点における接線に
直交する直交線を描き起こし、前記管相貫曲線に
前記両展開図の管相貫曲線を一致させて前記両展
開図を前記両管にそれぞれ巻き付け、前記各直交
線を前記両管の表面にそれぞれ転写して前記両管
の表面に探触子の走査ガイドとなるらせんを形成
し、前記各点における前記両管のらせんの曲率お
よび捩率のうち該捩率を無視して曲率のみに着目
し、前記両らせんの曲率の逆数を半径とする外側
円弧と、該外側円弧の半径より前記両管の肉厚だ
け小なる半径の同心の内側円弧とにより、前記各
点における前記両らせんの捩りを取つた前記各点
ごとの第1断面図を作成し、前記各第1断面図の
前記両管それぞれの断面図成分に法線を付加して
前記両管それぞれの前記各点ごとの第2断面図を
作成しておき、探触子を前記各らせんに沿い走査
させて前記継手の溶接部の超音波探傷を行い、欠
陥検出時に、探傷波形からビーム路程を測定し、
当該らせんを特定する前記点における前記第2断
面図に、前記法線に対称に前記探触子による超音
波の屈折角度の超音波伝幡経路を描くとともに、
前記伝幡経路に沿い超音波の入射点から前記ビー
ム路程の位置に欠陥点をプロツトし、当該らせん
を特定する前記点における前記第1断面図の欠陥
検出時の前記探触子の位置を示す点に、前記第2
断面図の前記入射点を一致させて前記両断面図を
重ね合わせ、前記第2断面図の前記欠陥点から前
記溶接部の欠陥の肉厚方向位置を判定することを
特徴とする管相貫継手の超音波探傷方法。
1. Create a developed view of each of the two pipes including a pipe mutually curved line formed by the outer surface of the attached pipe of the pipe mutually fitting and the outer surface of the pipe to which the joint is attached, and add the pipe mutually Draw orthogonal lines perpendicular to tangent lines at each point on the curve, match the pipe interpenetration curves of both developed views with the pipe interrelated curves, and wrap both developed views around both pipes, and The lines are transferred to the surfaces of the two tubes to form a helix that serves as a scanning guide for the probe on the surfaces of the two tubes, and the torsion ratio is determined among the curvature and torsion of the helices of the two tubes at each point. By ignoring the curvature and focusing only on the curvature, the above-mentioned A first cross-sectional view is created for each point in which the torsion of both helices at each point is removed, and a normal line is added to the cross-sectional view component of each of the two pipes in each first cross-sectional view, and each of the two pipes is A second cross-sectional view is created for each of the above points, and the probe is scanned along each of the helices to conduct ultrasonic flaw detection of the welded part of the joint. When defects are detected, the beam path is determined from the flaw detection waveform. measure,
In the second cross-sectional view at the point specifying the helix, an ultrasound propagation path of the refraction angle of the ultrasound by the probe is drawn symmetrically to the normal line, and
Defect points are plotted along the propagation path at a position within the beam path from the point of incidence of the ultrasonic wave, and the position of the probe at the time of detecting the defect in the first cross-sectional view at the point specifying the helix is indicated. At the point, the second point
A pipe-penetrating joint characterized in that the incidence points of the cross-sectional views are made to coincide, the two cross-sectional views are superimposed, and the position in the wall thickness direction of the defect in the welded portion is determined from the defect point in the second cross-sectional view. Ultrasonic flaw detection method.
JP57089319A 1982-05-25 1982-05-25 Ultrasonic flaw detection of interpenetration pipe coupling Granted JPS58205852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57089319A JPS58205852A (en) 1982-05-25 1982-05-25 Ultrasonic flaw detection of interpenetration pipe coupling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57089319A JPS58205852A (en) 1982-05-25 1982-05-25 Ultrasonic flaw detection of interpenetration pipe coupling

Publications (2)

Publication Number Publication Date
JPS58205852A JPS58205852A (en) 1983-11-30
JPH0117535B2 true JPH0117535B2 (en) 1989-03-30

Family

ID=13967341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57089319A Granted JPS58205852A (en) 1982-05-25 1982-05-25 Ultrasonic flaw detection of interpenetration pipe coupling

Country Status (1)

Country Link
JP (1) JPS58205852A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1839050A4 (en) * 2005-01-21 2014-03-05 Fluor Tech Corp Ultrasound phased array devices and methods for use with stainless steel
CN110219327B (en) * 2019-06-15 2021-03-26 镇江市丹徒区建筑工程质量检测中心 Foundation pile ultrasonic detection auxiliary device

Also Published As

Publication number Publication date
JPS58205852A (en) 1983-11-30

Similar Documents

Publication Publication Date Title
JP4910770B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
US5497662A (en) Method and apparatus for measuring and controlling refracted angle of ultrasonic waves
WO2020048373A1 (en) Intermediate and large diameter thin-walled tube non-destructive detection method based on phased array ultrasonic flaw detector
JPH0352908B2 (en)
CN108562647A (en) The polyethylene pipe hot melt banjo fixing butt jointing supersonic detection device and method that PA-TOFD is combined
CN109781860B (en) Reference block and calibration method
JP4116483B2 (en) Tubular ultrasonic inspection method and apparatus
EP3259587A1 (en) Method for inspecting a weld seam with ultrasonic phased array
JPS61111461A (en) Ultrasonic flaw detecting method of welded part of seam welded pipe
CN109239184B (en) Ultrasonic phased array detection method for pipe seat fillet weld
JPH02120659A (en) Non-destructive dimensions and defect inspection for thin tube weld part
JP2007322350A (en) Ultrasonic flaw detector and method
JP2008164396A (en) Flaw detection method and flaw detector used therefor
JP4364031B2 (en) Ultrasonic flaw detection image processing apparatus and processing method thereof
JPH0117535B2 (en)
JPH10221309A (en) Determining method of welded part, measuring method of unwelded part, and inspecting device of the welded part
CN112326799A (en) Method for applying phased array technology to pressure pipeline regular inspection and grading
CN103207240B (en) The measuring method of the longitudinal acoustic pressure distribution of a kind of angle probe ultrasonic field
CN103217485B (en) A kind of measurement test block of angle probe ultrasonic field sound pressure distribution
JPH0117534B2 (en)
JP5145066B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2001330594A (en) Inspection method of metal pipe bonded body
JP3389599B2 (en) Ultrasonic flaw detection method for steel pipe and ultrasonic flaw detection apparatus for steel pipe
JP7318617B2 (en) Ultrasonic flaw detection method for tubular test object
CN203259509U (en) Test block for measuring sound pressure distribution of ultrasonic field of angle probe